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Abstract

Information about external world is delivered to the brain in the form of structured in time spike trains.
During further processing in higher areas, information is subjected to a certain condensation process, which
results in formation of abstract conceptual images of external world, apparently, represented as certain uniform
spiking activity partially independent on the input spike trains details. Possible physical mechanism of
condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural
network, due to this mechanism the dynamics should settle down to the same uniform/periodic activity in
response to a set of various inputs. Since the same periodic activity may correspond to different input spike
trains, we interpret this as possible candidat for information condensation mechanism in a network. Our
purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly,
the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking
neural networks of different geometric sizes are modelled by means of computer simulation. Each network was
propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics
until it becomes periodic. The Shannon’s formula is used to calculate the amount of information in any
input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of
information condensation in the networks, and conclude that it depends strongly on the net’s geometric size.

1 Introduction

The ability of a biological object to obtain enough
information about external world is essential for
the object’s survival. The information is deliv-
ered to the central nervous system through vari-
ous sensory pathways in the form of spike trains.
The pathways’ information throughput has been
studyed for a long time in theoretical [22] and ex-
perimental [25] research. The paradigm of those
research is consistent with the assumption that the

best situation is when the brain receives maximum
information from sensory systems. But compare
this with [10]. Another paradigm, which is as well
mature, [23], concentrates on self-organization of
spike trains when primary sensory activity spreads
to higher brain areas. Self-organization is ac-
companied with information loss, [15], Indeed, a
kind of standartization of activity evoked by var-
ious primary sensory inputs is obsereved exper-
imentally in higher brain areas during olfactory
[6, 38] and auditory [4] perception. In visual sys-
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tem, simple examples are the transformation of
scene representation to viewpoint-invariant, [7] or
retinotopic-invariant [32] coordinates. Here, spike
trains in the optic nerve must depend on certain
information (retinal position, viewpoint), which
is removed in higher areas of conceptual repre-
sentation. In the context of cognitive physiol-
ogy, the process of reduction of information aimed
at conceptual representation/recognition of exter-
nal objects is known as information condensation,
[21]. Usually pattern recognition phenomenon,
which is closely related to information condensa-
tion, is considered in parallel with training, see
[12, 17, 24, 28, 30, 31, 39], learning, [1, 11, 13, 21],
or other plasticity, [16], in the corresponding net-
work. In a biological network, the learning mecha-
nism involves biosynthesis [27] and is therefore very
slow process, which requires seconds or minutes,
[3]. At the same time, recognition of objects in vi-
sual scene can be accomplished within 150 ms, or
faster, citeThorpe1,Thorpe. During this short pe-
riod of time, the network has constant structure,
but it is the spiking activity which evolves within
it from information-rich at the sensory periphery
into information-poor, representing concrete enti-
ties/concepts at higher brain areas.

We now put a question: What could be the
physical mechanism of information condensation in
a spiking neural system? One possible mechanism,
[37] which operates at the level of single neuron,
was discussed, see Fig. 1, 2 and n. 2.1.12.1.1, be-
low. In a reverberating spiking network, due to
this mechanism the spiking dynamics should set-
tle down to the same definite periodic activity in
response to any stimulus from a definite set of var-
ious inputs, and to another periodic activity in re-
sponse to members of another set of inputs. If so,
then the definite periodic dynamical state can be
considered as an abstract representation of a fea-
ture, which all stimuli from the definite set have in
common. And this is just what is expected from
the condensation of information.

Our purpose in this work is to study how the
ability of a simple spiking neural net to condense
information in the above described sense depends
on its physical parameter — the net’s geomet-
ric size. For this purpose we simulate dynamics
of a net composed of five binding neurons placed
equidistantly on a circle. The circle’s radius, R,
characterizes the net’s geometric size. The net is
fully connected, and propagation velocity is taken
the same for all connections and all values of R.
Thus, the variations in R are expressed exclusively
in the variations in the interneuronal propagation
times. Initially, the net is stimulated by a spike
train of input impulses triggering each of five neu-
rons at times {t0, t1, . . . , t4}. Afterwards, the spik-

ing dynamics is allowed to go freely until it settles
down to a periodic one. This allows to figure out
sets of input stimuli bringing about the same pe-
riodic dynamics. The number of different periodic
dynamics and the number of input stimuli in a set,
which corresponds to a definite periodic dynamics,
characterize the net’s ability to condense informa-
tion. We found that this ability depends strongly
on the net’s size.

2 Methods

2.1 The Binding Neuron Model

The understanding of mechanisms of higher brain
functions expects a continuous reduction from
higher activities to lower ones, eventually, to ac-
tivities in individual neurons, expressed in terms
of membrane potentials and ionic currents. While
this approach is correct scientifically and desirable
for applications, the complete range of the reduc-
tion is unavailable to a single researcher/engineer
due to human brain limited capacity. In this con-
nection, it would be helpful to abstract from the
rules by which a neuron changes its membrane po-
tentials to rules by which the input impulse sig-
nals are processed into its output impulses. The
coincidence detector, and temporal integrator are
the examples of such an abstraction, see discus-
sion by König et al., [20]. One more abstraction,
the binding neuron (BN) model, is proposed as sig-
nal processing unit, [34] which can operate as ei-
ther coincidence detector, or temporal integrator,
depending on quantitative characteristics of stim-
ulation applied. This conforms with behavior of
real neurons, see, e.g. work by Rudolph & Des-
texhe, [26]. The BN model describes functioning
of a neuron in terms of discret events, which are
input and output impulses, and degree of tempo-
ral coherence between the input events, see Fig.
1. Mathematically, this can be realized as follows.
Each input impulse is stored in the BN for a fixed
time, τ . The τ is similar to the tolerance inter-
val discussed by MacKay, [23]. All input lines are
excitatory and deliver identical impulses. The neu-
ron fires an output impulse if the number of stored
impulses, Σ, is equal or higher than the threshold
value, N0. In this model, inhibition is expressed in
decreased τ value. It is clear, that BN is triggered
when a bunch of input impulses is received in a
narrow temporal interval. In this case, the bunch
could be considered as compound event, and the
output impulse — as an abstract representation of
this compound event. One could treat this mech-
anism as binding of individual input events into
a single output event, provided the input events
are coherent in time. Such interpretation is sug-
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Figure 1: Signal processing in the binding neuron model.[35, 36]

gested by binding of features/events in largescale
neuronal circuits, [5, 8, 9, 36].

It would be interesting to characterize the BN
input-output relations in the form of transfer func-
tion, which allows exact calculation of output in
terms of input. In our case, input is the se-
quence of discrete arriving moments of standard
impulses: Tin = {l1, l2, l3, l4, . . . }. The output is
the sequence of discrete firing moments of BN:
Tout = {f1, f2, . . . }. It is clear that Tout ⊂ Tin. The
transfer function in our case could be the function
σ(l), l ∈ Tin, which equals 1 if l is the firing mo-
ment, l ∈ Tout, and 0 otherwise. For BN with
threshold N0 the required function can be con-
structed as follows. It is clear that the first N0 − 1
input impulses are unable to trigger neuron, there-
fore σ(l1) = 0, . . . , σ(lN0−1) = 0. The next input
is able to trigger if and only if all N0 inputs are
coherent in time:

σ(lN0
) = 1 if and only if lN0

− l1 ≤ τ.

In order to determine σ(lN0+k), k ≥ 1, one must
take into acount all previous input moments, there-
fore we use notation σTin

instead of σ. The values
of σTin

(lN0+k) can be determined recursively:

σTin
(lN0+k) = 1 if and only if lN0+k − lk+1 ≤ τ and

σTin
(li) = 0 for all i ∈ {k + 1, . . . , N0 + k − 1}.

The function σTin
describes completely the BN

model for arbitrary threshold value N0 ≥ 2 .

2.1.1 Information Condensation in a

Single Neuron

It is worth noticing, that any firing (triggering)
moment of a spiking neuron is determined by the
moment of last input impulse, which just ensures

that the triggering condition is satisfied. In a neu-
ron, which needs more than one input impulse to
fire, variations of temporal position of impulses, re-
ceived just before the triggering one, do not influ-
ence the moment of emitting the output impulse,
provided those variations are in resonable limits
and arrival moment of the triggering impulse re-
mains the same.

t15 t14 t13 t12 t11

t25 t24 t23 t22 t21

τ

Figure 2: Example of two different inputs into
a single neuron, which produce identical out-
puts.

Thus, different input spike trains can produce ex-
actly the same output. This looks like if some de-
tailes of the input stimulus, which is composed of
several impulses, were reduced/condensed in the
output. In the BN, the triggering condition is
that the number of impulses in the BN’s inter-
nal memory equals to N0. Consider BN with
N0 = 4, which is stimulated with two different
spike trains with input impulses arrival times S1 =
{t11, t12, t13, t14, t15}, t11 < t12 < t13 < t14 < t15,
and S2 = {t21, t22, t23, t24, t25}, t21 < t22 < t23 <

t24 < t25. Let the arrival moments satisfy the fol-
lowing conditions:

t14 − t11 < τ, t25 − t22 < τ,

t24 − t21 > τ, t14 = t25 = to .
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In this case, both S1 and S2, if fed to the BN, will
produce exactly the same output, namely, the sin-
gle impulse at moment to. This is illustrated in
Fig. 2.

2.2 The Network Model

As a reverberating spiking neural net we take the
net of five neurons placed equidistantly at a circle
of radius R, see Fig, 3. Each neuron has threshold
N0 = 4, and internal memory, τ = 10 ms. The
net is fully connected. The connection lines are
characterized with length and propagation veloc-
ity, v, which is the same in all lines. For R fixed,
there are two types of connection line, the short
one, with propagation delay d, and the long one
with propagation delay D. Each neuron has addi-
tionally the external stimulus input line, which is
used to start the net dynamics. Single impulse in
the stimulus input line delivers to its target neuron
just threshold excitation. This causes firing at the
moment of the stimulus impulse arrival. For nu-
merical simulations we use 20 networks of different
sizes, see Table 1. The propagation velocity in any
interconnection line is taken v = 0.1 m/s.

2.2.1 Numerical Simulation

As programming language we use Python under
Linux operating system. The dynamics was mod-
elled by advancing time with step dt = 200 µs.
The delay values d and D, when measured in the
dt units, were rounded to the nearest from below
integers, see Table 1. As a result, the simulating
program operates in whole numbers with no round-
ing errors involved.

Each single tick of the program, the network’s
tick, advances time by dt, and consists of three par-
tial ticks, which are performed in the given order.
Namely, (i) input tick, which advances time in the
input lines, (ii) axonal tick, which advances time
in the internal connection lines, (iii) neuronal tick,
which advances time in the neurons.

This manner of updating states can be treated
as synchronous in a sense that each component of
the network has the same physical time when the
network’s tick is complete. On the other hand,
viewed as interneuronal communication process,
the dynamics should be treated as asynchronous
due to nonzero propagation delays.

During the step (ii), a neuron can get impulse
into its internal memory. If a neuron appears in the
state “Fire” as a result of the network tick, then
the output impulse it produces can appear in the
connection lines only during the next network tick.
This introduces effective delay of one dt between
delivering the triggering impulse to a neuron and
emitting output impulse by that neuron.

2.3 Data Acquisition Algorithm

2.3.1 Set of Stimuli

The net was entrained to reverberating dynamics
by applying initial input spike train of five im-
pulses, one triggering impulse per neuron, at times
(in dt units) {t0 = 1, t1, t2, t3, t4}. The triggering
moment of neuron # 0 is taken 1 for all stimuli
in order to exclude rotational symmetry between
the stimuli applied. Other four triggering moments
run independently through the set {1, 2, . . . , tmax},
where tmax is choosen proportional to R for each
net size. In choosing tmax, we follow two different
paradigms. In the first paradigm of short stim-
uli we restrict the overall duration of the stim-
ulus train with the value tmax = d. Thus, the
set of stimuli has d4 different stimuli. If ti ≤ d,
i = 0, . . . , 4, then any neuron in the net never
obtains impulse from other neurons before it ob-
tains its external input stimulation. In the second
paradigm of extended stimuli, we restrict the over-
all duration of the stimulus train with the value
tmax = M , which is about three times longer than
d for each network (see Table 1). Here, all stim-
uli {t0 = 1, t1, t2, t3, t4}, which were presented to a
network, cover the set of M4 different trains, which
equals from 625 different stimuli for net #1 to
100 000 000 different stimuli for net #20 (see Table
1). The stimuli were sampled in accordance with
standard algorithm of 4-digit counter. Namely, we
started from stimulus {1, 1, 1, 1, 1}, the next stim-
ulus is obtained by advancing t1 by 1, and so on.
The stimulus next to {1,M, 1, 1, 1} is {1, 1, 2, 1, 1},
the one next to {1,M,M, 1, 1} is {1, 1, 1, 2, 1} and
so on, until stimulus {1,M,M,M,M} is presented.

In the extended paradigm, the late external in-
put impulse can enter corresponding neuron after
it received impulses from neurons already triggered
by early external input impulses.

The second paradigme is in concordance with
visual information processing, [2] where activity
from higher brain areas, which was invoked due to
visual stimulation at earlier time, is retroinjected
to areas V1 and V2 in the primary visual cortex,
where it interacts with activity invoked by visual
input at later time during perception.

2.3.2 Figuring out Periodic States

After the last input impulse from the train {t0 =
1, t1, t2, t3, t4} reachs its target neuron, the pro-
gram begins appending at each time step the in-
stantaneous state of the net to a Python list. The
instantaneous state consists of states of all 20 con-
nection lines and all 5 neurons (see Fig. 4). Before
appending, the program checks if the current in-
stantaneous state was already included in the list.
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t 1
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Figure 3: The network, used for simulations. Here {t0, t1, t2, t3, t4} — is the input spike train, d, D — are the
propagation delays in the connection lines. Any line can be either empty, or propagating one impulse.

net # 1 2 3 4 5 6 7 8 9 10
R, mm 0.029 0.057 0.086 0.114 0.143 0.171 0.200 0.229 0.257 0.286
d, dt 1 3 5 6 8 10 11 13 15 16
D, dt 2 5 8 10 13 16 19 21 24 27
M , dt 5 10 15 20 25 30 35 40 45 50

net # 11 12 13 14 15 16 17 18 19 20
R, mm 0.314 0.343 0.371 0.400 0.429 0.457 0.486 0.514 0.543 0.571
d, dt 18 20 21 23 25 26 28 30 31 33
D, dt 29 32 35 38 40 43 46 48 51 54
M , dt 55 60 65 70 75 80 85 90 95 100

Table 1: Dimensions of networks used for simulations; dt = 200 µs.

net # 1 2 3 4 5 6 7 8 9 10
31 61 91 111 141 171 201 221 251 281

104 154 184 234 284 324 364 414 454

123 187 227 287 347 407 447 507 567

246 296 376 456 526

net # 11 12 13 14 15 16 17 18 19 20
301 331 361 391 411 441 471 491 521 551

494 544 584 634

Table 2: Distinct periods in dt units of found periodic states in the short stimuli paradigm. Superscript denotes
the number of different periodic states with this period.
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If it was, then the periodic dynamical state is found
with its complete cyclic trajectory covered by in-
stantaneous states between the inclusion and the
last record in the list, inclusively. Measures are
taken in order not to count the same cyclic trajec-
tory, which was entrained at its different points, as
different periodic states.

The data for each net were stored in two
MySQL tables. Table STATES included the se-
rial number of any periodic state found, one ele-
ment from the corresponding cyclic trajectory, and
period of the state (see Fig. 4). Single record
in the INPUTS table included the input stimulus
{t0 = 1, t1, t2, t3, t4}, the serial number of the pe-
riodic state it leads to (this number is 0 for fading
dynamics), and relaxation time, namely, the time,
which is spent between the last external input im-
pulse is delivered and the net’s entrance moment
into the periodic regime.

3 Results

3.1 Characterization of Periodic

States Found

After initial stimulation, networks from #1 to #7
entrain to periodic activity after any stimulation,
and networks #8 to #20 either entrain to peri-
odic dynamics, or stops from any activity after
some time. This takes place for both short and
extended stimuli.The number of different periodic
states found for each network is shown in Fig. 5.
Here, the maximal number of periodic states ob-
tained with short stimuli is 18, and this number is
achieved for net numbers from 3 to 7. Exact values
of periods, and number of different periodic states
with this period is shown in Table 2 for short stim-
uli. We omit similar table for extended stimuli.
The maximal number of different periodic states
obtained with extended stimuli is 485, which is
achieved in the net number 9. The maximal num-
ber of different periodic states with the same pe-
riod is 294 for period 50·dt in net #9. It should be
mentioned that two periodic states, which can be
turned into eachother by suitable renumeration of
neurons, were considered as different.

It is evident that in the network of five neurons
with threshold 4, each neuron is triggered the same
number of times during period. Indeed, expect
that neuron n4 fires k4 times, and any of the other
four fires less during period: k4 > ki, i = 0, 1, 2, 3.
In order to be triggered k4 times, n4 must obtain
not less than 4k4 input impulses during period.
But it can obtain only k0+k1+k2+k3, which is less
than required. Similarly, situation when k4 = k3

and k3 > ki, i = 0, 1, 2 leads to contradiction, and
so on.

This number of triggering is either 1 or 2 for
trajectories found, see examples in Fig. 6. Some
nets have only one periodic state, which coresponds
to synchronous firing of all 5 neurons and symmet-
rical states of connection lines at any moment of
time. This is the case for nets number 1 and from
15 to 20 for short stimuli, and for nets number 19
and 20 for extended stimuli.

3.2 Condensation of Information

In order to estimate the degree of information con-
densation in the course of transformation of an ex-
ternal spike train into a certain periodic state of the
net, one needs to calculate information amount,
which is delivered by specifying a spike train, and
which is delivered by specifying the state, it leads
to.

0, 3 0, 31, 2 1, 24 4

0 66
state #199

0, 4 12, 3

0 50
state #107

0, 123 4

0 50
state #319

Figure 6: Examples of periodic states found
for net number 9 in the extended stimuli
paradigm. Spikes indicate the firing moments,
labels near each spike give numbers of neurons,
firing at this moment. The two upper trains
show states with period 10 ms, the lower one -
with period 13.2 ms.

This can be done by wellknown Shannon’s formula
[29]

H = −
∑

i

pi log2 pi, (1)

where pi is the probability to obtain case num-
ber i from a set of cases. At the input end we
have the set of d4, or M4 different external input
spike trains. In our statement of the problem, it
is natural to consider all external input trains as
equally probable. If so, then information delivered
by specifying certain train is

Hs = 4 log2 d, (2)

for the short stimuli paradigm, and

He = 4 log2 M, (3)

for the extended stimuli paradigm.
While estimating information, delivered by

specifying certain periodic state, one should take
into account that probabilities of different periodic
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mysql> select * from STATES_5_9 where num=269;

+------+------------------------------------------------------------------------------

----------------------------------------------+--------+

| num | state

| period |

+------+------------------------------------------------------------------------------

----------------------------------------------+--------+

| 269 | 0 1 1 0 8 8 17 17 24 15 15 24 8 8 0 0 8 17 17 8

0 False False

0 False False

0 False False

0 False False

0 False True 49 1

| 82 |

+------+------------------------------------------------------------------------------

----------------------------------------------+--------+

1 row in set (0.02 sec)

mysql>

Figure 4: Example of single record in the MySQL table STATES. The first field (num) is numerical, and gives
the serial number of periodic state found. The second field (state) is a string, which describes instantaneous
state from the periodic state found (a point from the cyclic trajectory, which represents the whole trajectory, or
periodic state). The first 20 numbers in the string describe states of all connection lines: ’0’ means that the line
is empty, positive number specifies after how many ticks the propagating impulse will rich the targeted neuron.
The next five chunks confined between the ”next line” symbols describe states of neurons. The first number in
each chunk is the ”kick” — the total number of impulses obtained by neuron after the axonal tick was complete.
During the neuronal tick, corresponding to that axonal tick, the ”kick” is utilized and set to zero. The next
boolean in the chunk indicates if the neuron is in the ”Fire” state. The next boolean indicates if the neuron has
any impulses in its internal memory. If it has, then next couples of numbers (up to three couples) describe those
impulses. In this example, neuron #4 has 1 impulse with time to leave 49·dt. The third field (period) specifies
period (in dt units) of this periodic state.
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Figure 5: Number of different periodic states found for each net with short (left panel), and extended (right
panel) stimuli.
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states are not the same. In order to calculate prob-
ability pn of a periodic state Cn, we calculate the
number of input spike trains leading to the Cn,
namely, Tn, and divide this number by the total
amount of different input stimuli (see histogram
for Tn in Fig. 7)

pn =
Tn

d4
, (4)

for the short stimuli paradigm, and

pn =
Tn

M4
, (5)

for the extended stimuli paradigm. Then we use
Eq. (1) with probabilities of individual periodic
states found in accordance with (4), (5) to cal-
culate information which should be ascribed to
any periodic state. In this calculations, we treat
uniformly with others the external input stimuli,
which lead to fading dynamics. Correspondingly,
the state with no activity is treated uniformly with
periodic states. This is in the contrast with data
presented in Fig. 5, and Table 2, where the state
with no activity is excluded.
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Figure 7: Histogram of conceptual domain
sizes for net #9 in extended stimuli paradigm.
The bin size is 518. 23 domains with sizes from
50764 to 193732 are not presented.

As it could be expected, the information
amount in an external input spike train increases
as logarithm of the net size, in accordance with
Eqs. (2), (3), varying from 25 to 81 bits for short
paradigm, and from 37 to 106 bits for extended
paradigm. Information, which could be ascribed
to a periodic state, depends on the net size in a
more complicated manner, see Fig. 8. A remark-
able feature is a kind of plateau between net #3
and #9 for both short, and extended stimulation
paradigme. In the plateau, the
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Figure 8: Dependence of information amount,
which is ascribed to periodic state, on the net
size. Curve ’e’ corresponds to extended stimuli
paradigm, ’s’ — to the short stimuli one.

information of a periodic state, calculated in accor-
dance with Eq. (1) with probabilities found due to
Eqs. (4), (5), varies between 6.93 and 7.33 bits
for extended stimuli, and between 3.17 and 3.46
for short stimuli. In the plateau, the degree of in-
formation condensation calculated as input infor-
mation divided by the periodic state information,
varies between 9.02 and 12.27 for extended stim-
uli, and between 11.2 and 19.31 for short stimuli.
Out of a plateau range, for greater net sizes the
amount of information in a periodic state drops
sharply due to simplification of the set of peri-
odic states. Namely, the total number of periodic
states decreases to one, with the second one with
no activity, and the probability is distributed very
unevenly between this two states. This leads to
the degree of information condensation as high as
41000 for extended stimuli, and 690 for short ones.

4 Discussion

Any reverberating spiking neural net can repre-
sent complicated dynamical behavior. If the net’s
instantaneous states can be described with whole
numbers, then the net will inevitably either en-
train to periodic dynamics, or stop its activity at
all. In this study, it is appeared that a very simple
net of Fig. 3 can be engaged into a considerably
large set of different periodic activities. It is not
clear which part of all possible in this net periodic
states was discovered in our simulation. As it fol-
lows from comparison between short and extended
stimuli paradigm, the number of different periodic
states found increases with increasing range of in-
put stimuli. Certainly, this increase must saturate
somewhere. This is because any two different peri-
odic regimes are represented by their cyclic trajec-
tories, which has no common points (instantaneous
states). On the other hand, the total number of
instantaneous states the network can have is finite
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due to finiteness of the set of states of each element
the network is composed of.

The number of periodic states found in a net
depends on the net’s geometric size. Variations
in the net’s size display themselves exclusively in
variations of interneuronal propagation delays d

and D. On the other hand, the duration of neu-
ronal internal memory, τ , is the same for net of any
size. Thus, it is namely the relationships between
the times an impulse spends for travelling between
neurons, and time it is allowed to spend in a neu-
ron waiting for additional impulses, which controls
possible number of periodic states.

It is worth noticing that each net has one com-
pletely synchronized periodic state. The com-
pletely synchronozed state is stable and achieved
during finite time. This is in the contrast to the
case of pulse-coupled oscillators with delayed exci-
tatory coupling, (see, e.g. Ref. [40]).

In the four-dimensional set of stimuli we used,
the neighbouring stimuli differ from eachother by
one dt in one of four dimensions. This can be
treated as analogous representation of some reality.
The set of periodic states should be considered as
a set of discrete entities due to qualitative differ-
ence between any two states. This conforms with
a paradigm discussed in cognitive physiology, [21].
The process of transformation of initial analogous
inputs into a discret set of periodic states implies a
loss of information and can be treated as conden-
sation of information.

If we take a set of input stimuli, any of which
leads to the same periodic state, then that periodic
state can be considered as an abstract/conceptual
representation of a feature, which all stimuli from
the set have in common, and the corresponding set
could be named as “conceptual domain”. What
kind of feature or concept does the conceptual do-
main represent? If our net was trained to recognize
a certain real feature, then it would be that feature.
In the context of this study, the common feature is
that all stimuli from the conceptual domain engage
namely this net into namely this periodic dynam-
ics.
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Figure 9: 2-dimensional cross-section of the 4-
dimensional space of inputs for network #9 in

extended stimuli paradigm. left, cross-section
is made with plane (t3 = 23, t4 = 23), right,
(t3 = 21, t4 = 23). Origin for (t1, t2) is in
the upper left corner. Both t1 and t2 run
through the set {1, 2, . . . , 45} of values. Num-
bers in polygons indicate serial numbers of cor-
responding periodic states.

It would be interesting to have a look on
the topology of the conceptual domains in the 4-
dimensional space of all stimuli. For this pur-
pose we figured out 2-dimensional cross-section
of the input stimuli (see Fig. 9). In the cross-
section, a typical conceptual domain is composed
of several coherent clusters disconnected with ea-
chother. The histogram of sizes of conceptual do-
mains found is given in Fig. 7.

Decomposition of the whole set of input stimuli
into a number of conceptual domains represented
by corresponding periodic dynamics resembles ap-
proach in analyses of multivariate datasets, see re-
view in [14]. The difference is that here the 4-
dimensional dataset (a conceptual domain) is rep-
resented by unidimensional cyclic trajectory, which
corresponds to the domain, and the trajectory is
composed of points/vectors, which have other di-
mension than the dataset vectors (see Fig. 4).
Nevertheless, having the network, the whole cyclic
trajectory can be reproduced starting from its any
single point. Thus, here the datasets are reduced
down to individual points. This is in concordance
with the information condensation idea.

Why do we stick ourselves with namely the pe-
riodic dynamics? The answer is related to the
memory/learning problem, even if we do not con-
sider any plasticity in this study. It is known [3]
that modification of synaptic strength may hap-
pen due to repetitive delivery of impulses to those
synapses. Periodic dynamical states are just well
suited for such repetitive delivery. All other dy-
namical behaviors are of transient type, and have
less chances to cause plastic changes in biological
network. On the other hand, successful perception
expects ability to report about what was perceived,
which is impossible without memory.

Unfortunately, we cannot draw this biological
analogy too far. Real biological network includes
not only excitatory, but about 4% of inhibitory
neurons, [18]. Representing this characteristic in
a model network requires to have at least 25 neu-
rons in it. This dramatically increases the number
of possible external stimuli, which requires a quali-
tative change in our approach as regards the speed
of simulations and analysis of obtained data.

Finally, what happens if we use another neu-
ronal model in the network? Our opinion is that re-
sults will be qualitatively similar. Using the bind-
ing neuron here is natural, since it represents in
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refined form what a spiking neuron does with sig-
nals it receives. Additionally, the BN model easily
allows to develop a program operating in whole
numbers. This excludes possible dynamical arte-
facts due to rounding errors.

In future work, it would be interesting to com-
pare results, if another spiking neuron model is
used in the network, to study the topology of
conceptual domains and how the topology could
change if a plasticity is introduced in the network
model.

5 Conclusions

A network composed of spiking neurons is able to
condense information due to the fact that differ-
ent initial stimuli could lead the network to the
same periodic dynamics. This happens by means
of initial/basic condensation of information in spik-
ing neurons, as it is described in n. 2.1.12.1.1,
above. The network’s geometric size, which deter-
mines the interneuronal transmission delays, has
considerable influence on the net’s ability to con-
dense information, mainly due to influence on the
number of different periodic states the network can
have, see Fig. 5. The latter has influence on the
amount of information, which should be ascribed
to a single periodic state, see Fig. 8. As a re-
sult, the degree of information condensation varies
between 9 and 41 000, see n. 3.23.2 for details.

The networks considered here are too primi-
tive to have reliable biological implications. At the
same time, numerical parameters, see Table 1 and
n. 2.22.2, such as network sizes and spike propaga-
tion velocity, are taken corresponding to biological
data. The threshold value 4 does not contradict
to biological reality, as experimentally registered
thresholds are between 1 and 300. The BN inter-
nal memory duration, τ , is commensurable with
halfdecay time of the excitatory postsynaptic po-
tentials (EPSP). Thus, in the framework of this
extremely simple model, one could expect that the
ability of biological neural network to condense in-
formation should depend on its geometric size, or
on the relationships between interneuronal trans-
mission delays and the EPSP halfdecay time.
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