
ADAM: ANALYSIS OF DISCRETE MODELS OF BIOLOGICAL SYSTEMS

USING COMPUTER ALGEBRA

FRANZISKA HINKELMANNA,B , MADISON BRANDONC,∗, BONNY GUANGD,∗, RUSTIN MCNEILLE,∗,
GRIGORIY BLEKHERMANA, ALAN VELIZ-CUBAA,B , REINHARD LAUBENBACHERA,B

aVirginia Bioinformatics Institute, Blacksburg, VA 24061-0123, USA
bDepartment of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0123, USA

cUniversity of Tennessee - Knoxville, Knoxville, TN 37996-2513, USA
dHarvey Mudd College, Claremont, CA 91711-5901, USA

eUniversity of North Carolina - Greensboro, Greensboro, NC 27402-6170, USA
∗These authors contributed equally

Abstract. Motivation: Many biological systems are modeled qualitatively with discrete mod-
els, such as probabilistic Boolean networks, logical models, bounded Petri nets, and agent-based
models. Simulation is a common practice for analyzing discrete models, but many systems are far
too large to capture all the relevant dynamical features through simulation alone.
Results: We convert discrete models into algebraic models and apply tools from computational
algebra to analyze their dynamics. The key feature of biological systems that is exploited by our
algorithms is their sparsity: while the number of nodes in a biological network may be quite large,
each node is affected only by a small number of other nodes. In our experience with models arising
in systems biology and random models, this structure leads to fast computations when using alge-
braic models, and thus efficient analysis.
Availability: All algorithms and methods are available in our package Analysis of Dynamic Alge-
braic Models (ADAM), a user friendly web-interface that allows for fast analysis of large models,
without requiring understanding of the underlying mathematics or any software installation. ADAM
is available as a web tool, so it runs platform independent on all systems.
Contact: reinhard@vbi.vt.edu

1. Introduction

Mathematical modeling is a crucial tool in understanding the dynamic behavior of complex
biological systems. Discrete models are now widely used for this purpose. Model types include
(probabilistic) Boolean networks, logical networks, Petri nets, cellular automata, and agent-based
(individual-based) models, to name the most commonly found ones [23, 21, 22, 18, 2, 13].

There are several existing software packages for analysis of discrete models. Each package has
been developed to suit the needs of a particular community, and each package is designed to analyze
a single model type. We briefly discuss some of their features below.

GINsim (Gene Interaction Network simulation) is a package designed for analysis of gene reg-
ulatory networks [16]. As input, it accepts logical models. Logical models are an extension to
Boolean models; they consist of similar switch-like rules, but allow for a finer discretization than
two states per variable, e.g., low, medium, and high. The temporal evolution of a logical model
is non-deterministic for a given initial configuration, as the variables are updated randomly in
an asynchronous fashion. In addition to being a tool for modeling and simulation, GINsim sup-
ports algorithms facilitating the representation as decision diagrams to determine steady states and
oscillatory behavior [18]. For synchronous updates, analysis of limit cycles is only possible via simu-
lation, meaning that an initial configuration of the system is iterated a prescribed number of times,
or until a steady state is found. Since the number of initial configurations grows exponentially in

1

ar
X

iv
:1

01
2.

07
78

v1
 [

m
at

h.
A

C
]

 3
 D

ec
 2

01
0

mailto:reinhard@vbi.vt.edu

the number of variables, simulation will not provide a complete picture of dynamical behavior for
large models. Thus, analysis by simulation is limited by the network size.

BoolNet R package has methods for inference and analysis of synchronous, asynchronous, and
probabilistic Boolean networks [15]. Steady state analysis is done via exhaustive enumeration of
the state space, heuristic search, random walk, or Markov Chain analysis [22]. Again, analysis is
limited by model size (exhaustive enumeration or Markov Chain analysis) or restricted to heuristic
methods, which might fail to detect some key dynamic features.

Snoopy is a unifying Petri net framework, containing a family of Petri net modeling tools and
algorithms [20]. Snoopy provides simulation and built-in animation. Analysis of Petri nets can be
done, e.g., with the tool Charlie [4]. Charlie can identify structural properties and has algorithms
for invariant based or reachability graph based analysis. Analysis for Petri nets is usually based on
a given initial state and does not provide a complete picture of possible dynamics for other initial
states.

DDLab is an interactive graphics software for discrete models, including cellular automata,
Boolean and multi-valued networks. As it is mainly a visualization tool, analysis is based on
exhaustive enumeration of the state space.

In summary, except for GINsim for asynchronous logical models, these tools provide a com-
plete analysis of the dynamical behavior only if an exhaustive enumeration of the state space is
computationally feasible.

Here, we present the online software package ADAM, Analysis of Dynamic Algebraic Models
[8], an analysis tool to study the dynamics of a wide range of discrete models. ADAM is the
successor to DVD, Discrete Visualizer of Dynamics [12], a tool to visualize the temporal evolution
of small polynomial dynamical systems. All of the different types of discrete models mentioned
above can be converted into the unified framework of polynomial dynamical systems [24, 9]. This
allows us to apply tools from computational commutative algebra to analyze their dynamics more
efficiently than by simulation and without using heuristic methods. In addition, using a unifying
framework for several model types allows for an effective comparison of heterogeneous models,
such as a Boolean network model and an agent-based model. For community integration to the
biological sciences, ADAM contains a model repository of previously published models available in
ADAM specific format. This allows new users to quickly familiarize themselves with ADAM and
to validate and experiment with existing models. In the following, we discuss general features of
ADAM briefly and explain new features in more detail.

2. General Features

ADAM automatically converts discrete models into polynomial dynamical systems, that is time
and state discrete dynamical systems described by polynomials over a finite field (see Appendix
A.1.1 for definition and example), and then analyzes their dynamics by using various computational
algebra techniques. Even for large systems, ADAM computes key dynamic features, such as steady
states, in a matter of seconds. ADAM is available online, free of charge. It is platform independent
and does not require installation of any software or computer algebra tool. ADAM can analyze
discrete models. It supports the following inputs.

• Logical models generated with GINsim [16]
• Petri nets generated with Snoopy [20]
• polynomial dynamical systems
• Boolean networks
• probabilistic polynomial dynamical systems [22].

ADAMs purpose is analysis of the dynamic features of a model. ADAM can find stable attractors
of dynamical systems. These are either steady states, i.e., time-invariant states, or limit cycles,

2

i.e., a collection of states between which the systems oscillates. ADAM is capable of identifying
steady states and limit cycles of length up to a user-specified length m. The process of finding long
limit cycles is quite slow for large models, however, in biological models limit cycles are likely to
be short, so that m can be chosen to be small in general.

The temporal evolution of the model can be visualized by the phase space, a graph of all possible
states and their transitions. For small enough models, ADAM generates a graph of the complete
phase space. Independent of network size, ADAM generates a wiring diagram. Wiring diagrams,
also known as dependency graphs, show the static relationship between the variables. All edges in
ADAMs wiring diagrams are functional edges, that is for some configuration of the system, a change
in the input variable causes a change in the output variable (see Appendix A.1.3 for more details).
This means that ADAM determines all non-functional edges, which is oftentimes of interest. ADAM
can also be used to study evolution of user-specified initial states. The evolution of a single state
can be determined by computing the trajectory initiating from this state and evaluating it until an
attractor is reached.

All of these features can be computed assuming synchronous update, or an asynchronous update
schedule specified by the user. Note that the steady states are the same independent of the update
schedule. This is due to the fact that updating any variable at a steady state does not change its
value. Thus, it is irrelevant whether one updates sequentially or simultaneously.

For probabilistic networks, i.e., models in which each variable has several choices of local update
rules, ADAM can generate a graph of all possible updates. This means that states in the phase
space have out degree ≥ 1, since there are several transitions possible. ADAM can find all true
steady states, i.e., states where any combination of possible update rules transitions to the same
state. For further information of probabilistic networks, see [22].

For Boolean networks, ADAM calculates all functional circuits (see Appendix A.1.3). For a
certain class of Boolean networks, namely conjunctive/disjunctive networks, ADAM computes a
complete description of the phase space (see Appendix B.2). In summary, ADAM can generate the
following outputs.

• a graph of wiring diagram
• steady states (for deterministic and probabilistic systems)
• limit cycles of specified length m
• trajectories originating from a given initial state until a stable attractor is found
• dynamics for synchronous or asynchronous updates
• functional circuits for Boolean networks
• a complete description of the phase space for conjunctive/disjunctive networks.

3. Methods

Logical models, Petri nets, and Boolean networks are automatically converted into the corre-
sponding polynomial dynamical system as described in [24], so that algorithms from computational
algebra can be used to analyze the dynamics.

We developed and implemented several different algorithms that allow one to analyze important
features of algebraic models when they are too large for exhaustive simulation. Most algorithms
rely on Gröbner basis calculations to find key dynamic features. Gröbner basis calculation is
for polynomial systems what Gauss-Jordan elimination is for linear systems: a structured way
to transform the original system to triangular shape without changing its solution space. The
triangular shape of the resulting systems allows for stepwise retrieval of the solutions of the system.
For a more in depth discussion of Gröbner bases, see for example [3].

Since the polynomials in the algebraic models originate from biological systems, we can exploit
their structural features to secure very fast Gröbner basis computations. The key idea behind our

3

algorithms is that discrete models have finitely many states and computations can be performed
over a finite field [24, 9], that is, a finite number system analogous to the Boolean field with two
elements. Since any function over a finite field is a polynomial [14] we convert discrete models
into polynomial dynamical systems and use commutative algebra algorithms. More specifically, the
problem of finding steady states and limit cycles can now be reformulated as solving a system of
polynomial equations (see the Appendix for details).

The efficiency of the Gröbner basis calculations is largely dependent on the assumption that
most discrete models arising from biological systems are sparse, meaning that every variable is
only affected by a small subset of the total variables in the system. It has been suggested, that in
robust gene regulatory networks genes are regulated by only a handful of regulators [19]. Thus, the
polynomial dynamical systems representing such biological networks are sparse, i.e., each function
depends only on a small subset of the model variables.

In the worst case, computing Gröbner bases for a set of polynomials has complexity doubly
exponential in the number of solutions to the system. However, in practice, Gröbner bases are
computable in a reasonable time, and, from our experience, for the sparse systems over a finite field
that are common in discrete biological models, it is actually quite fast. Based on benchmarking tests
for 25 logical models of biological systems [17] and randomly generated systems, the computations
for models arising in systems biology are very fast, and finish on the scale of seconds.

4. Application

We demonstrate the strength of ADAM on a well-understood model of the expression pattern
of the segment polarity genes in Drosophila melanogaster. Albert and Othmer developed a model
for embryonic pattern formation in the fruit fly Drosophila melanogaster [1]. Their Boolean model
consists of 60 variables, resulting in a phase space with more than 1018 states. They analyze
the model for steady states by setting up a system of Boolean equations and manually solving it.
They also analyze the temporal evolution of a specific initial state corresponding to the wild type
expression pattern by repeatedly applying the Boolean update rules until the steady state is found.
The update schedule of the model is synchronous with the exception of activation of SMO and the
binding of PTC to HH (activation of PH), which are assumed to happen instantaneously. This can
be accounted for by substituting the equations for SMO and PH into the update rules for other
genes and proteins, rather than using SMO and PH themselves.

To analyze the model with ADAM, we rename the variables in the Boolean rules given in [1]
to xi. Then we can use ADAM to analyze the model: the model type is PDS, the number of
states in a Boolean model is 2, i.e., present or absent. One can pick Boolean, and enter the
Boolean rules in the text-area or upload a text file with the Boolean rules. Alternatively, one can
first convert the Boolean rules to polynomials over F2, and enter the polynomials with the choice
Polynomial. The file with a complete description for the model can be accessed at [7]. The rules
in the model file are specified in Polynomial form. Once the polynomials are uploaded, we need
to choose the Analysis type. The model with 60 variables is too complex for simulation, and we
choose Algorithm. This means that instead of exhaustive enumeration of the state space, analysis
of the dynamics is done via computer algebra by solving systems of equations. In Options, we set
Limit cycle length to 1 since we are looking for steady states, i.e., time-invariant states. We chose
synchronous as updating scheme. Once these choices have been made, we obtain the steady states
by clicking Analyze. ADAM returns a link to the wiring diagram or dependency graph, which
captures the static relations between the different variables. Below, ADAM returns the number
of steady states and the steady states themselves. Each row in the table corresponds to a stable

4

attractor. Attractors are written as binary strings, e.g.,

(000111100010000

000000011111110

100000001001101

111000011111110).

This corresponds to the configuration of the system with the first 8 proteins and genes absent,
the next one present, the next two absent, etc. In fact, this is exactly the steady state obtained
in [1, Figure 4(b)] when starting the system with an initial state representing the experimental
observations of stage 8 embryos. Note that we include variables for SLP, which are not shown in
[1, Figure 4(b)] as they are fixed to be 0011 throughout the paper. The output is shown in Fig 1.

Figure 1. ADAM: Analysis of steady states of Drosophila model

ADAM can also generate trajectories for a given initial state. For example, we can pick the initial
state that was used in [1, Figure 4(a)]. Again, we enter PDS with 2 as the number of states and
upload the polynomials describing the model. Instead of Algorithms, we now choose Simulation.
Since we are not interested in the number of steady states or the complete phase space, but in a
single trajectory originating from a specific initial state, we choose One trajectory starting at an
initial state as the simulation option. As initial state we enter the one corresponding to [1, Figure
4(a)],

(000101000000000

000000010001000

100000010001000

110000010001000).

5

By clicking Analyze, we obtain the temporal evolution of this particular state until it reaches a
steady state. As predicted in [1], the steady state is the steady state from the previous paragraph,
see Fig. 2. To summarize, ADAM correctly identifies the steady states in less than one second.

Figure 2. ADAM: Trajectory of Drosophila model

All steady states have been determined previously in [1] by labor-intensive manual investigation
of the system. In [1], the model is formulated as a set of Boolean rules. In order to determine
the steady states, the system of Boolean expressions was solved manually. In addition, we used
ADAM to verify that are there no limit cycles of length two or three. The model has not been
analyzed previously for limit cycles. The absence of two- and three cycles strengthens confidence
in the model, since oscillatory behavior has not been observed experimentally. The model file in
ADAM format can be accessed at [7].

4.1. Benchmark Calculations. We analyzed logical models available in the GINsim model repos-
itory [17] as of August 2010. The repository consists of models in GINsim XML format previously
published in peer-reviewed journals. We converted all but two models into polynomial dynamics
systems. For these 27 models we computed the steady states. Almost all calculations finished in
less than a second. The two largest networks, consisting of over 1030 states, took approximately
20 minutes each, see Figure 3. In addition to the published models in [17], we analyzed randomly
generated networks that have the same sparse structure that we expect from biological systems.
We tested a total of 50 networks with 50-100 nodes (1015 − 1030 states) and up to two inputs per
variable. The steady state calculations took less than half a second for each network on a 2.7 GHz
computer.

5. Architecture

ADAM is available as an online-tool, with no need for the user to install any software. ADAM’s
user interface is implemented in HTML. We use JavaScript to generate a dynamic website that
adapts as the user makes various choices. This simplifies the process of entering a model. For
example, after defining the model type, i.e., Polynomial Dynamical System, Probabilistic Network,
Petri net, and Logical Model the next line changes to the number of states, k-bound, or nothing,
appropriately. Input can be entered directly into the text-area on the form, or uploaded as a text
document.

All mathematical algorithms are programmed in Macaulay2 [6]. Macaulay2 is a powerful com-
puter algebra system. The routines for which fast execution is crucial are implemented in C/C++
as part of the Macaulay2 core. Logical Models and Petri nets in XML format are parsed using
Ruby’s XmlSimple library. The interplay between HTML and Macaulay2 is also programmed in
Ruby.

Output graphs are generated with Graphviz’s dot command. When Simulation is chosen as
analysis method, Graphviz’s ccomps - connected components filter for graphs is used to count the
connected components. A Perl script directs the execution of the Graphviz commands.

6

Figure 3. Runtime of steady state calculations of several logical models from [17].
Executed on a 2.7 GHz computer.

6. Model Repository

A model repository is part of the ADAM website. The repository consists of a collection of several
previously published models in ADAM format. The models are extracted from publications, and
rewritten in ADAM specific format, i.e., all variables are renamed to xi and the update rules from
the original publication are reformulated as Boolean rules or polynomials. A central repository with
models in a unified framework allows for quick verification and experimentation with published
models. By changing parameters or initial states the users can gain a better understanding of the
models.

New users can also use the repository to quickly familiarize themselves with the main functional-
ities of ADAM. In addition to the model itself, the database entries contain a short summary of the
biological system and relevant graphs, together with an analysis of dynamic features determined by
ADAM and their biological explanation. The repository is a work in progress by researchers from
several institutions generating more entries for the repository. We invite all interested researchers
to submit their models.

Because of their intuitive nature, discrete models are an excellent introduction to mathematical
modeling for students of the life sciences. ADAM’s model repository is a great starting point to
familiarize students with the abstraction of discrete models such as Boolean networks.

7. Conclusion

Discrete modeling techniques are a useful tool for analyzing biological systems. Upon translating
a discrete model, such as logical networks, Petri nets, or agent-based models into an algebraic
model, rich mathematical theory becomes available. This opens up possibilities for analysis of
dynamics with methods other than simulation, which is limited due to combinatorial explosion.
After extensive experimentation with both discrete models arising in systems biology and randomly
generated networks, we found that our algorithms are fast for sparse systems, a structure maintained
by most biological systems. All algorithms have been included in the software package ADAM[8],
which is user-friendly and available as a free web service. ADAM is highly suitable to be used in
a classroom as a first introduction to discrete models as it does not require the students to run
anything else but a web browser.

7

There are several software tools for discrete models, all of them specializing in a single discrete
model type. GINsim, a tool for modeling and simulation of logical models can quickly identify
steady states [16], but it has no other means than simulation to identify limit cycles for synchronous
networks. BoolNet R package, a package for inference and analysis of synchronous, asynchronous,
and probabilistic Boolean networks, does a steady state analysis by exhaustive enumeration of the
state space or heuristic methods [15]. Analysis is limited by model size (exhaustive enumeration
or Markov Chain analysis) or restricted to heuristic methods, which might fail to detect some
key dynamic features. Snoopy and Charlie, software tools for Petri nets, base all their analysis
methods on a given initial marking and do not contain any methods to analyze the complete
possible phase space, when no marking is given. DDLab, an interactive graphics software for
cellular automata, Boolean and multi-valued networks, does not provide analysis methods other
than through visualization. Simulation or visualization are always limited by model size or restricted
to a small part of the state space.

For all these types of discrete models, ADAM provides methods to analyze the key dynamic
features, such as steady states and limit cycles, for large-scale models. ADAM unifies different
modeling types by providing analysis methods for all of them and thus can be used by a larger
community.

We hope to expand ADAM to a more comprehensive Discrete Toolkit which incorporates more
analytical methods, better visualization, and automatic conversion for more model types. We also
hope to analyze controlled algebraic models and expand theory to stochastic systems.

Appendix A. Mathematical Background

A.1. Polynomial Dynamical Systems. To be self-contained, we briefly explain polynomial dy-
namical systems and their key features.

A.1.1. Polynomial Dynamical System (PDS). A polynomial dynamical system [11] over a finite
field k is a function

f = (f1, . . . , fn) : kn → kn,

with coordinate functions fi ∈ k[x1, . . . , xn]. Iteration of f results in a time-discrete dynamical
system. PDS are special cases of finite dynamical systems, which are maps Xn → Xn over arbitrary
finite sets X. PDS have several dynamic features of biological relevance. These include the number
of components, component sizes, steady states, limit cycles, and limit cycle lengths.

Example Let k = F2 and f = (f1, f2, f3) : F3
2 → F3

2 with

f1 = x1x2x3 + x1x2 + x2x3 + x2

f2 = x1x2x3 + x1x2 + x1x3 + x1 + x2

f3 = x1x2x3 + x1x3 + x2x3 + x1 + x2.

The wiring diagram of f , which shows the static interaction of the three variables, is depicted in
Figure 4 (left) along with its phase space in Figure 4 (right). The phase space shows the temporal
evolution of the system. Each state is represented as a vector of the values of the three variables
(x1, x2, x3). The PDS described by f has two stable attractors: a steady state, (000), and a limit
cycle of length three, consisting of the states (010), (111), and (011).

A.1.2. Probabilistic Polynomial Dynamical System. A probabilistic PDS over a finite field k is a
collection of functions

f = ({f1,1, . . . , f1,r1}, . . . , {fn,1, . . . , fn,rn}) : kn → kn,

together with a probability distribution for every coordinate that assigns the probability that a spe-
cific function is chosen to update that coordinate. The coordinate functions fi,j are in k[x1, . . . , xn].

8

Figure 4. (left) Wiring diagram: static relationship between variables (right)
Phase space: temporal evolution of the system

Probabilistic PDS, specifically Boolean probabilistic networks (PBN), have been studied extensively
in [22]. ADAM analyzes probabilistic PDS. It can simulate the complete phase space for small
enough models, by generating every possible transition and labeling the edge with its probability
according to the distribution. If no distribution is given, ADAM assumes a uniform distribution on
all functions. For large networks, ADAM’s Algorithm choice computes steady states of probabilistic
networks.

A.1.3. Functional Edges. An edge in the wiring diagram from xi to xj is considered functional, if
there exists a state x̂ = (x̂1, . . . , x̂n) such that fj(x̂1, . . . , a, . . . x̂n) 6= fj(x̂1, . . . , b, . . . x̂n), where a
and b are values for xi, in other words, if there is at least one state, such that changing only xi
but keeping all other values fixed, changes the next state of xj . In ADAM, all edges in the wiring
diagram are functional. For Boolean networks, ADAM identifies all functional circuits. A circuit
is a closed directed path in the wiring diagram and it is functional, if all its edges are functional.
For further discussion of functional circuits, see [18].

Appendix B. Algorithms

B.1. Analysis of stable attractors. Every attractor in a PDS is either a steady state or a limit
cycle. For small models, ADAM determines the complete phase space by enumeration, for large
models, ADAM computes steady states and limit cycles of a given length. A state is a steady
state, if it transitions to itself after one update of the system. A state is part of a limit cycle of
length m, if, after m updates, it results in itself. Any steady state of a PDS satisfies the equation
f(x) = x, as no coordinate of x is changing as it is updated. Similarly, states of a limit cycle
of length m satisfy the equation fm(x) = x. ADAM computes all steady states by solving the
system fi(x) − xi = 0 for i ∈ {1, . . . , n} simultaneously. To efficiently solve the resulting systems
of polynomial equations, we first compute the Gröbner basis in lexicographic order for the ideal
generated by the equations. By the elimination and extension theorem [3], choosing a lexicographic
order allows to easily obtain the solutions. We use the Gröbner basis calculations distributed with
Macaulay2 [6], a computer algebra system, and found that for quotient rings over a finite field the
implementation ‘Sugarless’ is more efficient than the default algorithm with ‘Sugar’ [5]. For limit
cycles of length m, the solutions of fm(x) = x are found and then grouped into cycles, by applying
f to each of the solutions.

B.2. Conjunctive/Disjunctive Networks. Some classes of networks have a certain structure
that can be exploited to achieve faster calculations. In [10], Jarrah et al. show that for conjunctive

9

(disjunctive) networks key dynamic features can be found with almost no computational effort.
Conjunctive (resp disjunctive) networks consist of functions using only the AND (resp. OR) oper-
ator. We include a separate algorithm to analyze dynamics in the case of conjunctive/disjunctive
networks as described in [10]. Currently, this option is only implemented for networks with strongly
connected dependency graphs

Acknowledgments

The authors would like to thank Claudine Chaouyia and Monika Heiner for helpful discussions. E.
Dimitrova, Clemson University; J. Adeyeye, Winston-Salem State University; B. Stigler, Southern
Methodist University; R. Isokpehi, Jackson State University are currently expanding ADAMs Model
Repository. Funding for this work was provided through U.S. Army Research Office Grant Nr.
W911NF-09-1-0538, National Science Foundation Grant Nr. CMMI-0908201, and National Science
Foundation Grant Nr. 0755322.

References

[1] Réka Albert and Hans G. Othmer. The topology of the regulatory interactions predicts the expression pattern
of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical Biology, 223:1–18, 2003.

[2] Danail Bonchev, Sterling Thomas, Advait Apte, and Lemont B Kier. Cellular automata modelling of biomolecular
networks dynamics. SAR and QSAR in Environmental Research, 21(1):77–102, 2010.

[3] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduction to Compu-
tational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[4] Andreas Franzke. Charlie 2.0 - a multi-threaded petri net analyzer; diploma thesis,. Available at http://www-
dssz.informatik.tu-cottbus.de/index.html?/software/charlie.html, 2009.

[5] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso. “one sugar cube,
please” or selection strategies in the buchberger algorithm. In ISSAC ’91: Proceedings of the 1991 international
symposium on Symbolic and algebraic computation, pages 49–54, New York, NY, USA, 1991. ACM.

[6] Daniel R. Grayson and Michael E. Stillman. Macaulay2, a software system for research in algebraic geometry.
Available at http://www.math.uiuc.edu/Macaulay2/, 1992.

[7] Franziska Hinkelmann. Model repository of discrete biological systems: Boolean model of segment polarity genes
in drosophila melanogaster. Available at http://dvd.vbi.vt.edu/cgi-bin/git/repository.pl?model=Drosophila.

[8] Franziska Hinkelmann, Madison Brandon, Bonny Guang, Rustin McNeill, Alan Veliz-Cuba, and Reinhard
Laubenbacher. Adam, analysis of dynamic algebraic models. Available at http://adam.vbi.vt.edu.

[9] Franziska Hinkelmann, David Murrugarra, Abdul Jarrah, and Reinhard Laubenbacher. A mathematical frame-
work for agent based models of complex biological networks. Bulletin of Mathematical Biology, pages 1–20, 2010.
10.1007/s11538-010-9582-8.

[10] Abdul Jarrah, Reinhard Laubenbacher, and Alan Veliz-Cuba. The dynamics of conjunctive and disjunctive
boolean network models. Bulletin of Mathematical Biology, 72:1425–1447, 2010. 10.1007/s11538-010-9501-z.

[11] Abdul S. Jarrah, Reinhard Laubenbacher, Brandilyn Stigler, and Michael E. Stillman. Reverse-engineering of
polynomial dynamical systems. Adv Appl Math, 39:477–489, 2007.

[12] Reinhard Laubenbacher. Dvd - discrete visualizer of dynamics. Available at http://dvd.vbi.vt.edu/.
[13] Reinhard Laubenbacher, Abdul S. Jarrah, Henning Mortveit, and S S. Ravi. Encyclopedia of Complexity and

System Science, chapter A mathematical foundation for agent-based computer simulation. Springer Verlag, New
York, 2009.

[14] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, New York, 1997.
[15] Christoph Müssel, Martin Hopfensitz, and Hans A. Kestler. Boolnet—an r package for generation, reconstruction

and analysis of boolean networks. Bioinformatics, 26(10):1378–1380, 05 2010.
[16] Aurélien Naldi, Duncan Berenguier, Adrien Fauré, Fabrice Lopez, Denis Thieffry, and Claudine Chaouiya. Logical

modelling of regulatory networks with ginsim 2.3. Biosystems, 97(2):134–139, 2009.
[17] Aurélien Naldi, Denis Thieffry, and Claudine Chaouiya. Ginsim - model repository. Available at http://gin.univ-

mrs.fr/GINsim/model repository.html.
[18] Aurélien Naldi, Denis Thieffry, and Claudine Chaouiya. Decision diagrams for the representation and analy-

sis of logical models of genetic networks. In CMSB’07: Proceedings of the 2007 international conference on
Computational methods in systems biology, pages 233–247, Berlin, Heidelberg, 2007. Springer-Verlag.

[19] Robert D. Leclerc. Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol, 4, 2008.

10

http://www-dssz.informatik.tu-cottbus.de/index.html?/software/charlie.html
http://www-dssz.informatik.tu-cottbus.de/index.html?/software/charlie.html
http://www.math.uiuc.edu/Macaulay2/
http://dvd.vbi.vt.edu/cgi-bin/git/repository.pl?model=Drosophila
http://adam.vbi.vt.edu
http://dvd.vbi.vt.edu/
http://gin.univ-mrs.fr/GINsim/model_repository.html
http://gin.univ-mrs.fr/GINsim/model_repository.html

[20] Christian Rohr, Wolfgang Marwan, and Monika Heiner. Snoopy—a unifying petri net framework to investigate
biomolecular networks. Bioinformatics, 26(7):974–975, 04 2010.

[21] Andrea Sackmann, Monika Heiner, and Ina Koch. Application of petri net based analysis techniques to signal
transduction pathways. BMC Bioinformatics, 7(1):482, 2006.

[22] Ilya Shmulevich, Edward R. Dougherty, Seungchan Kim, and Wei Zhang. Probabilistic boolean networks: a
rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2):261–274, February 2002.

[23] L. Jason Steggles, Richard Banks, Oliver Shaw, and Anil Wipat. Qualitatively modelling and analysing genetic
regulatory networks: a Petri net approach. Bioinformatics, 23:336–343, 2007.

[24] Alan Veliz-Cuba, Abdul S. Jarrah, and Reinhard Laubenbacher. Polynomial algebra of discrete models in systems
biology. Bioinformatics, 26(13):1637–1643, July 2010.

11

	1. Introduction
	2. General Features
	3. Methods
	4. Application
	4.1. Benchmark Calculations

	5. Architecture
	6. Model Repository
	7. Conclusion
	Appendix A. Mathematical Background
	A.1. Polynomial Dynamical Systems

	Appendix B. Algorithms
	B.1. Analysis of stable attractors
	B.2. Conjunctive/Disjunctive Networks

	Acknowledgments
	References

