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Better HMC integrators for dynamical simulations
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We show how to improve the molecular dynamics step of Hybrid Monte Carlo, both by tuning the

integrator using Poisson brackets measurements and by the use of force gradient integrators. We

present results for moderate lattice sizes.
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1. Introduction and Motivation

Hybrid Monte Carlo (HMC) [1] is the algorithm of choice to generate lattice configurations
including the effect of dynamical fermions. Nevertheless,the generation of gauge field configura-
tions at large volumes and light quark masses is still very expensive computationally.

One principal ingredient of HMC is the molecular dynamics (MD) step, which consists of a
reversible volume-preserving approximate MD trajectory of τ/δτ steps (withτ being the length
of the trajectory in suitable units, andδτ the step size) followed by a Metropolis accept/reject test
with acceptance probability min(1,e−δH) whereδH is the change in the HamiltonianH over the
trajectory.

A molecular dynamics trajectory is not only an approximate integral curve of the Hamiltonian
vector fieldĤ corresponding toH, but is also an exact integral curve of the Hamiltonian vector
field ̂̃H of an exactly conserved Shadow HamiltonianH̃. The asymptotic expansion of this Shadow
Hamiltonian in the step sizeδτ may be computed using the Baker–Campbell–Hausdorff (BCH)
formula and expressed in terms of Poisson brackets [2].

As a simple example consider a single level Omelyan (PQPQP) integrator [3]

UPQPQPQ(τ) =
(

eλ Ŝδτe
1
2 T̂δτe(1−2λ)Ŝδτe

1
2 T̂δτeλ Ŝδτ

)τ/δτ

whose shadow Hamiltonian is

H̃PQPQPQ= HPQPQPQ+

(
6λ 2−6λ +1

12
{S,{S,T}}+

1−6λ
24

{T,{S,T}}

)
δτ2+O(δτ4). (1.1)

Note that we have one free tunable parameter,λ , which is often set to somead hocvalue not taking
Poisson brackets into account [4].

2. Integrator tuning

We define the difference between the shadow (H̃) and actual (H) Hamiltonians as∆H = H̃−H.
We have previously suggested [5] that1

2〈δH2〉≈Var(∆H), where the right hand side is the variance
of the distribution of values of∆H over phase space. This formula assumes that the trajectories are
long enough that the end points are more-or-less independent of the starting points, and accurate
enough that their distribution is still close toe−H . We can therefore estimate the acceptance rate
from Var(∆H)

Pacc= erfc

(√
1
8
〈δH2〉

)
= erfc

(√
1
4

Var(∆H)

)
(2.1)

The advantage of using Var(∆H) is that one only needs to measure the Poisson brackets from
equilibrated configurations. We can thus expressPacc as a function of the integrator parameters and
find their optimal values that maximize the acceptance rate.

As a simple test, we consider a HMC simulation of two flavors ofWilson fermions atκ = 0.158
and Wilson gauge action atβ = 5.6 on an 84 lattice. We use a single level PQPQP integrator and
a unit trajectory length, therefore we have two parameters to tune, namelyλ and the step size
δτ . In Figure 1 we compare the acceptance rates predicted by theformula above (red curve) with
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(a) Acceptance rate as a function ofλ , with δτ = 0.1. (b) Acceptance rate as a function ofδτ, with λ = 0.18.

Figure 1: Comparison of measured acceptance rates and their predictions from average Poisson brackets.

numerical data taken from simulations at various values ofλ andδτ (black dots). The Poisson
Bracket values used for the predictions were measured atλ = 0.18 andδτ = 0.1. In Figure 1(a) we
have fixedδτ = 0.1 and we leaveλ as a free parameter; whereas in Figure 1(b) we takeλ = 0.18
and we plotPacc as a function of the step size.

The figures show good agreement between predicted and measured acceptance rates. We
now use eq. (2.1) to tune the MD integrator on a larger volume.Ultimately, we are interested
in reducing the computational cost, which depends on the wall-clock time spent computing the
force terms as well as the acceptance rate, and the autocorrelation time for the observables. We
neglect the autocorrelation time in this discussion as theyare not sensitive to the choice of integrator
parameters as long as the acceptance rate is reasonable, anddefine our cost metric as

cost=
trajectory CPU time

Pacc

.

For a nested integrator the numerator of this cost function is a function of the number of steps at
each level times the CPU time required to compute the forces at that level.

3. Tuning a real simulation

As an application of our tuning technology, we are going to consider a HMC simulation of
a 243 × 32 lattice [6], with two flavours of Wilson fermions withκ = 0.1580 andβ = 5.6. The
authors of [6] include two Hasenbusch fields with twisted mass fermions as “preconditioners”, and
they use a nested PQPQP integrator scheme withλ = 1/6 and one force term at each level, as
shown in Table 1, where 0 is the outermost level. For each level i, we show the corresponding
number of stepsmi , the type of force and its parameters, and typical times spent on force and force
gradient computation. All times refer to runs on 128 nodes onthe BlueGene/L at the University of
Edinburgh.
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Level i Stepsmi Force F time FG time

0 3 Hasenbusch (µ = 0 / µ = 0.057) 37 s 43 s
1 1 Hasenbusch (µ = 0.057 /µ = 0.25) 9 s 12 s
2 2 Wilson (µ = 0.25) 2.5 s 3.3 s
3 3 Gauge 0.25 s 0.34 s

Table 1: Set-up used in the HMC simulation described in [6], togetherwith typical times spent on force
computation. For convenience times for the force gradient computation used in §3.2 are also shown here.

For simplicity, we have fixedτ = 1 in our tuning exercise. We also have restricted our search
space tom0 ≥ 3 to avoid integrator instabilities (which occur when the BCH expansion breaks
down).

3.1 PQPQP tuning

We now describe how we tuned the PQPQP integrator, and what results we obtained. We
considered two different nested schemes:

A1. The original scheme, but with tuned values ofλ .

B1. The two Hasenbusch fields appear now at the same level (so we have only 3 different levels).

Table 2 shows the parameters which minimize the cost metric defined in the last section. For each
scheme we show the number of steps at each level, the optimalλ parameters, our predictions for the
acceptance rate, the estimated time spent in force computation in one trajectory, and measurements
of acceptance rates and trajectory times. For comparison wealso show data for the original scheme.

Prediction Measurement
Scheme mi λi F time Time

0 1 2 3 0 1 2 3 Pacc / traj. Pacc / traj.

Original 3 1 2 3 1/6 1/6 1/6 1/6 0.85 655 s 0.89 709 s
A1 3 1 1 2 0.185 0.188 0.184 0.183 0.80 541 s 0.75 578 s
B1 3 3 1 − 0.177 0.183 0.176 — 0.82 454 s 0.83 554 s

Table 2: Tuning of the PQPQP integrator scheme.

We see that both the tuning of the integrator parameters and changes to the scheme provide
further improvements over an already well-tuned scheme. Indeed, with the B1 scheme we get a
1.3× speedup.

3.2 Force gradient integrator tuning

We have again considered the two integrator schemes above, but used a PQPQP force gradient
integrator [7] at all levels. As in this case there are no tuneable parameters, we could only vary
the number of steps at each level. In Table 3 we show the best parameters we found as well as the
measured values of acceptance rates and trajectory times.
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Prediction Measurement
Scheme mi F +FG Time

0 1 2 3 Pacc time / traj. Pacc / traj.

Original 3 1 2 3 0.85 655 s 0.89 709 s
A2 3 1 1 1 0.96 778 s 0.91 814 s
B2 3 1 1 − 0.91 565 s 0.78 626 s

Table 3: Tuning of the force gradient integrator scheme.

In this case, the acceptance rates are not sufficiently high to amortize the higher wall-clock
time cost coming from the computation of the force gradient term. Thus overall, we could see
no measurable improvement in the cost metric as compared to the regular PQPQP case. However,
further improvement could be possible by either using otherforce gradient integrators [3], or tuning
the Hasenbusch masses. We are currently working on these issues.

4. Conclusions

We have presented a novel way of tuning an integrator, together with a practical example
using a moderate lattice size. This tuning procedure can be used for all lattice gauge and fermionic
actions. We are working towards a general implementation ofthe calculation of Poisson brackets
and force gradient terms in Chroma [8]. In the near future we will consider the tuning of HMC
simulations on larger lattices and smaller quark masses, and we will also consider other widely
used lattice actions.
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The numerical results have been obtained using Chroma library [8].
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