
ar
X

iv
:1

01
2.

60
19

v2
  [

q-
bi

o.
N

C
] 

 3
0 

D
ec

 2
01

0

Delayed feedback causes non-Markovian behavior of

neuronal firing statistics

Kravchuk K.G. and Vidybida A.K.

Bogolyubov Institute for Theoretical Physics, Metrologichna str., 14-B, 03680 Kyiv,

Ukraine

E-mail: vidybida@bitp.kiev.ua

Abstract.

The instantaneous state of a neural network consists of both the degree of excitation

of each neuron, the network is composed of, and positions of impulses in communication

lines between neurons. In neurophysiological experiments, the neuronal firing moments

are registered, but not the state of communication lines. But future spiking moments

depend essentially on the past positions of impulses in the lines. This suggests, that the

sequence of intervals between firing moments (interspike intervals, ISIs) in the network

could be non-Markovian.

In this paper, we address this question for a simplest possible neural “net”, namely,

a single neuron with delayed feedback. The neuron receives excitatory input both from

the driving Poisson stream and from its own output through the feedback line. We

obtain analytical expressions for conditional probability density P (tn+1 | tn, . . . , t1, t0),

which gives the probability to get an output ISI of duration tn+1 provided the

previous (n + 1) output ISIs had durations tn, . . . , t1, t0. It is proven exactly, that

P (tn+1 | tn, . . . , t1, t0) does not reduce to P (tn+1 | tn, . . . , t1) for any n ≥ 0. This

means that the output ISIs stream cannot be represented as Markov chain of any

finite order.
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1. Introduction

In a biological network, the main component parts are neurons and interneuronal

communication lines – axons [1]. These same units are the main ones in most types of

artificial neural networks [2]. If so, then the instantaneous dynamical state of a network

must include dynamical states of all neurons and communication lines the network is

composed of. The state of a neuron can be described as its degree of excitation. The

state of a line consists of information of whether the line is empty or conducts an impulse.

If it does conduct, then further information about how much time is required for the

impulse to reach the end of the line (time to live) describes the line’s state.

http://arxiv.org/abs/1012.6019v2
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Figure 1. Signal processing in the binding neuron model [4].

In neurophysiological experiments, the triggering (spiking, firing) moments of

individual neurons are registered. The sequence of intervals between the consecutive

moments (interspike intervals, ISIs) is frequently considered as renewal stochastic

process. Recently, based on experimental data it was offered that the ISIs sequence

could be Markovian of order 4 or higher [3].

The presence of memory in the ISI sequence is not surprising, taking into account

that information about triggering moments leaves unknown the states of communication

lines at those moments. On the other hand, it is namely the impulses propagating

in the communication lines that connect past firing moments with the future ones

in a reverberating neural network. Without knowledge of communication line states,

information about previous neuronal firing moments could improve our predicting ability

of the next ones. The exact answer of what kind of memory could be expected in an

ISI sequence of a neuron embedded in a reverberating neural network driven with some

noisy stimulation requires rigorous mathematical treatment.

In this paper, we consider a simplest neural “net”, namely, a single neuron with

delayed feedback, which is driven with Poisson process. As neuronal model we take

binding neuron as it allows rigorous mathematical treatment. We study the ISI output

stream of this system and prove that it cannot be presented as Markovian chain of any

finite order. This suggests that activity of a more elaborate network, if presented in

terms of neuronal firing moments, should be non-Markovian as well.

2. The object under consideration

2.1. Binding neuron model

The understanding of mechanisms of higher brain functions expects a continuous

reduction from higher activities to lower ones, eventually, to activities in individual

neurons, expressed in terms of membrane potentials and ionic currents. While this

approach is correct scientifically and desirable for applications, the complete range of
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Figure 2. Binding neuron with feedback line under Poisson stimulation. Multiple

input lines with Poisson streams are joined into a single one here. ∆ is the delay

duration in the feedback line.

the reduction is unavailable to a single researcher/engineer due to human brain limited

capacity. In this connection, it would be helpful to abstract from the rules by which

a neuron changes its membrane potentials to rules by which the input impulse signals

are processed in the neuron. The coincidence detector, and temporal integrator are the

examples of such an abstraction, see discussion in [5].

One more abstraction, the binding neuron (BN) model, is proposed as signal

processing unit [6], which can operate either as coincidence detector, or temporal

integrator, depending on quantitative characteristics of stimulation applied. This

conforms with behavior of real neurons, see, e.g. [7]. The BN model describes

functioning of a neuron in terms of discret events, which are input and output

impulses, and degree of temporal coherence between the input events, see Figure 1.

Mathematically, this is realized as follows. We expect that all input impulses in all

input lines are identical. Each input impulse is stored in the BN for a fixed time, τ .

The τ is similar to the tolerance interval discussed in [8]. All input lines are excitatory.

The neuron fires an output impulse if the number of stored impulses, Σ, is equal or

higher than threshold value, N0. After that, BN clears its memory and is ready to

receive fresh inputs. That is, every input impulse either disappears contributing to a

triggering event, or is lost after spending τ units of time in the neuron’s internal memory.

It is clear, that BN fires when a bunch of input impulses is received in a narrow temporal

interval. In this case the bunch could be considered as compound event, and the output

impulse — as an abstract representation of this compound event. One could treat this

mechanism as binding of individual input events into a single output event, provided

the input events are coherent in time. Such interpretation is suggested by binding of

features/events in largescale neuronal circuits [9, 10, 11].

Further, we expect that input stream in each input line is the Poisson one with some

intensity λi. In this case, all input lines can be collapsed into a single one delivering

Poisson stream of intensity λ =
∑

i λi, see Figure 2.

For analytical derivation, we use BN with N0 = 2. The case of higher threshold is

considered numerically.
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2.2. Feedback line action

In real neuronal systems, a neuron can have synaptic connection of its axonal branch

at its own dendritic tree, see [12, 13] for experimental evidence. As a result, the neuron

stimulates itself obtaining excitatory impulse after each firing with some propagation

delay. We model this situation assuming that output impulses of BN are fed back

into BN’s input with delay ∆. This gives BN with delayed feedback, Figure 2. See

also Supplementary Matherial for animation of BN with delayed feedback in action.

Impulses from the feedback line have the same excitatory action on BN as those arrived

from Poisson stream. Namely, each one of them is stored in BN’s memory for time τ ,

after which it desappears completely, see section 2.1.

The feedback line either keeps one impulse, or keeps no impulses and cannot convey

two or more impulses at the same time. If the feedback line is empty at the moment of

firing, the output impulse enters the line, and after time interval equal ∆ reaches the

BN’s input. If the line already keeps one impulse at the moment of firing, the just fired

impulse ignores the line.

Any output impulse of BN with feedback line may be produced either with impulse

from the line involved, or not. We assume that, just after firing and sending output

impulse, the line is never empty. This assumption is selfevident for output impulses

produced without impulse from the line, or if the impulse from the line was involved,

but entered empty neuron. In the letter case, the second (triggering) impulse comes

from the Poisson stream, neuron fires and output impulse goes out as well as enters

the empty line. On the other hand, if impulse from the line triggers BN, which already

keeps one impulse from the input stream, it may be questionable if the output impulse

is able to enter the line, which was just filled with another impulse. We expect it does.

This means that the refraction time of biological axon modelled as feedback line is equal

∆. Thus, at the beginning of any output ISI, the line keeps impulse with time to live s,

where s ∈]0;∆]. In this paper, we consider the case

∆ < τ (1)

in order to keep expressions shorter.

3. Statement of the problem

The input stream of impulses, which drives neuronal activity is stochastic. Therefore,

the output activity of our system requires probabilistic description in spite of the fact

that both the BN and the feedback line action mechanisms are deterministic. We treat

the output stream of BN with delayed feedback as the stationary process‡. In order to

discribe its statistics, we introduce the following basic functions:

‡ The stationarity of the output stream results both from the stationarity of the input one and from

the absence of adaptation in the BN model, see Section 2.1. In order to ensure stationarity, we also

expect that system is considered after initial period sufficient to forget the initial conditions.
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• joint probability density P (tm, tm−1, . . . , t0) for (m + 1) successive output ISI

durations.

• conditional probability density P (tm | tm−1, . . . , t0) for output ISI durations;

P (tm | tm−1, . . . , t0)dtm gives the probability to obtain an output ISI of duration

between tm and tm+dtm provided previous m ISIs had durations tm−1, tm−2, . . . , t0,

respectively.

Definition The sequence of random variables {tj}, taking values in Ω, is called the

Markov chain of the order n ≥ 0, if

∀m>n∀t0∈Ω . . .∀tm∈Ω P (tm | tm−1, . . . , t0) = P (tm | tm−1, . . . , tm−n),

and this equation does not hold for any n′ < n (e.g. [14]). In the case of ISIs one

reads Ω = R
+.

In particular, taking m = n + 1, we have the necessary condition

P (tn+1 | tn, . . . , t1, t0) = P (tn+1 | tn, . . . , t1), ti ∈ Ω, i = 0, . . . , n+ 1, (2)

required for the stochastic process {tj} to be the n-order Markov chain.

Theorem 1 The output ISIs stream of BN with delayed feedback under Poisson

stimulation cannot be represented as a Markov chain of any finite order.

4. Proof outline

In order to prove the Theorem 1, we are going to show analytically, that the equality (2)

does not hold for any finite value of n, namely, in the exact expression for conditional

probability density P (tn+1 | tn, . . . , t1, t0), elimination of t0-dependence is impossible.

For this purpose we introduce the stream of events (t, s)

ts = {. . . , (ti, si), . . .},

where si is the time to live of the impulse in the feedback line at the moment, when

ISI ti starts. We consider the joint probability density P (tn+1, sn+1; tn, sn; . . . ; t0, s0)

for realization of (n + 2) successive events (t, s), and the corresponding conditional

probability density P (tn+1, sn+1 | tn, sn; . . . ; t0, s0) for these events.

Lemma 1 Stream ts is 1-st order markovian:

∀n≥0∀t0>0∀s0∈]0;∆] . . .∀tn+1>0∀sn+1∈]0;∆]

P (tn+1, sn+1 | tn, sn; . . . ; t0, s0) = P (tn+1, sn+1 | tn, sn), (3)

where {t0, . . . , tn+1} is the set of successive ISIs, and {s0, . . . , sn+1} are

corresponding times to live.

Proof Indeed, the value of sn+1 characterizes the state of the system at the moment of

triggering, θ, and the value of tn+1 characterizes the system’s behavior after that

triggering, which means that, in physical time, sn+1 always gets its value before
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than the tn+1 does. Once the value of sn+1 is known, the realization of tn+1 is

completely determined by a unique realization of the input Poisson process after

the θ.

At the same time, in P (tn+1, sn+1 | tn, sn, . . . , t0, s0) the value of sn+1 can be derived

unambiguously from (tn, sn) (See Sections 2.2 and 5.2):

sn+1 = sn − tn, tn < sn,

= ∆, tn ≥ sn. (4)

Just after triggering, BN appears in the standard state (it is empty), the state of

line is given by the value of sn+1, and the state of input Poisson stream is always

the same. Therefore, once the pair of values (tn, sn) is given, the state of the system

at the moment of (n+1)-th ISI beginning is determined completely, and knowledge

of previous values of (ti, si), i < n adds nothing to our predictive ability as regards

the values of (tn+1, sn+1), which proves (3).

In order to find the conditional probability density P (tn+1 | tn, . . . , t1, t0), the

following steps should be performed:

• Step 1. Use property (3) for calculating joint probability of events (t, s):

P (tn+1, sn+1; tn, sn; . . . ; t0, s0) =

P (tn+1, sn+1 | tn, sn) . . . P (t1, s1 | t0, s0)P (t0, s0), (5)

where P (t, s) and P (tn, sn | tn−1, sn−1) denote the stationary probability density

and conditional probability density (transition probability) for events (t, s).

• Step 2. Represent the joint probability density for successive output ISI durations

as marginal probability by integration over variables si, i = 0, 1, . . . , n+ 1:

P (tn+1, tn, . . . , t0) =
∫ ∆

0

ds0

∫ ∆

0

ds1 . . .

∫ ∆

0

dsn+1P (tn+1, sn+1; tn, sn; . . . ; t0, s0). (6)

• Step 3. Use the definition of conditional probability density:

P (tn+1 | tn, . . . , t1, t0) =
P (tn+1, tn, . . . , t0)

P (tn, . . . , t0)
. (7)

Taking into account Steps 1 and 2, for joint probability density P (tn+1, . . . , t0) one

derives

P (tn+1, tn, . . . , t0) =
∫ ∆

0

ds0 . . .

∫ ∆

0

dsn+1P (t0, s0)

n+1
∏

k=1

P (tk, sk | tk−1, sk−1). (8)

In the next section, we are going to find the exact analytical expressions for

probability densities P (t, s) and P (tk, sk | tk−1, sk−1), and perform the integration in

(8). Then we aply the Step 3, above, to find expressions for conditional probabilities

P (tn+1 | tn, . . . , t1, t0). It appears, that the conditional probabilities have singular parts
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Figure 3. Output ISI probability density P (t) (a) and probability density f(s) for

times to live of the impulse in the feedback line (b), found analytically in [15]. Here τ

= 10 ms, ∆ = 8 ms, λ = 150 s−1, N0=2. The presence of δ-function in both densities

is clearly visible.

of the Dirac’s δ-function type. This is because the system’s dynamics involves discret

events of obtaining impulse by neuron (see below). In order to prove that the equality (2)

does not hold for any n ≥ 0, we use the singular parts only.

5. Main calculations

5.1. Probability density P (t, s) for events (t, s)

The probability density P (t, s) can be derived as the product

P (t, s) = F (t | s)f(s), (9)

where f(s) denotes the stationary probability density for time to live of the impulse in

the feedback line at the moment of an output ISI beginning, F (t | s) denotes conditional

probability density for ISI duration provided the time to live of the impulse in the

feedback line equals s at the moment of this ISI beginning. Exact expressions for both

f(s) and F (t | s) are given in [15, Eqs.(5),(6) and (31)]. In this paper we need only

singular parts of those expressions, which read:

F sing(t | s) = λse−λsδ(t− s), (10)

fsing(s) = a · δ(s−∆), where a =
4e2λ∆

(3 + 2λ∆)e2λ∆ + 1
, (11)

where a gives the probability to obtain the impulse in the feedback line with time to live

equal ∆ at the beginning of an arbitrary ISI, λ — is the input Poisson stream intensity.

The presence of δ-functions in F (t | s) and f(s) can be explained as follows. The

probability to obtain an output ISI of duration t exactly equal s is not infinitesimally

small. Due to (1), it equals to the probability to obtain exactly one impulse from the

Poisson stream during time interval ]0; s[, which is λse−λs. The second impulse comes

from the line and triggers the neuron exactly after time interval s. So, we have the
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non-zero probability to obtain an output ISI of duration exactly equal to s. This gives

the δ-function at t = s in the probability density F (t | s).

The probability to have time to live, s, exactly equal ∆ at the moment of an output

ISI beginning is not infinitessimally small as well. Every time, when the line is free at

the moment of an output ISI beginning, the impulse enters the line and has time to

live equal ∆. For the line to be free from impulses at the moment of triggering, it is

nessesary that t ≥ s for the previous ISI. The set of realizations of the input Poisson

process, each realization results in t ≥ s, has non-zero probability a, see (11), and this

gives the δ-function at s = ∆ in the probability density f(s).

The output ISI probability density P (t) can be obtained as the result of integration

of (9) (see [15] for details):

P (t) =

∫ ∆

0

F (t|s)f(s)ds. (12)

Examples of P (t) and f(s) graphs are given in Figure 3.

5.2. Conditional probability density P (tk, sk | tk−1, sk−1)

Here we find the conditional probability density P (tk, sk | tk−1, sk−1) for events (tk, sk),

which determines the probability to obtain the event (tk, sk), with precision dtkdsk,

provided the previous event was (tk−1, sk−1). By definition of conditional probabilities,

the probability density wanted can be represented as the following product

P (tk, sk | tk−1, sk−1) = F (tk | sk, tk−1, sk−1)f(sk | tk−1, sk−1), (13)

where F (tk | sk, tk−1, sk−1) denotes conditional probability density for ISI duration, tk,

provided i) this ISI started with lifetime of impulse in the feedback line equal to sk, and

ii) previous (t, s)-event was (tk−1, sk−1); f(sk | tk−1, sk−1) denotes conditional probability

density for times to live of the impulse in the feedback line under condition ii). It is

obvious, that

F (tk | sk, tk−1, sk−1) = F (tk | sk), (14)

because with sk being known, the previous event (tk−1, sk−1) does not add any

information, useful to predict tk (compare with proof of Lemma 1).

In order to find the probability density f(sk | tk−1, sk−1), let us consider different

relations between tk−1 and sk−1. If tk−1 ≥ sk−1, the line will have time to get free from

the impulse during the ISI tk−1. That is why at the beginning of ISI tk, an output spike

will enter the line and will have time to live equal sk = ∆ with probability 1. Therefore,

the probability density contains the corresponding delta-function:

f(sk | tk−1, sk−1) = δ(sk −∆), tk−1 ≥ sk−1. (15)

If tk−1 < sk−1, than the ISI tk−1 ends before the impulse leaves the feedback line.

Therefore, at the beginning of the tk, the line still keeps the same impulse as at
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the beginning of tk−1. This impulse has time to live being accurately equal to

sk = sk−1 − tk−1, so

f(sk | tk−1, sk−1) = δ(sk − sk−1 + tk−1), tk−1 < sk−1. (16)

Taking all together, for the conditional probability density P (tk, sk | tk−1, sk−1) one

obtains

P (tk, sk | tk−1, sk−1) = F (tk | sk)δ(sk −∆), tk−1 ≥ sk−1,

= F (tk | sk)δ(sk − sk−1 + tk−1), tk−1 < sk−1,(17)

where exact expression for F (t | s) is given in [15, Eqs.(5),(6)].

5.3. Joint probability density P (tn+1, . . . , t0)

In this section, we are going to find the exact analytical expression for the joint

probability density P (tn+1, . . . , t0) at the domain

D1 =

{

(t0, . . . , tn)
∣

∣

∣

n
∑

i=0

ti < ∆

}

. (18)

It is worth to notice, that the set of (n + 1) successive ISI durations t0, . . . , tn has

non-zero probability, p∆ > 0, to fall into the domain (18). Indeed, BN with threshold

N0 = 2 needs 2(n+1) input impulses within time window ]0;∆[ to be triggered (n+1)

times within this window (condition (1) ensures that no input impulse is lost). BN

receives impulses both from the Poisson stream and from the line. But no more than

one impulse from the line may have time to reach BN’s input during time interval less

than ∆. Therefore, the other (2n + 1) impulses must be received from the Poisson

stream. On the other hand, if 2(n + 1) input impulses are received from the Poisson

stream during time interval ]0;∆[, the inequality (18) holds for sure, no matter is the

impulse from the feedback line involved, or not. Therefore, p∆ > p(2n + 2,∆) > 0,

where p(i,∆) gives the probability to obtain i impulses from the Poisson stream during

time interval ∆ [16]: p(i,∆) = e−λ∆(λ∆)i/i!.

Having in mind (18), let us split the integration domain for s0 in (8) in the following

way:
∫ ∆

0

ds0 =

∫ t0

0

ds0 +

n
∑

i=1

∫

∑i
j=0

tj

∑i−1

j=0
tj

ds0 +

∫ ∆

∑n
j=0 tj

ds0,

and introduce the notations:

Ii =

∑i
j=0 tj
∫

∑i−1

j=0
tj

ds0

∆
∫

0

ds1 . . .

∆
∫

0

dsn+1P (t0, s0)

n+1
∏

k=1

P (tk, sk | tk−1, sk−1),

i = 0, 1, 2, . . . , n, (19)

In+1 =

∆
∫

n∑

j=0

tj

ds0

∆
∫

0

ds1 . . .

∆
∫

0

dsn+1P (t0, s0)

n+1
∏

k=1

P (tk, sk | tk−1, sk−1), (20)
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where we assume, that
∑j2

j=j1
= 0 for j1 > j2.

Consider the fixed sequence of ISIs, (t0, . . . , tn), which belongs to D1. Domain of s0
values covered by Ii, i = 0, . . . , n, corresponds to the scenario, when impulse, which was

in the feedback line at the beginning of interval t0 (with time to live s0), will reach BN

during interval ti. In this process, after each firing, which starts ISI tk, k ≤ i, the time

to live of the impulse in the feedback line is decreased exactly by tk−1. This means, that

variables of integration {s0, . . . , sn+1}, above, are not actually independent, but must

satisfy the following relations:

sk = s0 −
k−1
∑

j=0

tj , k = 1, . . . , i, (21)

which are ensured by δ-function in the bottom line of (17). Next to si time to live must

be equal ∆:

si+1 = ∆, (22)

and this is ensured by δ-function in the top line of (17). The next to si+1 times to live

again are decreased by corresponding ISI with each triggering. Due to (18), this brings

about another set of relations:

sk = ∆−

k−1
∑

j=i+1

tj, k = i+ 2, . . . , n+ 1, (23)

which are again ensured by δ-function in the bottom line of (17). Relations (21), (22)

and (23) together with limits of integration over s0 in (19) ensure that atD1 the following

inequalities hold:

sk > tk, k = 0, . . . , i− 1,

si ≤ ti,

sk > tk, k = i+ 1, . . . , n.

(24)

Inequalities (24) allow one to decide correctly which part of rhs of (17) should replace

each transition probability P (tk, sk | tk−1, sk−1) in (19), and perform all but one

integration. This gives:

Ii =

∑i
j=0

tj
∫

∑i−1

j=0
tj

ds0

∆
∫

0

ds1 · . . . ·

∆
∫

0

dsn+1F (t0 | s0)f(s0)
i

∏

k=1

F (tk | sk)δ(sk − s0 +
k−1
∑

j=0

tj)

× F (ti+1 | si+1 ) δ(si+1 −∆)

n+1
∏

k=i+2

F (tk | sk)δ(sk −∆+

k−1
∑

j=i+1

tj)

= F (tn+1 | ∆ −

n
∑

j=i+1

tj)F (tn | ∆−

n−1
∑

j=i+1

tj) · . . . · F (ti+2 | ∆− ti+1)F (ti+1 | ∆)
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×

∑i
j=0

tj
∫

∑i−1

j=0
tj

F (ti | s0 −
i−1
∑

j=0

tj)F (ti−1 | s0 −
i−2
∑

j=0

tj) · . . . · F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0,

i = 0, 1, 2, . . . , n. (25)

The last expression might be obtained as well by means of consecutive substitution

of either top, or bottom line of (17) into (19), without previously discovering (21) –

(24).

Finally, integral In+1 corresponds to the case, when at the beginning of interval

tn+1, the line still keeps the same impulse as at the beginning of t0. Therefore, In+1

comprises the rest of scenarios contributing to the value of P (tn+1, . . . , t0) in (6). Here,

the bottom line of (17) ensures that values of variables of integration {s0, . . . , sn+1},

which contribute to the In+1, should satisfy the following relations:

sk = s0 −
k−1
∑

j=0

tj , k = 1, . . . , n+ 1, (26)

which taken at the domain D1, defined in (18), results in inequalities

sk > tk, k = 0, . . . , n. (27)

Equations (17) and (27) allow one to perform integration in (20) and to obtain:

In+1 =

∫ ∆

∑n
j=0

tj

ds0

∫ ∆

0

ds1 . . .

∫ ∆

0

dsn+1F (t0 | s0)f(s0)

n+1
∏

k=1

F (tk | sk)δ(sk − s0 +

k−1
∑

j=0

tj)

=

∆
∫

∑n
j=0

tj

F (tn+1 | s0 −
n

∑

j=0

tj)F (tn | s0 −
n−1
∑

j=0

tj) . . . F (t1 | s0 − t0)

× F (t0 | s0)f(s0)ds0. (28)

Taking into account (25) and (28), one obtains the following expression for joint

probability density P (tn+1, . . . , t0):

P (tn+1, . . . , t0) =

n+1
∑

i=0

Ii

=

n
∑

i=0

F (ti+1 | ∆)

n+1
∏

k=i+2

F (tk | ∆−

k−1
∑

j=i+1

tj)

×

∫

∑i
j=0

tj

∑i−1

j=0
tj

F (t0 | s0) f(s0)

i
∏

k=1

F (tk | s0 −

k−1
∑

j=0

tj)ds0

+

∫ ∆

∑n
j=0 tj

F (t0 | s0) f(s0)

n+1
∏

k=1

F (tk | s0 −

k−1
∑

j=0

tj)ds0,

n
∑

i=0

ti < ∆,(29)

where we assume, that
∑j2

j=j1
= 0 and

∏j2
j=j1

= 1 for j1 > j2.
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Using (7), for conditional probability density P (tn+1 | tn, . . . , t0) one derives:

P (tn+1 | tn, . . . , t0) =
1

P (tn, . . . , t0)
·
(

n
∑

i=0

F (ti+1 | ∆)
n+1
∏

k=i+2

F (tk | ∆ −
k−1
∑

j=i+1

tj)×

×

∫

∑i
j=0

tj

∑i−1

j=0
tj

F (t0 | s0) f(s0)
i

∏

k=1

F (tk | s0 −
k−1
∑

j=0

tj)ds0

+

∫ ∆

∑n
j=0

tj

F (t0 | s0) f(s0)
n+1
∏

k=1

F (tk | s0 −
k−1
∑

j=0

tj)ds0

)

,

n
∑

i=0

ti < ∆, (30)

where expression for P (tn, . . . , t0) can be obtained from (29) with (n − 1) substituted

instead of n.

5.4. Singular part of P (tn+1, . . . , t0)

In order to obtain the singular part of expression, defined in (29), let us first derive

singular parts for all Ii, i = 0, . . . , n and In+1 separately. In order to keep the expressions

shorter, we represent Ii as follows

Ii(t0, . . . , tn+1) = Xi(t0, . . . , ti) · Yi(ti+1, . . . , tn+1), i = 0, 1, . . . , n, (31)

where

Xi ≡

∑i
j=0

tj
∫

∑i−1

j=0
tj

F (ti|s0 −
i−1
∑

j=0

tj)F (ti−1|s0 −
i−2
∑

j=0

tj) . . . F (t1|s0 − t0)F (t0|s0)f(s0)ds0, (32)

Yi ≡ F (tn+1 | ∆−

n
∑

j=i+1

tj)F (tn | ∆−

n−1
∑

j=i+1

tj) . . . F (ti+2 | ∆− ti+1)F (ti+1 | ∆). (33)

It is clear, that at D1, Xi is the part of the probability density for (i + 1) successive

ISI durations, which corresponds to the case when the impulse, which was in the line

at the beginning of the first ISI, reaches the neuron’s input within the last one. And

the Yi gives the probability density for (n+1− i) successive ISI durations provided the

impulse enters the line just at the beginning of the first one of these ISIs.

At the domain considered, namely, for
∑n

i=0 ti < ∆, the expressions for F (tn |

∆ −
∑n−1

j=i+1 tj), . . . , F (ti+2 | ∆ − ti+1) and F (ti+1 | ∆) have no singularities, see (10).

Therefore

Y
sing
i = F sing(tn+1|∆−

n
∑

j=i+1

tj)F (tn|∆−

n−1
∑

j=i+1

tj) . . . F (ti+2|∆− ti+1)F (ti+1|∆). (34)

At the same time, intergation limits in (32) ensure that X
sing
i = 0. Indeed, each

integral Xi (and, originally, Ii), i = 0, 1, . . . , n, covers the half-open interval s0 ∈
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]
∑i−1

j=0 tj ;
∑i

j=0 tj ]. The only singularity of integrand in (32) at this domain is

δ(
∑i

j=0 tj − s0) provided by F (ti | s0 −
∑i−1

j=0 tj), see (10), and it disappears after

intergation. Therefore

I
sing
i = F sing(tn+1|∆−

n
∑

j=i+1

tj)F (tn|∆−

n−1
∑

j=i+1

tj) . . . F (ti+2|∆− ti+1)F (ti+1|∆)

×

∫

∑i
j=0

tj

∑i−1

j=0
tj

F (ti | s0 −
i−1
∑

j=0

tj)F (ti−1 | s0 −
i−2
∑

j=0

tj) . . . F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0,

i = 0, 1, . . . , n. (35)

In the same way, for the singular part of integral In+1 one obtains

I
sing
n+1 = a · F sing(tn+1 | ∆−

n
∑

j=0

tj)F (tn | ∆−

n−1
∑

j=0

tj) . . . F (t1 | ∆− t0)F (t0 | ∆), (36)

where a is the δ-function’s mass in f(s), see (11).

Taking into account (10), (35) and (36), for the singular part of the probability

density P (tn+1, . . . , t0) one obtains

P sing(tn+1, tn, . . . , t0) =

n+1
∑

i=0

I
sing
i

=
n

∑

i=0

Ai · δ
(

n+1
∑

j=i+1

tj −∆
)

+ An+1 · δ(tn+1 + . . .+ t0 −∆),

n
∑

i=0

ti < ∆, (37)

where Ai and An+1 denote regular factors, defined by the following expressions:

Ai = λtn+1 e−λtn+1 · F (tn | ∆−

n−1
∑

j=i+1

tj) . . . F (ti+2 | ∆− ti+1)F (ti+1 | ∆)

×

∫

∑i
j=0

tj

∑i−1

j=0
tj

F (ti | s0 −
i−1
∑

j=0

tj)F (ti−1 | s0 −
i−2
∑

j=0

tj) . . . F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0,

i = 0, 1, . . . , n, (38)

An+1 = a · λtn+1 e−λtn+1 · F (tn | ∆−

n−1
∑

j=0

tj) . . . F (t1 | ∆− t0)F (t0 | ∆). (39)

Obviously, each factor Ai, i = 0, . . . , n, gives the probability to obtain (n + 1 − i)

successive output ISIs of overall duration exactly equal ∆. And An+1 gives the

probability to obtain (n+2) successive output ISIs of overall duration exactly equal ∆.

The presence of δ-functions in joint probability density P (tn+1, . . . , t0) can be

additionally explained as follows. If at the beginning of (i+1)-th ISI, the impulse enters

the line, then output interval tn+1 will start with that same impulse in the feedback line

with time to live equal sn+1 = ∆ −
∑n

j=i+1 tj. To trigger BN after time exactly equal
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sn+1 after that, it is nesessary to obtain one impulse from the Poisson stream during

time interval sn+1. This event has non-zero probability, therefore we have the non-zero

probability of an output ISI exactly equal to sn+1: tn+1 = ∆−
∑n

j=i+1 tj . This gives the

corresponding δ-functions in ISI probability density. The term with δ(tn+1+ . . .+t0−∆)

corresponds to the case, when the impulse enters the line at the beginning of t0.

From (7) and (37) one can easily derive the following expression for the conditional

probability density:

P sing(tn+1 | tn, . . . , t0) =
1

P (tn, . . . , t0)

n
∑

i=0

Ai · δ
(

n+1
∑

j=i+1

tj −∆
)

+
An+1

P (tn, . . . , t0)
· δ(tn+1 + . . .+ t0 −∆),

n
∑

i=0

ti < ∆, (40)

where Ai and An+1 are defined in (38) and (39). It should be outlined, that joint

probability density P (tn, . . . , t0) has no singularities at the domain tn < ∆ −
∑n−1

i=0 ti,

see (37) with (n− 1) substituted instead of n.

As one can see, function P (tn+1 | tn, . . . , t0) contains singularty at tn+1 = ∆− tn −

tn−1 − . . .− t0. The dependence of the singular part of function P (tn+1 | tn, . . . , t0) on

t0 cannot be compensated by any regular summands, therefore, the whole conditional

probability density P (tn+1 | tn, . . . , t0) depends on t0. It means, that the condition

(2) does not hold for any n for the output stream of BN with delayed feedback. The

Theorem 1 is proven.

6. Particular cases

In previous section, we have prooven the impossibility to represent the stream of output

ISI durations for BN with delayed feedback as a Markov chain of any finite order. In

particular, output ISI stream is neither a sequence of independent random variables,

and therefore is non-renewal, nor it is the first-order Markovian process.

In the course of proving Theorem 1 (see Sections 4 and 5), we have obtained the

expression for P (tn+1 | tn, . . . , t0) at the domain
∑n

i=0 ti < ∆ in general case of an

arbitrary n, see (30).

In this section, we consider the two particular cases of P (tn+1 | tn, . . . , t0) when

n = 0 and n = 1, namely, the single-moment conditional probability density P (t1 | t0)

and the double-moment conditional probability density P (t2 | t1, t0) and obtain the

expressions for P (t1 | t0) and P (t2 | t1, t0) for domain (18), as well as for all other

possible domains, which were omitted in general consideration.

6.1. Conditional probability density P (t1 | t0)

In order to derive the exact expression for conditional probability density P (t1 | t0) for

neighbouring ISI durations, we take Steps 1–3, outlined in Section 4, for n = 0. In the

case of P (t1 | t0), there are only three domains, on which the expressions should be
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obtained separately, namely cases t0 < ∆, t0 > ∆ and t0 = ∆. Performing intergation

in (8), one obtains the following expressions for P (t1, t0) at these domains:

P (t1, t0) = F (t1 | ∆)P (t0), t0 ≥ ∆, (41)

= F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0)ds0

+

∫ ∆

t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0, t0 < ∆. (42)

Then, by definition of conditional probability densities, one obtains:

P (t1 | t0) = F (t1 | ∆), t0 > ∆, (43)

=
1

P (t0)

(

F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0)ds0

+

∫ ∆

t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0

)

, t0 < ∆. (44)

It should be outlined, that the output ISI probability density P (t0) has no singularities

at the domain t0 < ∆. Indeed, due to (10)–(12), the only δ-function contained in P (t0)

is placed at t0 = ∆, see Figure 3 (a).

In vicinity of the point t0 = ∆, the single-moment conditional probability density

can be derived as

P (t1 | t0 = ∆) = lim
ǫ→0

∆+ǫ
∫

∆−ǫ

dt0P (t1, t0)

∆+ǫ
∫

∆−ǫ

dt0P (t0)

, (45)

which just gives δ-functions’ masses both in numerator and denominator, and delivers

P (t1 | t0) = F (t1 | ∆), t0 = ∆. (46)

Expressions (43), (44) and (46) can be understood as follows. Since t0 ≥ ∆, one

can be sure that the line has time to get free from impulse during t0, therefore at the

moment of next firing (at the beginning of t1) the impulse enters the line and has time

to live equal ∆. In the case of t0 < ∆, see (44), two possibilities arise. The first term

corresponds to the scenario, when the feedback line discharges conveyed impulse within

time interval t0, and the second one represents the case when at the beginning of t1 the

line still keeps the same impulse as at the beginning of t0.

It can be shown, that the following normalization conditions take place:
∞
∫

0

dt1P (t1 | t0) = 1, and
∞
∫

0

dt0P (t1, t0) = P (t1).

The singular part of P (t1 | t0) can be easily extracted:

P sing(t1 | t0) = e−λ∆λ∆ · δ(t1 −∆), t0 ≥ ∆, (47)

=
λt1 e−λt1

P (t0)

(

∫ t0

0

F (t0 | s0)f(s0)ds0 · δ(t1 −∆) +

+ a F (t0 | ∆) · δ(t0 + t1 −∆)
)

, t0 < ∆. (48)
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Figure 4. Conditional probability density P (t1 | t0) for τ = 10 ms, ∆ = 8 ms, λ

= 150 s−1, N0 = 2, t0=6 ms (a) and t0= 11 ms (b), found numerically by means of

Monte-Carlo method (the number of firings accounted N = 30 000).

Obviously, expression (48) could be obtained directly from (38)–(40) by substituting

n = 0.

As it can be seen from (47) and (48), the number of δ-functions in P (t1 | t0) and

their positions depend on t0, therefore the conditional probability density P (t1 | t0)

cannot be reduced to output ISI probability density P (t1). Therefore, the neihgbouring

output ISIs of BN with delayed feedback are correlated, as expected.

Examples of P (t1 | t0), found for two domains numerically, by means of Monte-Carlo

method (see Section 7 for details), are placed at Figure 4.

6.2. Conditional probability density P (t2 | t1, t0)

In order to derive the exact expression for conditional probability density P (t2 | t1, t0)

for the succecive ISI durations, we take Steps 1–3, outlined in Section 4, for n = 1.

In the case of P (t2, t1, t0), there are six domains, on which the expressions should be

obtained separately, namely, the domain

D1 = {t1, t0 | t1 + t0 < ∆},

which was already utilized in Section 5, and five remaining:

D2 = {t1, t0 | t0 ≥ ∆ and t1 ≥ ∆},

D3 = {t1, t0 | t0 < ∆ and t1 ≥ ∆},

D4 = {t1, t0 | t0 ≥ ∆ and t1 < ∆},

D5 = {t1, t0 | t0 < ∆ and ∆− t0 < t1 < ∆},

d = {t1, t0 | t0 + t1 = ∆}.

In the case, when the exact equality t0+t1 = ∆ holds, namely, if (t1, t0) ∈ d, the product

P (t2 | t1, t0)dt2 gives the probability to obtain an output ISI of duration within interval

[t2; t2 + dt2[, provided the overall duration of two previous ISIs accurately equals ∆.
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Expressions for P (t2 | t1, t0) can be found exactly on each domain:

P (t2 | t1, t0) = F (t2 | ∆), (t0, t1) ∈ D2, (49)

= F (t2 | ∆), (t0, t1) ∈ D3, (50)

= F (t2 | ∆), (t0, t1) ∈ d, (51)

= F (t2 | ∆− t1), (t0, t1) ∈ D4, (52)

=
1

P (t1, t0)

(

F (t2 | ∆− t1)F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0) ds0

+ F (t2|∆)

∫ ∆

t0

F (t1|s0 − t0)F (t0|s0)f(s0)ds0

)

, (t0, t1) ∈ D5, (53)

=
1

P (t1, t0)

(

F (t2 | ∆− t1)F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0) ds0

+ F (t2 | ∆)

∫ t0+t1

t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0

+

∫ ∆

t0+t1

F (t2|s0 − t0 − t1)F (t1|s0 − t0)F (t0|s0)f(s0)ds0

)

,

(t0, t1) ∈ D1. (54)

where P (t1, t0) = F (t1 | ∆)
∫ t0

0
F (t0 | s0)f(s0)ds0 +

∫ ∆

t0
F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0,

according to (44).

The probability density P (t1, t0) contains δ–function at the domain d, see (48). In

(51), the two-time conditional probability density was derived as

P (t2 | t1, t0) = lim
ǫ→0

∆−t0+ǫ
∫

∆−t0−ǫ

dt1P (t2, t1, t0)

∆−t0+ǫ
∫

∆−t0−ǫ

dt1P (t1, t0)

, (t0, t1) ∈ d,

compare with (45).

It is worth to notice, that P (t1, t0) is regular function on both D1 and D5, see (53)

and (54). Indeed, from (47) and (48) one can see, that P (t1, t0) may include singularities

only at the points t1 = ∆ and t1 = ∆− t0. None of these points belongs to D1, or D5.

It can be shown, that the following normalization conditions take place:
∞
∫

0

dt2P (t2 | t1, t0) = 1, and
∞
∫

0

dt0P (t2, t1, t0) = P (t2, t1).

The singular part of the conditional probability density P (t2 | t1, t0) can be derived

as follows:

P sing(t2 | t1, t0) = e−λt2λt2 · δ(t2 −∆), (t0, t1) ∈ D2 ∪D3 ∪ d, (55)

= e−λt2λt2 · δ(t1 + t2 −∆), (t0, t1) ∈ D4. (56)

=
e−λt2λt2
P (t1, t0)

·
(

F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0) ds0 · δ(t1 + t2 −∆)

+

∫ ∆

t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0 · δ(t 2 −∆)
)
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Figure 5. Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 8 ms, λ

= 150 s−1, N0 = 2, t1=13 ms, t0=13 ms (a) and t1 = 6 ms, t0 = 13 ms (b), found

numerically by means of Monte-Carlo method (N = 30 000).

(t0, t1) ∈ D5, (57)

=
e−λt2λt2
P (t1, t0)

(

∫ t0+t1

t0

F (t1|s0 − t0)F (t0|s0)f(s0)ds0 · δ(t2 −∆)

+ F (t1 | ∆)

∫ t0

0

F (t0 | s0)f(s0)ds0 · δ(t1 + t2 −∆)

+ a · F (t1 | ∆− t0)F (t0 | ∆) · δ(t0 + t1 + t2 −∆)
)

,

(t0, t1) ∈ D1. (58)

Obviously, expression (58) could be obtained directly from (38)–(40) by substituting

n = 1.

As one can see, the singular part of P (t2 | t1, t0) depends on t0, therefore P (t2 | t1, t0)

cannot be reduced to P (t2 | t1), which means that the output stream is not first-order

Markovian.

Examples of P (t2 | t1, t0), found numerically for different domains, are placed at

Figures 5 and 6.

7. Numerical simulation

In order to check the correctness of obtained analytical expressions, and also to

investigate wheather the output ISIs stream is non-Markovian for BN with higher

thresholds as well as for N0 = 2, numerical simulations were performed. A C++

program, containing class, which models the operation manner of BN with delayed

feedback, was developed. Object of this class receives the sequence of pseudorandom

numbers with Poisson probability density to its input. The required sequences were

generated by means of utilities from the GNU Scientific Library§ with the Mersenne

Twister generator as source of pseudorandom numbers.

§ http://www.gnu.org/software/gsl/
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Figure 6. Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 8 ms,

λ = 150 s−1, N0 = 2, t1=6 ms, t0=3 ms (a) and t1 = 6 ms, t0 = 1 ms (b), found

numerically by means of Monte-Carlo method (N = 30 000).

Program contains function, the time engine, which brings system to the moment

just before the next input signal, bypassing moments, when neither external Poisson

impulse, nor impulse from the feedback line comes. So, only the essential discret events

are accounted. It allows one to make exact calculations faster as compared to the

algorithm where time advances gradually by adding small timesteps.

The conditional probability densities, P (t1 | t0) and P (t2 | t1, t0), are found

by counting the number of output ISI of different durations and normalization (see

Figures 4 – 7). Obviously, for calculation of conditional distiributions only those

ISIs are selected, which follow one or two ISIs of fixed duration, t0 for P (t1 | t0)

and {t1, t0} for P (t2 | t1, t0). The quantity, the position and the mass of delta-

functions, obtained in numerical experiments for BN with threshold 2, coincide with

those predicted analitycally in (47), (48) and (55) – (58).

For N0 > 2, conditional probability densities P (t1 | t0) and P (t2 | t1, t0) are similar

to those, found forN0=2. In particular, both the quantity and position of delta-functions

coincide with those obtained for BN with threshold 2, as expected, compare Figures 7

and 6.

8. Conclusions and discussion

Our results reveal the influence of the delayed feedback presence on the neuronal

firing statistics. In contrast to the cases of BN without feedback [17] and BN with

instantaneous feedback [18], the nighbouring output ISIs of BN with delayed feedback

are mutually correlated. It means that even in the simplest possible recurrent network

the ISI stream cannot be treated as the renewal one. The presence of nearest ISIs

correlation was reported for spike trains of a neurons in different CNS and peripheral

NS structures [19, 20].

Moreover, we prove, that the output ISI stream of BN with delayed feedback cannot
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Figure 7. Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 8 ms,

λ = 800 s−1, N0 = 4, t1=6 ms, t0=3 ms (a) and t1 = 6 ms, t0 = 1 ms (b), found

numerically by means of Monte-Carlo method (N = 30 000).

be represented as the Markov chain of any finite order. This is in accordance with rare

attempts of experimental estimation of the Markov order of neuronal spike trains (see,

e.g. [3], where it is established that the order, if any, must be greater than 3).

We expect the same non-markovian property for firing statistics of any single neuron

with delayed feedback, whatever neuronal model is used, and conclude that it is namely

the delayed feedback presence results in non-markovian statistics found. One should

take this fact into account during analysis of neuronal spike trains obtained from any

recurent network.
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