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Abstract

To provide adequate multivariate measures of information flow between neural

structures, modified expressions of Partial Directed Coherence (PDC) and Directed

Transfer Function (DTF), two popular multivariate connectivity measures employed

in neuroscience, are introduced and their formal relationship to mutual information

rates are proved.

1 Introduction

Over the last decade Neuroscience has been witnessing an important paradigm shift thanks

to the fast advancement of multichannel data acquisition technology. This process has been

marked by the growing realization that the brain’s inner workings can only be grasped

through a detailed description of how brain areas interact functionally in a scenario that

has come to be generally referred as the study of brain connectivity and which stands in

sharp contrast to former longstanding efforts mostly directed at merely identifying which

brain areas were involved in specific functions.

As such, many techniques have been proposed to address this problem, specially be-

cause of the need to process and make sense of many simultaneously acquired brain activity

signals, (Kaminski and Blinowska, 1991, Sommer and Wichert, 2003, Astolfi et al., 2007).

Among the available methods, we introduced and developed the idea of partial directed

coherence (PDC) (Baccalá and Sameshima, 2001b,a) which consists of a means of dissect-

ing the frequency domain relationship between pairs of signals from among a set of K ≥ 2

simultaneously observed time series.
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The main characteristic of PDC is that it decomposes the interaction of each pair

of time series within the set into directional components while deducting the possibly

shrouding effect of the remaining K − 2 series. It has, for instance, been possible to show

that PDC is related to the notion of Granger causality which corresponds to the ability

of pinpointing the level of attainable improvement in predicting a time series xi(n) when

the past of another time series xj(n) is known (i 6= j) (Granger, 1969).

In fact, multivariate Granger causality tests as described in Lütkepohl (1993) map

directly onto statistical tests for PDC nullity. Like Granger causality, and as opposed to

ordinary coherence (Priestley, 1981), PDC is a directional quantity; this fact lead to the

idea of ’directed’ connectivity that allows one to expressly test for the presence of feedback

and to the idea that PDC is somehow associated with the direction of information flow.

The appeal of associating PDC with information flow has been strong; we have used it

ourselves (Baccalá and Sameshima, 2001b,a). Yet this suggestion has until now remained

vague and to some extent almost apocryphal. The aim of this paper is to correct this state

of affairs by making the relationship between PDC and information flow at once formally

explicit and precise.

On a par with PDC, is the no less important notion of directed transfer function

(DTF) by Kaminski and Blinowska (1991), whose information theoretic interpretation is

also addressed here.

By providing further details and full proofs, this paper expands on our previous pub-

lication (Takahashi et al., 2010) and is organized as follows: in Sec. 2 we provide some

explicit information theoretic background leaving the main result to Sec. 3 followed by

illustrations and comments in Sec. 4 and 5 respectively. Detailed proofs are covered in

the Appendix.

2 BACKGROUND

The relationship between two discrete time stochastic processes x = {x(k)}k∈Z and y =

{y(k)}k∈Z is assessed via their mutual information rate MIR(x, y) by comparing their joint

probability density with the product of their marginals:

MIR(x, y) =

lim
m→∞

1

m+ 1
E

[

log
dP(x(1), . . . , x(m), y(1), . . . , y(m))

dP(x(1), . . . , x(m))dP(y(1), . . . , y(m))

]

(1)

2



where E [·] is the expectation with respect to the joint measure of x and y and where

dP denotes the appropriate probability density. An immediate consequence of (1) is that

independence between x and y implies MIR nullity.

The main classic result for jointly Gaussian stationary processes, due to Gelfand and Yaglom

(1959), relates (1) to the coherence between the processes via

MIR(x, y) = − 1

4π

∫ π

−π
log(1− |Cxy(ω)|2)dω, (2)

where the coherence in (2) is given by

Cxy(ω) =
Sxy(ω)

√

Sxx(ω)Syy(ω)
, (3)

with Sxx(ω) and Syy(ω) standing for the autospectra and Sxy(ω) for the cross-spectrum,

respectively.

The important consequence of this result is that the integrand in (2) may be interpreted

as the frequency decomposition of MIR(x, y).

In view of this result, the following questions arise: Does a similar result hold for PDC?

How and in what sense?

Before addressing these problems, consider the zero mean wide sense stationary vector

process x(n) = [x1(n) . . . xK(n)]T representable by multivariate autoregressive model

x(n) =

+∞
∑

l=1

A(l)x(n − l) +w(n), (4)

where w(n) = [w1(n) . . . wK(n)]T stand for zero mean wide sense stationary innovation

processes with positive definite covariance matrix Σw = E
[

w(n)wT (n)
]

.

A sufficient condition for the existence of representation (4) is that the spectral density

matrix associated with the process {x(n)}n∈Z be uniformly bounded from below and above

and be invertible at all frequencies (Hannan, 1970). From the coefficients aij(l) of A(l)

we may write

Āij(ω) =















1−
+∞
∑

l=1

aij(l)e
−jωl, if i = j

−
+∞
∑

l=1

aij(l)e
−jωl, otherwise

(5)

where j =
√
−1 for ω ∈ [−π, π).
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Also let āj(ω) =
[

Ā1j(ω) . . . ĀKj(ω)
]T

and consider the quantity, henceforth termed

information PDC (ιPDC) from j to i,

ιπij(ω) =
Āij(ω)σ

−1/2
ii

√

āHj (ω)Σ−1
w āj(ω)

, (6)

where σii = E
[

w2
i (n)

]

and which simplifies to the originally defined PDC when Σw equals

the identity matrix. Note also that the generalized PDC (gPDC) from Baccalá et al.

(2007) is obtained if Σw is a diagonal matrix whose elements are not necessarily the same.

Before stating the main result, note that to our knowledge, mention of (6), as in

Baccalá et al. (2006), has not appeared in the literature with any explicit association with

information theoretic ideas.

3 RESULTS

3.1 PDC

Theorem 1. Let the K-variate wide sense stationary time series x(n) = [x1(n) . . . xK(n)]T

satisfy (4), then

ιπij(ω) = Cwiηj (ω), (7)

where ηj(n) = xj(n) − E[xj(n)|{xl(m), l 6= j, m ∈ Z}] which is known as the partialized

process associated to xj given the remaining time series.

Corolary 1. Let the K-variate Gaussian stationary time series x(n) = [x1(n) . . . xK(n)]T

satisfy (4), then

MIR(wi, ηj) = − 1

4π

∫ π

−π
log(1− |ιπij(ω)|2)dω. (8)

To obtain the process ηk, remember that it constitutes the residue of the projection

of xk onto the past, the future and the present of the remaining processes. Hence its

autospectrum is given by

Sηkηk(ω) = Sxkxk
(ω)− sxkx

k(ω)S−1
xkxk(ω)sxkxk

(ω), (9)

for xk = [xl1 . . . xlK−1
]T , {l1, . . . , lK−1} = {1, . . . ,K} \ {k} where sxkx

k(ω) is the K − 1-

dimensional vector whose entries are the cross spectra between xk and the remaining K−1

processes, whereas Sxkxk(ω) is the spectral density matrix of xk. The spectrum Sηkηk(ω)

is also known in the literature as the partial spectrum of xk given xk (Priestley, 1981).
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Note that

gk(ω) = sxkx
k(ω)S−1

xkxk(ω) (10)

constitutes an optimum Wiener filter whose role in producing ηk is to deduct the influence

of the other variables from xk to single out that contribution that is only its own.

Theorem 1 shows that PDC from xj to xi measures the amount of information common

to the ηj partial process and the wi innovation. The proof is left to the Appendix but its

main idea is to prove (7) so that (8) follows by use of (2) to produce MIR(wi, ηj).

3.2 DTF

Every stationary process {x(n)}n∈Z with autoregressive representation (4) also has the

following moving average representation

x(n) =

+∞
∑

l=0

H(l)w(n − l), (11)

where the innovation process w is the same as that of (4).

In connection to the hij(l) coefficients of H(l), consider the matrix H̄(ω) with entries

H̄ij(ω) =
+∞
∑

l=0

hij(l)e
−jωl, (12)

and let h̄j(ω) =
[

H̄j1(ω) . . . H̄jK(ω)
]T

whence follows the definition of information di-

rected transfer function (ιDTF) from j to i as

ιγij(ω) =
H̄ij(ω)ρ

1/2
jj

√

h̄H
j (ω)Σwh̄j(ω)

, (13)

where ρjj is the variance of the partialized innovation process ζj(n) = wj(n)−E[wj(n)/{wl(n), l 6=
j}] given explicitly by

ρjj = σjj − σj·Σ
−1
·· σT

j·,

where σj· is the vector of covariances for innnovations

wj(n) = [wl1(n) . . . wlK−1
(n)]T where {l1, . . . , lK−1} = {1, . . . ,K} \ {j} and Σ·· is the

covariance matrix of wj(n).

WhenΣw is the identity matrix, (13) reduces to the original DTF fromKaminski and Blinowska

(1991). Also when Σw is a diagonal matrix with distinct elements (13) reduces to directed

coherence as defined in Baccal et al. (1999).

For this new quantity, a result analogous to Theorem 1 holds.
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Theorem 2. Let the K-variate wide sense stationary time series x(n) = [x1(n) . . . xK(n)]T

satisfy (11), then

ιγij(ω) = Cxiζj (ω), (14)

where ζj is the previously defined partialized innovation process.

Corolary 2. Let the K-variate Gaussian stationary time series x(n) = [x1(n) . . . xK(n)]T

satisfy (11), then

MIR(xi, ζj) = − 1

4π

∫ π

−π
log(1− |ιγij(ω)|2)dω. (15)

An important remark is that (7)/(14) hold for wide-sense stationary processes re-

spectively with a autoregressive/moving average representations and that the gaussianity

requirement is unnecessary for their validity.

Also the integrands in (8) and (15) are readily interpretable as mutual information

rates at each frequency.

4 ILLUSTRATIVE EXAMPLE

Via the following simple accretive example it is possible to explicitly expose the nature of

(7):




x1(n)

x2(n)



 =





0 0

α 0









x1(n− 1)

x2(n− 1)



+





w1(n)

w2(n)



 , (16)

where E[wi(n)wj(m)] = δnmδij , for m,n ∈ Z and i, j ∈ {1, 2} with δpq standing for the

usual Kronecker delta symbol.

Clearly ιπ12(ω) = 0 and

ιπ21(ω) =
−αe−jω

√
1 + α2

.

To obtain Cw1η2(ω) using the fact that

s21(ω)S
−1
11 (ω) = αe−jω

implies η2(n) = x2(n) − αx1(n − 1) = w2(n) so that Cw1η2(ω) = 0, and hence ιπ12(ω) =

Cw1η2(ω).

Now to compute Cw2η1(ω) one must use the spectral density matrix of [x1 x2]
T given

by




Sx1x1
(ω) Sx1x2

(ω)

Sx2x1
(ω) Sx2x2

(ω)



 =





1 αejω

αe−jω 1 + α2



 ,
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leading to the optimum filter

G1(ω) = s12(ω)S
−1
22 (ω) =

α

1 + α2
ejω

for E[x1(n)/{x2(m), m ∈ Z}]. It is noncausal and produces α
1+α2x2(n+ 1) so that

η1(n) = x1(n)−
α

1 + α2
x2(n + 1).

Since x1(n) = w1(n) and x2(n) = αw1(n− 1) + w2(n),

η1(n) = w1(n)
1

1 + α2
− w2(n+ 1)

α

1 + α2
,

which leads to

Sw2η1(ω) =
−αe−jω

1 + α2

and

Sη1(ω) =
1

1 + α2

Sw2
(ω) = 1,

showing that

Cw2η1(ω) =
−αe−jω

√
1 + α2

confirms that ιπ21(ω) = Cw2η1(ω) via direct computation of the Fourier transforms of the

covariance/cross-covariance functions involving w2 and η1.

It is easy to verify that ζi(n) = wi(n) so that direct computations also confirm ιPDC

and ιDTF equality in the K = 2 case (Baccalá and Sameshima, 2001a) when Σ is the

identity matrix.

Let model (16) be enlarged by including a third observed variable

x3(n) = βx2(n− 1) + w3(n) (17)

where w3(n) is zero mean unit variance Gaussian and orthogonal to w1(n) and w2(n) for

all lags. This new equation means that the signal x1 has an indirect path to x3 via x2 but

no direct means of reaching x3.
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For this augmented model, the following joint moving average representation holds











x1(n)

x2(n)

x3(n)











=











w1(n)

w2(n)

w3(n)











+











0 0 0

α 0 0

0 β 0





















w1(n − 1)

w2(n − 1)

w3(n − 1)











+











0 0 0

0 0 0

αβ 0 0





















w1(n− 2)

w2(n− 2)

w3(n− 2)











,

which produces

ιγ21(ω) =
αe−jω

√
1 + α2

,

ιγ32(ω) =
βe−jω

√

1 + β2 + α2β2
,

ιγ31(ω) =
αβe−2jω

√

1 + β2 + α2β2
, (18)

and ιγkl = 0 for l > k by direct computation using (13). To verify (14), one obtains

ζi = wi since the wi innovations are uncorrelated leading to

Sx2ζ1(ω) = α, Sx3ζ2(ω) = βe−jω,

Sx3ζ1(ω) = αβe−2jω, Sx2x2
(ω) = 1 + α2,

Sx3x3
(ω) = 1 + β2 + α2β2, Sζ1ζ1(ω) = 1 = Sζ2ζ2(ω),

wherefrom ιγ21(ω) = Cx2ζ1(ω), ιγ32(ω) = Cx3ζ2(ω) and ιγ31(ω) = Cx3ζ1(ω) using (14).

One may compute this model’s PDCs

ιπ21(ω) =
−αe−jω

√
1 + α2

,

ιπ32(ω) =
−βe−jω

√

1 + β2
,

ιπ31(ω) = 0,

either via (6), or via Theorem 1.

This exposes the fact that the augmented model’s direct interaction is represented by

PDC whereas DTF from x1 to x3 (18) is zero if either α or β is zero. This means that
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a signal pathway leaving x1 reaches x3 so that DTF therefore represents the net directed

effect of x1 onto x3 as in fact previously noted in Baccalá and Sameshima (2001b).

5 Discussion

In their information forms both PDC and DTF represent true coherences and thus con-

stitute complete alternative descriptions of the dynamic relations involving the observed

vector time series x(n) and w(n), the innovations vector process, or its orthogonalized ver-

sion ζ(n), which summarize the stochastic novelty after stripping all mutual correlations

present in x(n).

DTF can be thought of as a forward description for it depicts how ζ(n) affect the

x(n) observations, whereas PDC describes how w(n) relates to η(n) which is obtained

by the mutual partialization of the components of x(n). Thus, ηi(n) essentially excludes

those redundancies in xi(n) that can be attributed to the other xj(n) (j 6= i). This

redundancy extraction, by direct analogy with linear algebraic procedures gives rise to

{ηj , j = 1, . . . ,K} as a dual (also frequently termed reciprocal) basis to the {xi, i =

1, . . . ,K} basis as its elements ηi are orthogonal to all xj for i 6= j. It is in this precise

sense that PDC’s description is dual to DTF’s - they map the innovations onto dual

representations of the observed dynamics.

A question that may come to mind is: how can DTF (PDC) being related to mutual

information, a recognizedly reciprocal quantity, are able to describe unreciprocal aspects

of the interaction between time series? The answer lies in that they relate the xi (ηi) to

innovations ζj (wj) so that permuting i and j describes the relationship between distinct

inner component subprocesses. As such, for example, in the case of PDC, MIR(wi, ηj) (for

|ιπij(ω)|2) and MIR(wj, ηi) (for |ιπji(ω)|2) are not equal in general as opposed to

MIR(wi, ηj) = MIR(ηj , wi) (19)

whose equality always holds because |ιπij(ω)|2 = |ιπ∗
ij(ω)|2 where ∗ denotes complex con-

jugation. In other words, index permutation in PDC entails comparing different underlying

intrinsic component processes. A similar result holds for DTF.

Another point is why PDC/DTF are related to Granger causality. This is so because

the inherent decorrelation

E [wi(n)wj(m)] = 0 for all i, j provided that n 6= m introduces the necessary time asymetry

9



to allow their causal interpretations. Also observe that by definition of innovation, time

asymetry is an automatic consiquence of wi(n)’s uncorrelation to ηj(k) for k < n. The

same holds for ζj(n) which is uncorrelated with xi(k) for k ≤ n.

Though left to the Appendix, the proof of Theorem 1 reveals an interesting aspect,

namely eq. (26) that allows interpreting Āij(ω) (5) as a transfer function from ηj to

wi. This observation sheds light on Schelter et al. (2009)’s employment of a studentized

version of Āij(ω) in characterizing the relationship between x(n) components. Similar

observations hold for the H̄ij(ω), whose magnitude has been used by Blinowska et al.

(2010).

PDC and DTF are not alone as attempts to describe information flow between mul-

tivariate time series.To discuss these ideas one must also mention the efforts of Geweke

(1982) and Hosoya (1991). Though delving into detailed and specific comparative aspects

of their proposals vis--vis those described herein is beyond our intended scope and is plan-

ned for future publications, it is perhaps reassuring to note when just time series pairs are

considered (K = 2) all of the latter frequency domain measures coalesce into one and the

same measure.

As a matter of fact, for K = 2, it is possible to show that

|ιπij(ω)|2 = |ιγij(ω)|2 = 1− e−fj→i(ω) = 1− e−Mj→i(ω) (20)

for (i, j ∈ {1, 2}) where fj→i(ω) and Mj→i(ω) describe respectively Geweke’s and Hosoya’s

frequency domain causal measures in their own notation (the arrow shows the direction

information flow). Furthermore, when it comes to testing for the null hypothesis of Granger

causality when K = 2, it is straightforward to verify the equivalence of the following

statements:

1. There is no Granger causality from xj to xi.

2. MIR(xi, ζj) = 0.

3. MIR(wi, ηj) = 0.

4. |ιπij(ω)|2 = 0, ∀ω ∈ [−π, π).

5. |ιγij(ω)|2 = 0, ∀ω ∈ [−π, π).

6. fj→i(ω) = 0, ∀ω ∈ [−π, π).
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7. Mj→i(ω) = 0, ∀ω ∈ [−π, π).

8. Āij(ω) = 0, ∀ω ∈ [−π, π).

9. Hij(ω) = 0, ∀ω ∈ [−π, π).

Which of the above statements is more convenient depends on criteria like knowledge

of precise asymptotic statistics and test power. In fact, precise results this kind for the

general K > 2 case, that also include asymptotic confidence intervals, are known for

|ιπij(ω)|2 and are being prepared for submission.

Though time domain considerations are strictly outside our scope, they are required

to fully understand the difference between the various measures (Takahashi, 2009) and

underlie the difficulties of generalizing Geweke’s and Hosoya’s proposals to K > 2 as

attempted respectively in Geweke (1984) and Hosoya (2001) while keeping a consistent

interpretation of information flow in association with Granger causality.

A summary of the relationships between the underlying processes addressed in this

paper is portrayed in Figure 1.

Finally, it should be noted that iPDC, as herein defined, provides an absolute signal

scale invariant measure of direct connectivity strength between observed time series as

opposed to either PDC or gPDC that provide only relative coupling assessments.

6 Conclusion

New properly weighted multivariate directed dependence measures between stochastic

processes that generalize PDC and DTF have been introduced and their relationship to

mutual information has been spelled out in terms of more fundamental adequately partial-

ized processes. These results enlighten the relationship of formerly available connectivity

measures and the notion of information flow. Theorem 1 is a novel result. For bivariate

time series, results similar to Theorem 2 have appeared several times in the literature

in association with Geweke’s measure of directed dependence Geweke (1982). The ιDTF

introduced herein is novel and constitutes a proper generalization of Geweke’s result for

the multivariate setting while ιPDCs result (also novel) is its dual.

The present results not only introduce a unified framework to understand connectivity

measures, but also open new generalization perspectives in nonlinear interaction cases for

which information theory seems to be the natural study toolset.
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Figure 1: The diagram summarizes the relationship between the various descriptive pro-

cesses associated with the original observations x including the innovations process w and

their respective partialized versions η and ζ. The mutual information rate relationships

are described by ιPDC for (η,w) and ιDTF for (ζ,x) . Information flow sources are in-

dexed by the greek type face vector components and the information receiving structures

are chosen among the components of the latin type face processes.
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A Appendix

A.1 Proof of Theorem 1 and Corollary 1

Before proving Theorem 1 consider the following lemma:

Lemma 1. Let Sx(ω) be the power spectral density matrix of the stationary K-variate

time series x(n) obeying (4). Then

āj(ω)
HΣ−1

w āj(ω) = S−1
ηjηj (ω) (21)

holds.

Proof. One may rewrite (5) in matrix form as

Ā(ω) = I−
+∞
∑

l=1

A(l)e−jωl, (22)

where I is the K ×Kidentity matrix.

Because (4) holds, the inverse of the x may be written as

S−1
x (ω) = Ā(ω)HΣ−1

w Ā(ω). (23)

each of whose elements [·]jj
[

S−1
x (ω)

]

jj
=

(

Sxjxj
(ω)− sxjxj(ω)S−1

xjxj (ω)sxjxj
(ω)

)−1
,

follows from the partitioned matrix inversion formula (see e. g. the appendix in Lütkepohl

(1993)) which equals

S−1
ηjηj (ω) = āHj (ω)Σ−1

w āj(ω). (24)

by direct computation of
[

Sx(ω)
−1

]

jj
from (23).

Lemma 1 allows rewriting (6) as

ιπij(ω) = Āij(ω)σ
−1/2
ii

√

Sηjηj (ω).

Hence to prove Theorem 1 all one must show is that

Cwiηj (ω)
△
=

Swiηj (ω)
√

Swiwi
(ω)Sηjηj (ω)

= Āij(ω)σ
−1/2
ii

√

Sηjηj (ω). (25)

Since

Swiwi
(ω) = σii,
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proving (25) reduces to showing

Āij(ω) =
Swiηj (ω)

Sηjηj (ω)
. (26)

By straightforward computation with help of (10)

Swiηj (ω) =
K
∑

l=1

Āil(ω)
{

Sxlxj
(ω)− sxjxj (ω)S−1

xjxj(ω)sxlx
j (ω)

}

.

whose right-hand side can be broken as

Āij(ω)Sηjηj (ω)+

K
∑

l=1
l 6=j

Āil(ω)
{

Sxlxj
(ω)− sxjxj (ω)S−1

xjxj (ω)sxlx
j (ω)

}

. (27)

which simplifies to

Swiηj (ω) = Āij(ω)Sηjηj (ω)

as the partialized process ηj is orthogonal to xj by construction, i.e.

Sxlxj
(ω)− sxjxj(ω)S−1

xjxj (ω)sxlx
j(ω) = 0, ∀ l 6= j, ω ∈ [−π, π). (28)

thereby concluding the proof.

When wi and ηj are stationary Gaussian, Corollary 1 is a direct consequence of applying

the following

Theorem 3 (Gelfand and Yaglom,1959). Let x and y be jointly Gaussian stationary time

series. Assume that

E[wx(n)wy(n)]
2 < E[w2

x(n)]E[w
2
y(n)],

where wx(n) and wy(n) are the innovations associated to x and y. Then the following

equality holds:

MIR(x, y) = − 1

4π

∫ π

−π
log(1− |Cxy(ω)|2)dω, (29)

when wi and ηj are both jointly stationary Gaussian.

A.2 Proof of Theorem 2 and Corollary 2

To prove Theorem 2 recall that by definition

Cxiζj (ω) =
Sxiζj (ω)

√

Sxixi
(ω)Sζjζj(ω)

.
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and that

Sζjζj (ω) = ρjj.

Therefore, it suffices to show that

H̄ij(ω)
√

h̄H
j (ω)Σwh̄j(ω)

=
Sxiζj (ω)

√

Sxixi
(ω)

. (30)

By the existence of the moving average representation (11)

Sxixi
(ω) = h̄H

j (ω)Σwh̄j(ω). (31)

Also, by the existence of moving average representation (11) and the orthogonality of

the partialized innovation process ζj with respect to the innovations wl, l 6= j, it follows

that

Sxiζj (ω) = H̄ij(ω).

and this concludes the proof.

Corollary 2 follows immediately from Theorems 2 and 3.
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