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Enhancing neural-network performance via assortativity
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The performance of attractor neural networks has been shown to depend crucially on the het-
erogeneity of the underlying topology. We take this analysis a step further by examining the effect
of degree-degree correlations – or assortativity – on neural-network behavior. We make use of a
method recently put forward for studying correlated networks and dynamics thereon, both ana-
lytically and computationally, which is independent of how the topology may have evolved. We
show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural
networks, especially if it is the hub neurons that store the information.
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I. BACKGROUND

For a dozen years or so now, the study of complex
systems has been heavily influenced by results from net-
work science – which one might regard as the fusion of
graph theory with statistical physics [1, 2]. Phenomena
as diverse as epidemics [3], cellular function [4], power-
grid failures [5] or internet routing [6], among many oth-
ers [7], depend crucially on the structure of the under-
lying network of interactions. One of the earliest sys-
tems to have been described as a network was the brain,
which is made up of a great many neurons connected to
each other by synapses [8–11]. Mathematically, the first
neural networks combined the Ising model [12] with the
Hebb learning rule [13] to reproduce, very successfully,
the storage and retrieval of information [14–16]. Neu-
rons were simplified to binary variables (like Ising spins)
representing firing or non-firing cells. By considering the
trivial fully-connected topology, exact solutions could be
reached, which at the time seemed more important than
attempting to introduce biological realism. Subsequent
work has tended to focus on considering richer dynamics
for the individual cells rather than on the way in which
these are interconnected [11, 17, 18]. However, the topol-
ogy of the brain – whether at the level of neurons and
synapses, cortical areas or functional connections – is ob-
viously far from trivial [19–24].

The number of neighbors a given node in a network
has is called its degree, and much attention is paid to
degree distributions since they tend to be highly hetero-
geneous for most real networks. In fact, they are often
approximately scale-free (i.e., described by power laws)
[1, 2, 25, 26]. By including this topological feature in
a Hopfield-like neural-network model, Torres et al. [27]
found that degree heterogeneity increases the system’s
performance at high levels of noise, since the hubs (high
degree nodes) are able to retain information at levels well
above the usual critical noise. To prove this analytically,
the authors considered the configurational ensemble of
networks (the set of random networks with a given de-
gree distribution but no degree-degree correlations) and

showed that Monte Carlo (MC) simulations were in good
agreement with mean-field analysis, despite the approx-
imation inherent to the latter technique when the net-
work is not fully connected. A similar approach can also
be used to show how heterogeneity may be advantageous
for the performance of certain tasks in models with a
richer dynamics [28]. It is worth mentioning that this in-
fluence of the degree distribution on dynamical behavior
is found in many other settings, such as the more general
situation of systems of coupled oscillators [29].

Another property of empirical networks that is quite
ubiquitous is the existence of correlations between the de-
grees of nodes and those of their neighbors [30, 31]. If the
average degree-degree correlation is positive the network
is said to be assortative, while it is called disassortative if
negatively correlated. Most heterogeneous networks are
disassortative [1], which seems to be because this is in
some sense their equilibrium (maximum entropy) state
given the constraints imposed by the degree distribution
[32]. However, there are probably often mechanisms at
work which drive systems from equilibrium by inducing
different correlations, as appears to be the case for most
social networks, in which nodes (people) of a kind tend
to group together. This feature, known as assortativity

or mixing by degree, is also relevant for processes taking
place on networks. For instance, assortative networks
have lower percolation thresholds and are more robust to
targeted attack [31], while disassortative ones make for
more stable ecosystems and are – at least according to
the usual definition – more synchronizable [33].

The approach usually taken when studying correlated
networks computationally is to generate a network from
the configuration ensemble and then introduce correla-
tions (positive or negative) by some stochastic rewiring
process [34]. A drawback of this method, however, is
that results may well then depend on the details of this
mechanism: there is no guarantee that one is correctly
sampling the phase space of networks with given correla-
tions. For analytical work, some kind of hidden variables
from which the correlations originate are often consid-
ered [35–38] – an assumption which can also be used to
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generate correlated networks computationally [37]. This
can be a very powerful method for solving specific net-
work models. However, it may not be appropriate if
one wishes to consider all possible networks with given
degree-degree correlations, independently of how these
may have arisen. Here we get round this problem by
making use of a method recently suggested by Johnson et

al. [32] whereby the ensemble of all networks with given
correlations can be considered theoretically without re-
curring to hidden variables. Furthermore, we show how
this approach can be used computationally to generate
random networks that are representative of the ensem-
ble of interest (i.e., they are model-independent). In this
way, we study the effect of correlations on a simple neu-
ral network model and find that assortativity increases
performance in the face of noise – particularly if it is the
hubs that are mainly responsible for storing information
(and it is worth mentioning that there is experimental
evidence suggestive of a main functional role played by
hub neurons in the brain [39, 40]). The good agreement
between the mean-field analysis and our MC simulations
bears witness both to the robustness of the results as re-
gards neural systems, and to the viability of using this
method for studying dynamics on correlated networks.

II. PRELIMINARY CONSIDERATIONS

A. Model neurons on networks

The attractor neural network model put forward by
Hopfield [15] consists of N binary neurons, each with
an activity given by the dynamic variable si = ±1.
Every time step (MCS), each neuron is updated ac-
cording to the stochastic transition probability P (si →
±1) = 1

2 [1± tanh (hi/T )] (parallel dynamics), where the
field hi is the combined effect on i of all its neighbors,
hi =

∑

j ŵijsj , and T is a noise parameter we shall call
temperature, but which represents any kind of random
fluctuations in the environment. This is the same as
the Ising model for magnetic systems, and the transi-
tion rule can be derived from a simple interaction energy
such that aligned variables s (spins) contribute less en-
ergy than if they were to take opposite values. However,
this system can store P given configurations (memory

patterns) ξνi = ±1 by having the interaction strengths
(synaptic weights) set according to the Hebb rule [13]:

ŵij ∝ ∑P

ν=1 ξ
ν
i ξ

ν
j . In this way, each pattern becomes

an attractor of the dynamics, and the system will evolve
towards whichever one is closest to the initial state it is
placed in. This mechanism is called associative memory,
and is nowadays used routinely for tasks such as image
identification. What is more, it has been established that
something similar to the Hebb rule is implemented in
nature via the processes of long-term potentiation and
depression at the synapses [41], and this phenomenon is
indeed required for learning [42].
To take into account the topology of the network, we

shall consider the weights to be of the form ŵij = ω̂ij âij ,
where the element âij of the adjacency matrix repre-
sents the number of directed edges (usually interpreted
as synapses in a neural network) from node j to node i,
while ω̂ stores the patterns, as before:

ω̂ij =
1

〈k〉

P
∑

ν=1

ξνi ξ
ν
j .

For the sake of coherence with previous work, we shall
assume â to be symmetric (i.e., the network is undi-
rected), so each node is characterized by a single degree
ki =

∑

j âij . However, all results are easily extended to
directed networks – in which nodes have both an in de-
gree, kini =

∑

j âij , and an out degree, kouti =
∑

j âji
– by bearing in mind it is only a neuron’s pre-synaptic
neighbors that influence its behavior. The mean degree
of the network is 〈k〉, where the angles stand for an av-
erage over nodes: 〈·〉 ≡ N−1

∑

i(·) [43].

B. Network ensembles

When one wishes to consider a set of networks which
are randomly wired while respecting certain constraints
– that is, an ensemble – it is usually useful to define the
expected value of the adjacency matrix, E(â) ≡ ǫ̂ [44].
The element ǫ̂ij of this matrix is the mean value of âij
obtained by averaging over the ensemble. For instance,
in the Erdős-Rényi (ER) ensemble all elements (outside
the diagonal) take the value ǫ̂ER

ij = 〈k〉/N , which is the
probability that a given pair of nodes be connected by
an edge. For studying networks with a given degree se-
quence, (k1, ...kN ), it is common to assume the configu-

ration ensemble, defined as

ǫconfij =
kikj
〈k〉N

This expression can usually be applied also when the con-
straint is a given degree distribution, p(k), by integrating
over p(ki) and p(kj) where appropriate. One way of de-
riving ǫ̂conf is to assume one has ki dangling half-edges
at each node i; we then randomly choose pairs of half-
edges and join them together until the network is wired
up. Each time we do this, the probability that we join i
to j is kikj/(〈k〉N)2, and we must perform the operation
〈k〉N times. Bianconi showed that this is also the solu-
tion for Barabási-Albert evolved networks [46]. However,
we should bear in mind that this result is only strictly
valid for networks constructed in certain particular ways,
such as in these examples. It is often implicitly assumed
that were we to average over all random networks with
a given degree distribution, the mean adjacency matrix
obtained would be ǫ̂conf . As we shall see, however, this
is not necessarily the case [32].
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FIG. 1: Mean-nearest-neighbor functions knn(k) for scale-
free networks with β = −0.5 (disassortative), 0.0 (neutral),
and 0.5 assortative, generated according to the algorithm de-
scribed in Sec. III B. Inset: degree distribution (the same in
all three cases). Other parameters are γ = 2.5, 〈k〉 = 12.5,
N = 104.

C. Correlated networks

In the configuration ensemble, the expected value of
the mean degree of the neighbors of a given node is

knn,i = k−1
i

∑

j ǫ̂
conf
ij kj = 〈k2〉/〈k〉, which is indepen-

dent of ki. However, as mentioned above, real networks
often display degree-degree correlations, with the result
that knn,i = knn(ki). If knn(k) increases with k, the
network is said to be assortative – whereas it is disassor-
tative if it decreases with k (see Fig. 1). This is from the
more general nomenclature (borrowed form sociology) in
which sets are assortative if elements of a kind group
together, or assort. In the case of degree-degree corre-
lated networks, positive assortativity means that edges
are more than randomly likely to occur between nodes of
a similar degree. A popular measure of this phenomenon
is Pearson’s coefficient applied to the edges [1, 2, 31]:
r = ([klk

′

l]− [kl]
2)/([k2l ]− [kl]

2), where kl and k′l are the
degrees of each of the two nodes belonging to edge l, and
[·] ≡ (〈k〉N)−1

∑

l(·) is an average over edges.

The ensemble of all networks with a given degree se-
quence (k1, ...kN ) contains a subset for all members of
which knn(k) is constant (the configuration ensemble),
but also subsets displaying other functions knn(k). We
can identify each one of these subsets (regions of phase
space) with an expected adjacency matrix ǫ̂ which simul-
taneously satisfies the following conditions: i)

∑

j kj ǫ̂ij =

kiknn(ki), ∀i (by definition of knn(k)), and ii)
∑

j ǫ̂ij =

ki, ∀i (for consistency). An ansatz which fulfills these

requirements is any matrix of the form

ǫ̂ij =
kikj
〈k〉N +

∫

dν
f(ν)

N

[

(kikj)
ν

〈kν〉 − kνi − kνj + 〈kν〉
]

,

(1)
where ν ∈ R and the function f(ν) is in general arbitrary

[32]. (If the network were directed, then ki = kini and

kj = koutj in this expression.) This ansatz yields

knn(k) =
〈k2〉
〈k〉 +

∫

dνf(ν)σν+1

[

kν−1

〈kν〉 − 1

k

]

(2)

(the first term being the result for the configuration
ensemble), where σb+1 ≡ 〈kb+1〉 − 〈k〉〈kb〉. To prove
the uniqueness of a matrix ǫ̂ obtained in this way (i.e.,
that it is the only one compatible with a given knn(k))
assume that there exists another valid matrix ǫ̂′ 6= ǫ̂.
Writing ǫ̂′ij − ǫ̂ij ≡ h(ki, kj) = hij , then Condition
i) implies that

∑

j kjhij = 0, ∀i, while Condition ii)

means that
∑

j hij = 0, ∀i. It follows that hij = 0,
∀i, j. This means that ǫ̂ is not just one possible way
of obtaining correlations according to knn(k); rather,
there is a two-way mapping between ǫ̂ and knn(k): every
network with this particular function knn(k) and no
other ones are contained in the ensemble defined by
ǫ̂. Thanks to this, if we are able to consider random
networks drawn according to this matrix (whether we
do this analytically or computationally; see Section
III B), we can be confident that we are correctly taking
account of the whole ensemble of interest. In other
words, whatever the reasons behind the existence of
degree-degree correlations in a given network, we can
study the effects of these with only information on p(k)
and knn(k) by obtaining the associated matrix ǫ̂. This
is not to say, of course, that all topological properties
are captured in this way: a particular network may
have other features – such as higher order correlations,
modularity, etc. – the consideration of which would
require concentrating on a sub-partition of those with
the same p(k) and knn(k). But this is not our purpose
here.

In many empirical networks, knn(k) has the form
knn(k) = A + Bkβ, with A,B > 0 [2, 30] – the mix-
ing being assortative if β is positive, and disassortative
when negative. Such a case is fitted by Eq. (2) if

f(ν) = C

[

σ2

σβ+2
δ(ν − β − 1)− δ(ν − 1)

]

, (3)

with C a positive constant, since this choice yields

knn(k) =
〈k2〉
〈k〉 + Cσ2

[

kβ

〈kβ+1〉 −
1

〈k〉

]

. (4)

Johnson et al. [32] obtained the entropy of ensembles
of networks with scale-free degree distributions (p(k) ∼
k−γ) and correlations given by Eq. (4), and found that
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the most likely configurations (those maximizing the en-
tropy) generally correspond to correlated networks. In
particular, the expected mixing, all other things being
equal, is usually a certain degree of disassortativity –
which explains the predominance of these networks in the
real world. They also showed that the maximum entropy
is usually obtained for values of C close to one. Here,
we shall use this result to justify concentrating on corre-
lated networks with C = 1, so that the only parameter
we need to take into account is β. It is worth mentioning
that Pastor-Satorras et al. originally suggested using this
exponent as a way of quantifying correlations [30], since
this seems to be the most relevant magnitude. Because
β does not depend directly on p(k) (as r does), and can
be defined for networks of any size (whereas r, in very
heterogeneous networks, always goes to zero for large N
due to its normalization [47]), we shall henceforth use β
as our assortativity parameter.
So, after plugging Eq. (3) into Eq. (1), we find that

the ensemble of networks exhibiting correlations given by
Eq. (4) (and C = 1) is defined by the mean adjacency
matrix

ǫ̂ij =
1

N
[ki + kj − 〈k〉]

+
σ2

σβ+2

1

N

[

(kikj)
β+1

〈kβ+1〉 − kβ+1
i − kβ+1

j + 〈kβ+1〉
]

.(5)

III. ANALYSIS AND RESULTS

A. Mean field

Let us consider the single-pattern case (P = 1, ξi =
ξ1i ). Substituting the adjacency matrix â for its expected
value ǫ̂ (as given by Eq. (5)) in the expression for the local
field at i – which amounts to a mean-field approximation
– we have

hi =
1

〈k〉ξi
{[

(ki − 〈k〉) + σ2

σβ+2
(〈kβ+1〉 − kβ+1

i )

]

µ0

+ 〈k〉µ1 +
σ2

σβ+2
(kβi − 〈kβ+1〉)µβ+1

}

,

where we have defined

µα ≡ 〈kαi ξisi〉
〈kα〉

for α = 0, 1, β + 1. These order parameters measure
the extent to which the system is able to recall informa-
tion in spite of noise [28]. For the first order we have
µ0 = m ≡ 〈ξisi〉, the standard overlap measure in neu-
ral networks (analogous to magnetization in magnetic
systems), which takes account of memory performance.
However, µ1, for instance, weighs the sum with the degree
of each node, with the result that it measures information
per synapse instead of per neuron. Although the overlap
m is often assumed to represent, in some sense, the mean

firing rate of neurological experiments, it is possible that
µ1 is more closely related to the empirical measure, since
the total electric potential in an area of tissue is likely to
depend on the number of synapses transmitting action
potentials. In any case, a comparison between the two
order parameters is a good way of assessing to what ex-
tent the performance of neurons depends on their degree
– larger-degree model neurons can in general store infor-
mation at higher temperatures than ones with smaller
degree can [27].

Substituting si for its expected value according to the
transition probability, si → tanh(hi/T ), we have, for any
α,

〈kαi ξisi〉 = 〈kαi ξi tanh(hi/T )〉;

or, equivalently, the following 3-D map of closed coupled
equations for the macroscopic overlap observables µ0, µ1

and µβ+1 – which describes, in this mean-field approxi-
mation, the dynamics of the system:

µ0(t+ 1) =

∫

p(k) tanh[F (t)/(〈k〉T )]dk

µ1(t+ 1) =
1

〈k〉

∫

p(k)k tanh[F (t)/(〈k〉T )]dk (6)

µβ+1(t+ 1) =
1

〈kβ+1〉

∫

p(k)kβ+1 tanh[F (t)/(〈k〉T )]dk,

with

F (t) ≡ (kµ0(t) + 〈k〉µ1(t)− 〈k〉µ0(t))

+
σ2

σβ+2
[kβ+1(µβ+1(t)− µ0(t))

+ 〈kβ+1〉(µ0(t)− µβ+1(t))].

This can be easily computed for any degree distribution
p(k). Note that taking β = 0 (the uncorrelated case)
the system collapses to the 2-D map obtained in Ref.
[27], while it becomes the typical 1-D case for a homo-
geneous p(k) – say a fully-connected network [15]. It is
in principle possible to do similar mean-field analysis for
any number P of patterns, but the map would then be
3P -dimensional, making the problem substantially more
complex.

At a critical temperature Tc, the system will undergo
the characteristic second order phase transition from a
phase in which it exhibits memory (akin to ferromag-
netism) to one in which it does not (paramagnetism). To
obtain this critical temperature, we can expand the hy-
perbolic tangent in Eqs. (6) around the trivial solution
(µ0, µ1, µβ+1) ≃ (0, 0, 0) and, keeping only linear terms,
write
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µ0 = µ1/Tc,

µ1 =
1

〈k〉2Tc

[

〈k〉2µ1 + σ2µβ+1

]

,

µβ+1 =
1

Tc〈k〉〈kβ+1〉
[

σβ+2µ0

+
σ2

σβ+2

(

〈kβ+1〉2 − 〈k2(β+1)〉
)

µ0

+ 〈k〉〈kβ+1〉µ1 −
σ2

σβ+2

(

〈kβ+1〉2 − 〈k2(β+1)〉
)

µβ+1

]

.

Defining

A ≡ σ2

〈k〉2 ,

B ≡ σ2

σβ+2

〈k2(β+1)〉 − 〈kβ+1〉2
〈k〉〈kβ+1〉 ,

D ≡ σβ+2

〈k〉〈kβ+1〉 ,

Tc will be the solution to the third order polynomial equa-
tion:

T 3
c − (B + 1)T 2

c + (B −A)Tc +A(B −D) = 0. (7)

Note that for neutral (i.e., uncorrelated) networks, β = 0,
and so A = B = D. We then have Tc = 〈k2〉/〈k〉2, as
expected [28].

B. Generating correlated networks

Given a degree distribution p(k), the ensemble of net-
works compatible with this constraint and with degree-
degree correlations according to Eq. (4) (with some expo-
nent β) is defined by the mean adjacency matrix ǫ̂ of Eq.
(5) – as described in Section II C and in Ref. [32]. There-
fore, although there will generally be an enormous num-
ber of possible networks in this volume of phase space,
we can sample them correctly simply by generating them
according to ǫ̂. To do this, first we have to assign to each
node a degree drawn from p(k). If the elements of ǫ̂ were
probabilities, it would suffice then to connect each pair of
nodes (i, j) with probability ǫ̂ij to generate a valid net-
work. Strictly speaking, ǫ̂ is an expected value, which
in certain cases can be greater than one. To get round
this, we write a probability matrix p̂ = ǫ̂/a with a some
value such that all elements of p̂ are smaller than one.
If we then take random pairs of nodes (i, j) and, with
probability p̂ij , place an edge between them, repeating
the operation until 1

2 〈k〉N edges have been placed, the
expected value of edges joining i and j will be ǫ̂ij . This
method is like the hidden variable technique [37] in that
edges are placed with a predefined probability (which is
why the resulting ensemble is canonical). The difference
lies in the fact that in the method here described corre-
lations only depend on the degrees of nodes.

We are interested here in neural networks, in which a
given pair of nodes can be joined by several synapses,
so we shall not impose the restriction of so-called simple
networks of allowing only one edge at most per pair. We
shall, however, consider networks with a structural cutoff:
ki <

√

〈k〉N , ∀i [48]. This ensures that, at least for
β ≤ 0, all elements of ǫ̂ are indeed smaller than one.
Because we can expect effects due to degree-degree

correlations to be largest when p(k) is very broad, and
since most networks in nature and technology seem
to exhibit approximately power-law degree distributions
[1, 7, 25, 26], we shall here test our general theoret-
ical results against simulations of scale-free networks:
p(k) ∼ k−γ . This means that a network (or the region of
phase space to which it belongs) is characterized by the
set of parameters {〈k〉, N, γ, β}.

C. Assortativity and dynamics

In Fig. 2 we plot the stationary value of µ1 against the
temperature T , as obtained from simulations and Eqs.
(6), for disassortative, neutral and assortative networks.
The three curves are similar at low temperatures, but as
T increases their behavior becomes quite different. The
disassortative network is the least robust to noise. How-
ever, the assortative one is capable of retaining some in-
formation at temperatures considerably higher than the
critical value, Tc = 〈k2〉/〈k〉, of neutral networks. A com-
parison between µ1 and µ0 (see Fig. 3) shows that it is
the high degree nodes that are mainly responsible for this
difference in performance. This can be seen more clearly
in Fig. 4, which displays the difference µ1 − µ0 against
T for the same networks. It seems that, because in an
assortative network a sub-graph of hubs will have more
edges than in a disassortative one, it has a higher effective
critical temperature. Therefore, even when most of the
nodes are acting randomly, the set of nodes of sufficiently
high degree nevertheless displays associative memory.
The phase diagram if Fig. 5 shows the critical temper-

ature, Tc, as obtained from Eq. (7). In addition to the
effect reported in Ref. [27] whereby the Tc of scale-free
networks grows with degree heterogeneity (decreasing γ),
it also increases very significantly with positive degree-
degree correlations (increasing β).
At large values of N , the critical temperature scales

as Tc ∼ N b, with b ≥ 0 a constant. However, because
the moments of k appearing in the coefficients of Eq. (7)
can have different asymptotic behavior depending on the
values of γ and β, the scaling exponent b differs from
one region to another in the space of these parameters.
These are the seven regions shown in Fig. 6, along with
the scaling behavior exhibited by each one. This can be
seen explicitely in Fig. 7, where Tc, as obtained from
MC simulations, is plotted against N for cases in each
of the regions with γ < 3. In each case, the scaling is
as given by Eq. (7) and shown in Fig. 6. For the four
regions with γ < 3, from lowest to highest assortativity
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FIG. 2: Stable stationary value of the weighted overlap µ1

against temperature T for scale-free networks with correla-
tions according to knn ∼ kβ , for β = −0.5 (disassortative),
0.0 (neutral), and 0.5 (assortative). Symbols from MC simu-
lations, with errorbars representing standard deviations, and
lines from Eqs. (6). Other network parameters as in Fig. 1.
Inset: µ1 against T for the assortative case (β = 0.5) and
different system sizes: N = 104, 3 · 104 and 5 · 104.
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FIG. 3: Stable stationary values of order parameters µ0, µ1

and µβ+1 against temperature T , for assortative networks ac-
cording to β = 0.5. Symbols from MC simulations, with er-
rorbars representing standard deviations, and lines from Eqs.
(6). Other parameters as in Fig. 1.

we have scaling exponents which are dependent on: only
γ (region I), only β (region II), both γ and β (region
III), and, perhaps most interestingly, neither of the two

(region IV) – with Tc scaling, in the latter case, as
√
N .

As for the more homogeneous γ > 3 part, regions V and
VI have a diverging critical temperature despite the fact
that the second moment of p(k) is finite, simply as a
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FIG. 4: Difference between the stationary values µ1 and
µ0 for networks with β = −0.5 (disassortative), 0.0 (neutral)
and 0.5 (assortative), against temperature. Symbols from MC
simulations, with errorbars representing standard deviations,
and lines from Eqs. (6). Line shows the expected level of
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FIG. 5: Phase diagrams for scale-free networks with γ = 2.5,
3, and 3.5. Lines show the critical temperature Tc marking the
second-order transition from a memory (ferromagnetic) phase
to a memoryless (paramagnetic) one, against the assortativity
β, as given by Eq. (7). Other parameters as in Fig. 1.

IV. DISCUSSION

We have shown that assortative networks of simple
model neurons are able to exhibit associative memory
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in the presence of levels of noise such that uncorrelated
(or disassortative) networks cannot. This may appear
to be in contradiction with a recent result obtained us-
ing spectral graph analysis – that synchronizability of a
set of coupled oscillators is highest for disassortative net-
works [33]. A synchronous state of model oscillators and
a memory phase of model neurons are both sets of many
simple dynamical elements coupled via a network in such
a way that a macroscopically coherent situation is main-

tained [29]. Obviously both systems require the effective
transmission of infomation among the elements. So why
are opposite results as regards the influence of topology
reported for each system? The answer is simple: whereas
the definition of a synchronous state is that every sin-
gle element oscillate at the same frequency, it is precisely
when most elements are actually behaving randomly that
the advantages to assortativity we report become appar-
ent. In fact, it can be seen in Fig. 2 that at low tempera-
tures disassortative networks perform the best, although
the effect is small. This is reminiscent of percolation: at
high densities of edges the giant component is larger in
disassortative networks, but in assortative ones a non-
vanishing fraction of nodes remain interconnected even
at densities below the usual percolation threshold [31].
Because in the case of targeted attacks it is this thresh-
old which is taken as a measure of resilience, we say that
assortative networks perform the best. In general, the
optimal network for good conditions (i.e., complete syn-
chronization, high density of edges, low levels of noise) is
not necessarily the one which performs the best in bad
conditions (partial synchronization, low density of edges,
high levels of noise). It seems that optimality – whether
in resilience or robustness – should thus be defined for
particular conditions.
We have used the technique suggested in Ref. [32]

to study the effect of correlations on networks of model
neurons, but many other systems of dynamical elements
should be susceptible to a similar treatment. In fact,
Ising spins [46], Voter Model agents [49], or Boolean
nodes [50], for instance, are similar enough to binary
neurons that we should expect similar results for these
models. If a moral can be drawn, it is that persistence
of partial synchrony, or coherence of a subset of highly
connected dynamical elements, can sometimes be as
relevant (or more so) as the possibility of every element
behaving in the same way. In the case of real brain
cells, experiments suggest that hub neurons play key
functional roles [39, 40]. From this point of view,
there may be a selective pressure for brain networks to
become assortative – although, admittedly, this organ
engages in such complex behavior that there must be
many more functional constraints on its structure than
just a high robustness to noise. Nevertheless, it would
be interesting to investigate this aspect of biological
systems experimentally. For this, it should be borne
in mind that heterogeneous networks have a natural
tendency to become disassortative, so it is against the
expected value of correlations discussed in Ref. [32] that
empirical data should be contrasted in order to look for
meaningful deviations towards assortativity.
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