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Better HMC integrators for dynamical simulations

1. Introduction and M otivation

Hybrid Monte Carlo (HMC) [[L] is the algorithm of choice to genate lattice configurations
including the effect of dynamical fermions. Nevertheldbg, generation of gauge field configura-
tions at large volumes and light quark masses is still vepeagive computationally.

One principal ingredient of HMC is the molecular dynamicsOMstep, which consists of a
reversible volume-preserving approximate MD trajectofyr 31 steps (witht being the length
of the trajectory in suitable units, ardd the step size) followed by a Metropolis accept/reject test
with acceptance probability mifh,e ") wheredH is the change in the Hamiltonias over the
trajectory.

A molecular dynamics trajectory is not only an approximategral curve of the Hamiltonian
vector fieldH corresponding td4, but is also an exact integral curve of the Hamiltonian vecto
field H of an exactly conserved Shadow HamiltontdnThe asymptotic expansion of this Shadow
Hamiltonian in the step sizd1 may be computed using the Baker—Campbell-Hausdorff (BCH)
formula and expressed in terms of Poisson brackgts [2].

As a simple example consider a single level Omelyan (PQPQ&Jriator [B]
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whose shadow Hamiltonian is
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{T {ST}}> 32+ 0(61%.  (1.2)

Note that we have one free tunable parametewhich is often set to somad hocvalue not taking
Poisson brackets into accoufit [4].

2. Integrator tuning

We define the difference between the shadéiwand actualid) Hamiltonians ad\H = H —H.
We have previously suggestdl [5] tf%atSH2> ~ Var(AH ), where the right hand side is the variance
of the distribution of values diH over phase space. This formula assumes that the trajectoge
long enough that the end points are more-or-less indepémdéhe starting points, and accurate
enough that their distribution is still close 0. We can therefore estimate the acceptance rate
from Var(AH)

Prcc = erfc( %(5H2>> = erfc( %Var(AH)) (2.1)

The advantage of using M@H) is that one only needs to measure the Poisson brackets from
equilibrated configurations. We can thus expiessas a function of the integrator parameters and
find their optimal values that maximize the acceptance rate.

As a simple test, we consider a HMC simulation of two flavorgédgon fermions ak = 0.158
and Wilson gauge action = 5.6 on an 8 lattice. We use a single level PQPQP integrator and
a unit trajectory length, therefore we have two parametersitie, namelyd and the step size
oT. In Figure[lL we compare the acceptance rates predicted Hpriinela above (red curve) with
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(a) Acceptance rate as a functionofwith 87 = 0.1. (b) Acceptance rate as a function®f, with A = 0.18.

Figure 1: Comparison of measured acceptance rates and their poediétom average Poisson brackets.

numerical data taken from simulations at various value3 aihd o1 (black dots). The Poisson
Bracket values used for the predictions were measurgéd=a0.18 anddt = 0.1. In Figureg[1(d) we
have fixeddT = 0.1 and we leave\ as a free parameter; whereas in Figure] 1(b) we Aake0.18
and we plotP,.. as a function of the step size.

The figures show good agreement between predicted and radascceptance rates. We
now use ed. [(2}1) to tune the MD integrator on a larger volutdéimately, we are interested
in reducing the computational cost, which depends on théck@tk time spent computing the
force terms as well as the acceptance rate, and the autiatiometime for the observables. We
neglect the autocorrelation time in this discussion as #éineyot sensitive to the choice of integrator
parameters as long as the acceptance rate is reasonabtiefaredour cost metric as

_ trajectory CPU time

ost
Pacc

For a nested integrator the numerator of this cost funcsaa function of the number of steps at
each level times the CPU time required to compute the forctmalevel.

3. Tuning areal simulation

As an application of our tuning technology, we are going tasider a HMC simulation of
a 24 x 32 lattice [], with two flavours of Wilson fermions witk = 0.1580 andB = 5.6. The
authors of [p] include two Hasenbusch fields with twisted sifasmions as “preconditioners”, and
they use a nested PQPQP integrator scheme Avith1/6 and one force term at each level, as
shown in Tablg]1, where 0 is the outermost level. For eacH iewee show the corresponding
number of stepsy, the type of force and its parameters, and typical timestspeforce and force
gradient computation. All times refer to runs on 128 nodetherBlueGene/L at the University of
Edinburgh.
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Leveli | Stepsm Force Ftime | FG time
0 3 Hasenbuschy(=0/u = 0.057) 37s 43 s
1 1 Hasenbuschy(=0.057 /u=0.25) | 9s 12s
2 2 Wilson (u = 0.25) 25s 3.3s
3 3 Gauge 0.25s| 0.34s

Table 1: Set-up used in the HMC simulation describedEh [6], togethigh typical times spent on force
computation. For convenience times for the force gradientgutation used in@.z are also shown here.

For simplicity, we have fixed = 1 in our tuning exercise. We also have restricted our search
space tomg > 3 to avoid integrator instabilities (which occur when the BExpansion breaks
down).

3.1 PQPQP tuning
We now describe how we tuned the PQPQP integrator, and whaltseve obtained. We
considered two different nested schemes:
Al. The original scheme, but with tuned valuesiof

B1. The two Hasenbusch fields appear now at the same levelbave only 3 different levels).

Table[2 shows the parameters which minimize the cost megfioetl in the last section. For each
scheme we show the number of steps at each level, the optipedameters, our predictions for the
acceptance rate, the estimated time spent in force conutatone trajectory, and measurements
of acceptance rates and trajectory times. For comparis@isseshow data for the original scheme.

Prediction | Measurement
Scheme m Aj F time Time
0 1 2 3 0 1 2 3 Pe. | /traj. | P | /traj.
Original |3 1 2 3| 1/6 1/6 1/6 1/6 | 085 | 655s | 0.89 | 709s
Al 3 1 1 2|0185 Q188 Q184 0183|080 | 541s|0.75| 578s
B1 3 3 1 —|0177 Q183 Q176 — |0.82| 454s|0.83| 554s

Table 2: Tuning of the PQPQP integrator scheme.

We see that both the tuning of the integrator parameters laadges to the scheme provide
further improvements over an already well-tuned schemdedd, with the B1 scheme we get a
1.3x speedup.

3.2 Force gradient integrator tuning

We have again considered the two integrator schemes ahavesdd a PQPQP force gradient
integrator [J] at all levels. As in this case there are no alnhe parameters, we could only vary
the number of steps at each level. In TBle 3 we show the bemmeters we found as well as the
measured values of acceptance rates and trajectory times.
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Prediction Measurement
Scheme m F+FG Time
0 1 2 3| P |time/traj.| P | /traj.
Original |3 1 2 3085 655 s 0.89| 709s
A2 3 1 1 1|/096 778 s 0.91| 814s
B2 3 1 1 —|091 565 s 0.78| 626 s

Table 3: Tuning of the force gradient integrator scheme.

In this case, the acceptance rates are not sufficiently loighmortize the higher wall-clock
time cost coming from the computation of the force gradienint Thus overall, we could see
no measurable improvement in the cost metric as compardu teegular PQPQP case. However,
further improvement could be possible by either using diiee gradient integrator§|[3], or tuning
the Hasenbusch masses. We are currently working on thesssiss

4. Conclusions

We have presented a novel way of tuning an integrator, tegetlith a practical example
using a moderate lattice size. This tuning procedure carsée ior all lattice gauge and fermionic
actions. We are working towards a general implementatiah@ftalculation of Poisson brackets
and force gradient terms in Chronfa [8]. In the near future \iteawnsider the tuning of HMC
simulations on larger lattices and smaller quark massaswanwill also consider other widely
used lattice actions.
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The numerical results have been obtained using Chromaytih
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