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The widespread relevance of increasingly complex networks requires methods to extract mean-
ingful coarse-grained representations of such systems. For undirected graphs, standard community
detection methods use criteria largely based on density of connections to provide such representa-
tions. We propose a method for grouping nodes in directed networks based on the role of the nodes
in the network, understood in terms of patterns of incoming and outgoing flows. The role groupings
are obtained through the clustering of a similarity matrix, formed by the distances between feature
vectors that contain the number of in and out paths of all lengths for each node. Hence nodes
operating in a similar flow environment are grouped together although they may not themselves be
densely connected. Our method, which includes a scale factor that reveals robust groupings based
on increasingly global structure, provides an alternative criterion to uncover structure in networks
where there is an implicit flow transfer in the system. We illustrate its application to a variety of
data from ecology, world trade and cellular metabolism.

The recent surge of interest in the study of complex
networks spans diverse disciplines, from physics and com-
puter science to biology and the social sciences. Classic
examples include the Internet, protein interaction net-
works, food webs or social groupings, among many oth-
ers. [1–4]. A network is a collection of nodes connected by
edges that represent interactions. In many instances, the
edges have an associated direction or weight but the vast
majority of research to-date has focused upon unweighted
and undirected graphs. Network representations have
the advantage that they capture naturally properties at
the system level starting from individual constituents.
However, with the growth of computational capability
and high-throughput technologies, network representa-
tions quickly become so complex as to lack intelligibility.

A key challenge in this area is the development of meth-
ods to obtain simplified reduced representations of com-
plex networks in terms of subgraphs or communities, i.e.,
meaningful groupings of nodes that are significantly re-
lated. For instance, nodes are likely to belong together
if they are part of a tightly-knit group with many con-
nections within the group and fewer to external nodes.
The flurry of research on clustering of networks and com-
munity detection [5] has led to the rediscovery of classic
results in graph partitioning, and to the development of
new measures such as modularity [6] and various spec-
tral algorithmic procedures [7, 8]. Most methods have
focused on undirected networks, where it is natural to
consider structural metrics based on the density of intra-
and inter-community edges. However, there is a large
class of networks where the directionality of the edges
is essential and where an analysis based on undirected
graphs risks missing key properties of the system. Exam-
ples include social networks, food webs, the world wide
web and systems involving causality, such as metabolic
and genetic networks. Only recently, extensions of no-
tions of modularity for directed graphs have been pro-

posed [9, 10] as well as other measures based on diffusion
dynamics that can be applied to both directed and undi-
rected graphs [11, 12].

Here, we introduce an alternative measure for the
grouping of nodes in directed networks. Given that the
defining characteristic of directed graphs is the implicit
existence of flows, we propose to group nodes according
to their role in the network, defined in terms of the overall
pattern of incoming and outgoing flows. Essentially, the
profile of paths for each node is a vector that is computed
from the powers of the adjacency matrix weighted with
a scale parameter to yield a similarity matrix, defined by
the distances between such node vectors. This matrix
is then clustered to find groupings of nodes with similar
profiles of reachability flows at all lengths. For instance,
in our analysis, all nodes that are sources are found to be
similar to each other, while sinks are grouped together.
In between these extremes, nodes are grouped accord-
ing to a quantitative measure that reflects the mixture of
‘hub’ vs. ‘authority’ characteristics of each node with re-
spect to all paths in the graph. Our definition is inspired
by a vast array of literature from the social sciences,
dealing with structural and regular equivalence [13–16],
and from computer science, where alternative algorith-
mic measures of similarity have been considered [17–20].

Our methodology can be used to unveil groups distinct
to those found by community detection algorithms based
on density of connections. Indeed, nodes that play sim-
ilar roles may be only weakly connected. For instance,
in a food-web, two predators are not likely to be linked
directly although both perform the same function and
would be canonically grouped within the same trophic
level. Hence, role similarity can uncover a coarse-grained
functional representation for networks where the domi-
nating feature is the transfer of an underlying quantity
(e.g., information, energy, matter, etc). This role-based
representation is relevant in fields such as ecology, eco-
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nomics, social sciences and cellular metabolism, where
it can aid in the assignment of a putative function to
uncharacterised nodes and in establishing functional re-
lations between seemingly distant network elements.

FIG. 1. Role clustering for the directed path graph in (A).
The construction of the flow matrix X (shown in (B) for β =
1) is followed by the construction of the similarity matrix
Y (shown in grayscale in (C) for β ≪ 1 and β = 1). The
resulting role groupings of the nodes are shown in (D).

The measure is defined as follows. Consider a directed
graph with N nodes and adjacency matrix A, which is
in general asymmetric. The number of outgoing paths of
length k for node i is given by the i-th coordinate of the
vector [Ak

1], where 1 is the N × 1 vector of ones. Simi-
larly, the number of incoming paths of length k for node i

is: [AT k
1]i. Note that the case k = 1 corresponds to the

out-degree and in-degree which, from this perspective,
represent the number of paths of length one originating
or terminating at the node.
We now construct a matrix that compiles the incoming

and outgoing paths of all lengths up to kmax by append-
ing the column vectors indexed by path length and scaled
by the factors βk:

X =






x1

...
xN




 ≡ [ . . . (βAT )k1 . . .

︸ ︷︷ ︸

kmax

| . . . (βA)k1 . . .
︸ ︷︷ ︸

kmax

].

Here, β = α/λ1, with λ1 the largest eigenvalue of the
adjacency matrix and 0 ≤ α ≤ 1. The parameter α is a
scale factor that allows us to tune the weight of the local
environment (short paths) relative to the global network
structure (long paths). The presence of the factors βk

ensures the convergence of the sequence of the columns

due to the asymptotic limit limk→∞
||Ak+1||
||Ak|| → λ1. [20]

Each row vector ofX contains the flow profile of a node
in terms of the scaled number of incoming and outgoing
paths of all lengths starting and ending at that node (see
Fig. 1). Our criterion to group nodes together is that
they have similar flow profiles. This can be quantified
via a distance between the vectors xi. A simple choice
of metric is the cosine distance, which leads to the sym-
metric similarity matrix Y defined by:

Yij =
xix

T
j

||xi|| ||xj ||
, (1)

where element Yij provides a normalized measure of the
closeness of the flow profiles of nodes i and j. Dissimilar

flow profiles have a similarity value close to zero, while
alike flow profiles lead to a similarity close to one. The
groupings of nodes are obtained from the clustering of
this similarity matrix: nodes in the same cluster have
similar flow profiles and can be considered to play a sim-
ilar role in terms of the flow in the directed graph. It is
important to remark that the clustering of the similarity
matrix can be performed with any of a variety of meth-
ods available for weighted symmetric graphs. In what
follows, we have chosen a spectral algorithm based on a
Multiple Normalized Cut [8, 21] together with Gaussian
preprocessing of the weights. However, the results do not
depend heavily on the choice of clustering algorithm.

Our procedure is illustrated in Figure 1 through the
simple example of a path graph. We scan the groupings
as a function of the scale factor α so as to reveal role
groupings based on an increasingly global flow structure.
When α is small, short path lengths dominate and nodes
are classified in terms of their local properties. In the
limit α → 0, only paths of length one contribute to the
clustering, which is equivalent to classifying nodes ac-
cording to their in- and out-degree. In this limit, the
nodes of the path graph (Fig. 1) are classified into three
groups according to their role: input → intermediate →
output, i.e., all the internal nodes are identical based
on their short-scale patterns of in- and out-flows. As
α grows towards 1, longer paths are given increasingly
more weight and the global flow structure of the network
is taken into account to cluster the nodes. For the path
graph in Fig. 1 taking into account the global structure
(in this case, the presence of end nodes) means that each
node is classified as having a different role. In some sim-
plified examples, the groupings are identical at all values
of the scale parameter, as in the test examples in [9] (not
shown) in which the nodes can be distinguished based
on their in- and out-degrees. Similarly, the flow example
presented in [11] is also reduced into a meaningful rep-
resentation of two groups (not shown). In general, how-
ever, robust non trivial clusterings are found for values
of α → 1 in more complex examples.

We have used our method to analyze several types of
networks from real data where flows are intrinsic to the
system. Below, we present three examples taken from
the Social Sciences, Ecology and Biochemistry. Figure 2
shows the role-classification in a world-trade network of
manufacture of metals in 1994 [13, 22]. A well-established
concept in this literature is that the world economy can
be broken down into a core, a semi-periphery and a pe-
riphery. Dominant core countries tend to specialize in
high-tech production requiring capital, whereas periph-
eral countries supply raw materials and labor intensive
products. As a consequence, there tend to be lots of
connections within the core but few trade connections be-
tween members of the periphery. Figure 2 shows that our
algorithm finds a robust classification into three groups
that can be ascribed to this conceptual framework.
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FIG. 2. World trade network of manufacture of metals. Our
algorithm finds a robust grouping in which each country is
classified into core, semi-periphery and periphery. The color-
coded reduced representation is shown in (A).

Our second example is the food web of St Marks river
in Florida [23, 24]. This ecological network is under-
pinned by an underlying flow of carbon (i.e., assimilated
matter and energy). Importantly, trophic levels are not
defined by the density of internal connections but rather
by their role (or position) within the flows of the network.
Figure 3 shows that the groupings produced by our al-
gorithm detect trophic levels with the expected content.
Carbon producers such as algae and bacteria are grouped
together with other basal taxa as sources in the network.
Above these are small bottom-feeding fish such as Spot
and Tongue fish, as well as some benthic invertebrates.
One more level up are most fish, along with some preda-
tory invertebrates such as shrimp and omnivorous crabs.
The top level consists of all birds, large predatory fish
and other sinks of the system.

Our final example comes from metabolic networks, an
area where identifying functional modules is crucial [25].
These networks have been analyzed using methods for
undirected graphs, thus ignoring the inherent direction-
ality of metabolite transformation in cellular pathways.
Figure 4 shows our results for the largest connected com-
ponent of the widely studied metabolic network of E. coli
developed by Ma and Zeng [26] from the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [27]. Our results
reveal the existence of a core, semi-peripheral and pe-
ripheral organization, a structure that is common among
metabolic networks of many species and has been hypoth-
esized previously [28], but with a finer, more nuanced
substructure. The network divides naturally into six sig-
nificant groups including two types of input nodes, two
types of cores, a set of intermediates and one group of
outputs (Fig. 4B). We have used the extensive biological
and functional characterization of metabolites in KEGG
to examine the significance of these groups. Figure 4C
shows that the metabolites in the core groups, and specif-
ically those in Core 2, have a high metabolic importance,

FIG. 3. Analysis of an ecological example, the St Mark’s
foodweb, showing the position of each species into role group-
ings akin to trophic levels (A) with the reduced depiction (B)
indicating the flow of carbon through the network.

measured as the relative participation in different path-
ways. Hence these metabolites can be seen as forming
the reservoir of cellular building blocks that are key to
the function and interconnection of pathways in the cell.
In addition, we have characterized the KEGG pathway
types in terms of our roles. Figure 4D shows, for instance,
that central pathways such as carbohydrate and energy
metabolism have an over-representation of core groups
while, on the other hand, core groups are not involved in
signaling pathways, which are dominated by a direct flow
from input through intermediates to outputs. Unsurpris-
ingly, biosynthetic internal pathways contain no inputs
or outputs as they are used to generate intermediate and
core metabolites. The detailed analysis of this functional
classification will be presented elsewhere.

We have introduced here a conceptual basis for the
grouping of nodes in directed networks based upon their
role in the network, as established by the patterns of
incoming and outgoing flows of all lengths. Our mea-
sure can be computed by taking successive powers of
the adjacency matrix and convergence is ensured natu-
rally within our definition. This measure formalizes and
combines concepts present in the social network litera-
ture (e.g., structural equivalence) with ideas of similarity
drawn from computer science. In fact, one can show that
the similarity matrix Y can also be calculated iteratively
based upon node similarity by computing the normalized
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FIG. 4. Role-based clustering of the metabolic network of
E. coli (largest connected component with N = 563 nodes):
force-based Kamada-Kawai layout of the network (A) and
reduced representation (B) showing the position of each role
grouping. (C) The metabolic importance of both core groups
is above average. (D) The distribution of roles with respect
to KEGG pathway classification shows a markedly different
contribution from each group.

sum of the convergent terms of:

Y out
n+1 = A

(

J +

(
α

λ1

)2

Y out
n

)

AT

Y in
n+1 = AT

(

J +

(
α

λ1

)2

Y in
n

)

A,

where J is the matrix of ones and Y0 is the matrix of
zeros. This algorithmic formulation allows for simplified
updated computations in a format equivalent, yet func-
tionally distinct, to other methods [17, 20]. In summary,
our approach provides an alternative method to commu-
nity detection algorithms for the simplification and ab-
straction of complex networks where directionality and
flow transfer (rather than density of connections) is the
fundamental ingredient to the description of the system.

Our application to examples from a variety of fields high-
lights the applicability of such ideas across disciplines.
KC is supported by the Wellcome Trust.
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