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We investigate a game-theoretic model of a social system where both the rules of the game and the interaction
structure are shaped by the behavior of the agents. We call this type of model, with several types of feedback
couplings from the behavior of the agents to their environment, a multiadaptive game. Our model has a complex
behavior with several regimes of different dynamic behavior accompanied by different network topological
properties. Some of these regimes are characterized by heterogeneous, hierarchical interaction networks, where
cooperation and network topology co-emerge from the dynamics.
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INTRODUCTION

Game theory is a language for describing systems in biol-
ogy, economy and society where the success of an agent de-
pends both on its own behavior and the behaviors of others.
Perhaps the most important question for game-theoretic re-
search is to map out the conditions for cooperation to emerge
among egoistic individuals [1]. To this end, researchers have
developed a number of different types of models, capturing
different game-theoretic scenarios. In this Letter, we investi-
gate a generalization in a new direction, relaxing constraints
of other models, with feedback effects at different levels to the
behavior of the agents.

In most game-theoretical studies, the rules of the game are
fixed in time, but in real systems there is a feedback from the
behavior of the agents to the environment and thus to the rules
of the game. The payoff of a player’s action in a specific sit-
uation is parameterized by payoff matrices. A straightforward
way of modeling feedback from the system to the rules is to
let the entries of the matrices be variables, dependent on the
state of the system [2]. Another feature that often is modeled
as static when, in reality, it does not have to be, is the contact
structure. If agents can change their interaction patterns in re-
sponse to the outcome of the game, then the model will also
capture the social network dynamics. Such adaptive network
models [3–5] can address a wide range of problems: not only
how interaction determines the evolution of cooperation, but
also how the interaction patterns themselves emerge. In this
Letter we investigate a situation where agents can adjust their
social ties to maximize their payoffs and the collective behav-
ior of the agents shapes the rules of the game. Our model is
an adaptive-network model with adaptive payoff matrices—a
multiadaptive game, for short.

A classic model for studying the evolution of cooperation in
spatial game theory is the Nowak–May game [6] (technically
speaking on the border between the archetypical Prisoner’s
dilemma and Chicken games). It captures a situation where
at any moment, defection has the highest expected payoff, but
under some conditions agents can do better in a long time per-
spective by establishing trust and cooperation. An interaction
in the NM game give the following payoff: zero to anyone in-

teracting with a defector (D), one to a cooperator (C) meeting
another cooperator, and b > 1 to a D meeting a C. This model
has been used to explain the emergence of cooperation among
egoistic agents in disciplines as diverse as political science,
economics, and biology [1], and will be the starting point of
our work.

In our model we place L×L (in this paper, we use L = 100)
agents on a square grid with fixed boundary condition. Be-
sides interacting with n local spatial neighbors (n = 4, 3, and 2
for internal, boundary, and corner agents, respectively), each
agent has one additional link free to optimize its position in
the interaction network [4]. The rationale behind this arrange-
ment is that people invest more in their spatially close contacts
(e.g., family and coworkers) and thus are less likely of break-
ing these, whereas the long-range edges are more business-
like and open to optimization. In sociology this situation goes
by the name “strength of weak ties” [7].

FIG. 1: (Color online) Parameter dependence of the game reflected
in the temptation and average cooperator density. (a) shows average
density of cooperators, ρ̄, as a function of the initial temptation, b0,
with α = 0.1, 3 and 4. The bar represents points averaged over the
last 500 (of 103) steps. (b) and (c) correspond to the time evolution of
ρ̄ and b̄, respectively, for different values of b0. (d) shows the diagram
over the three regions in α–b0 space. The curves are averages over
104 runs.
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In the NM game there is one parameter, the temptation to
defect b, representing external conditions of the game (“soci-
ety” in a social interpretation of the game, “environment” in
the context of evolutionary biology). In this work, we inves-
tigate the case when b is higher in a uniformly rich society,
whereas the motivation to cooperate is higher in a society in
unrest. Assuming a linear dependence of the temptation to de-
fect on the prosperity, in our case measured by the density ρ of
cooperators in the population, we use a response function [2]

b(t + 1) = b(t) + α[ρ(t) − ρ∗], (1)

where we choose ρ∗ (representing a neutral cooperation level
from the society’s perspective) as 1/2 for simplicity. The
value of α controls the strength of feedback from the envi-
ronment to the game rules. We will, unless otherwise stated,
use α = 4. We update the state of the system, both strategies
and long-range linked neighbors of the agents, synchronously.
At a time step, each agent i acquires payoff ui by playing the
Nowak–May game with all its local and long-range neighbors.
When an agent i, updating its strategy, has a higher payoff

than its neighbors, nothing happens. Otherwise, i adopts the
strategy of the neighbor j with the highest payoff with a prob-
ability Π(i → j), and simultaneously rewires its free link to
the long-range neighbor of j. Following Ref. [4], we use

Π(i→ j) = 1
/
{1 + exp[−β(u j − ui)]} , (2)

where β controls the noise in the choice of whom to imi-
tate. This way of parametrizing noise is further discussed
in Refs. [8]. We use β = 1 in our present study, which is
enough to create heterogeneous structures but not enough to
overshadow the strategies as a factor in the dynamics.

RESULTS

Turning to the numerical results, in Fig. 1(a), we plot the
average density of cooperators ρ̄ as a function of b0 for three
values of α. For example, if α = 4 and b0 . 2, the system
converge with certainty to a state with ρ̄ ≈ ρ∗ = 1/2. We call
the region of parameter space with this behavior region I and
denote the large-b0 border of this region bI,II. For the α-values
of Fig. 1(a) bI,II ≈ 2. For b0 & bII,III cooperation vanishes. We
call this part of α–b0 space region III. Between these extremes,
there is a region II of complex behavior where, depending on
b0, the cooperation density converges to 1, ρ∗ (at least a value
very close to ρ∗) or 0 with probabilities depending on α and
b0. With increasing b0, the probability that the system end in
all-C decreases, and vanishes completely at bII,III.

In Figs. 1(b) and (c) we display trajectories of ρ and b, av-
eraged over 104 runs, for different b0 values. These curves
show the system stabilizing to a steady cooperation level af-
ter about fifty time steps. These transient oscillations can be
explained by the adaptive payoff dynamics. Assuming a well-
mixed case, in which the strategy adoption rate is proportional

to the relative success of the strategies, one can approximate
the dynamics by the replicator equation system

dρ
dt

=

{
ρ2(1 − ρ)(1 − b) if ρ ∈ [0, 1]
0 otherwise (3a)

db
dt

= α(ρ − ρ∗). (3b)

The factors ρ2 and 1 − ρ of Eq. (3a) give the fixpoints ρ = 0
and 1. From these equations, we can also understand the os-
cillatory behavior of Fig. 1(b) and (c). If b > 1 and ρ > ρ∗,
then b will increase and ρ decrease. That will eventually make
ρ < ρ∗ and thus turning db/dt negative, which then eventu-
ally will dρ/dt positive, completing a cyclic behavior. Such
oscillations—growing and shrinking C (D) clusters that drives
the oscillations in ρ—can be seen with our Java applet of the
model [9]. For all parameter values we study, the cyclic be-
havior will either increase in amplitude until ρ reaches a fix-
point, or be dampened to the fixpoint close to ρ∗. The perhaps
most interesting observation is the onset of the all-C state. As
an example, for b0 = 3.5 in Fig. 1(b), ρ̄ decreases to almost 0
at t = 1 because of the strong initial temptation to defect. A
few cooperators, however, survives and form clusters that can
grow steadily as b decreases to negative values because of the
feedback. When ρ̄ > ρ∗, b̄ starts increasing again, but it is too
late—the emergence of a C-hub, combined with the fact that b
is still smaller than 1, drives the system to the all-C state. For
large b0 (≥ 3.5), ρ̄ goes toward its final value monotonously,
while, for smaller values of b0, the convergence is oscillatory.
For b0 > bI,II, the system hits the fixpoints faster than the re-
sponse from the environment can tune the value of b. In an
extended model where D can appear, by mutation, in an all-C
state, all-C would not be evolutionary stable.

In Fig. 1(d), we plot a diagram over the regions of α–b0
parameter space with distinct dynamic behavior. We identify
region I as when ρ̄ at convergence is less than 0.5% from p∗,
i.e. |ρ̄ − ρ∗| < 0.005 and region III as when the converged ρ̄ is
less than 0.005. We note that the boundary value, bI,II, sepa-
rating region I from II decreases with an increasing α (bI,II ≈ 2
for α ≤ 3 and bI,II → 1 as α grows towards 11). In region I,
for all measured values of α, the system relaxes to a steady
state with ρ̄ ≈ ρ∗ and b̄ converges to a stable value. For exam-
ple, b0 = 1.3 gives b(t → ∞) ' 2.6 (Fig. 1(b) and (c)). This
happens when the feedback in Eq. (1) is strong enough to bal-
ance b. When b0 increases beyond bI,II, the feedback from
the environment starts affecting b so strongly that the system
inevitably hits an absorbing state. At a fixpoint, b grows (if
ρ = 1) or decreases (if ρ = 0) unboundedly. In this situa-
tion, as the fixpoints in any real system would be metastable
rather than permanent, b should not be overinterpreted. Al-
ternatively, one can limit the temptation by, in Eq. 1, letting
b(t + 1) = B if b(t + 1) > B and letting b(t + 1) = −B if
b(t + 1) < −B. If B is large enough (B & 4, for our parameter
values). The conclusions from such a model are the same as
for the one presented in this Letter, otherwise region II can
vanish (results not shown). Preliminary studies suggest that
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FIG. 2: (Color online) Correlations between the strategy and network structure. Circles (squares) correspond to the average density of
cooperators (defectors) with degree k, ρk. (a) is for b0 = 1.3 (region I), (b) is for b0 = 3.5 (region II), and (c) is for b0 = 7 (region III). In panels
(b) and (c), the exponent of the power-law is 2.7 ± 0.1.

an all-C state also require a frequent updating of the strate-
gies. Now strategies and links are updated equally often, but
if the link update is 100 times more frequent than strategy
updating, all-C states almost never happen. If, on the other
hand, the time scale is skewed in the other direction, the con-
clusions from Eq. 1 remain the same. As a final note about
Fig. 1(d), we see that bII,III, separating region II from III, in-
creases monotonously with α. I.e., cooperation is enhanced
by the feedback from the environment to the payoff matrices.

Now we turn to the connection between game dynamics and
network structure. In this analysis, we only consider the net-
work of long-range links, not the background square grid. In
Fig. 2, we show ρk, the fraction of cooperators or defectors of
a particular degree k in the steady state (t > 500). The three
different regions show different structure. For region I, rep-
resented by b0 = 1.3 (Fig. 2(a)), ρk is larger for cooperators
than defectors if k ≥ 3. If k ≥ 77, all nodes are coopera-
tors. Since the final densities of C and D are equal in such
situation, the high-degree C can protect their neighbors from
imitating defectors, and thus support cooperation. For region
II, exemplified by b0 = 3.5 (Fig. 2(b)) where the steady state
is all-C (so ρk = 0 for all k), we find that ρk has a functional
form closely described by a power-law with exponential cut-
off and a decay exponent is about 2.7. Since the steady state,
in this case, is all-C, the payoff an agent can accrue will de-
pend linearly on its degree. Consequently, during the process
of rewiring, the probability of getting new links of the agents
will be approximately proportional to the degrees they already
have. In a strictly growing network, “preferential attachment”
is known to generate a power-law degree distribution [10]. In
this case, with networks fixed in size, preferential attachment
is not enough to explain the degree distribution. In such a
case, the preferential attachment needs to be balanced by an
antipreferential deletion of edges [11] in order for a power-
law degree distribution to appear. The power-law-like degree
distribution remains for larger values of b0 despite the differ-
ent steady-state values of ρk. For a system in the all-D state,
the rewiring process behaves differently than in the all-C case.
Since the payoff a defector gets is independent of the total
number of links it already has, its nonlocal link will be rewired
randomly to another D, which generates networks with a Pois-
son degree distribution, as observed in Fig. 2(c).

Fig. 2 suggests that the coevolution of the contact patterns

FIG. 3: (Color online) Structural properties of network in the steady
state for different values of b0. (a) displays the cumulative degree
distribution. The line for b0 = 7 follows a decay like a sum of an ex-
ponential and stretched exponential function. (b) shows the cluster-
ing coefficient C as a function of degree k. The line marks a scaling
with exponent −1.

and the payoff matrix, in region II, makes the underlying net-
work change from its initially random state to a heteroge-
neous structure. As shown in Fig. 3(a), the cumulative de-
gree distribution P(k ≥ K) (the probability an observed de-
gree k is larger than K) depends strongly on b0. Especially
for b0 = 3.5 where, the distribution follows a power-law over
two decades. For sufficiently large b0, we observe a decay
of the form P ∼ A exp(−K/K0) + B exp(−Kτ/K1) (K0,1 are
fitting parameters)—a combination of an exponential and a
stretched exponential form. The stretched exponential can, as
mentioned above, be generated by a (non-linear) preferential
attachment [12]. In Fig. 3(b), we investigate the hierarchi-
cal features of the steady state networks in greater detail. It
has been argued that a characteristic feature of hierarchical
networks is that the clustering coefficient (the fraction of pos-
sible triangles a node is member of with given the degree) is
inversely proportional to degree [13]. This is indeed what we
observe for large b0-values.

CONCLUSIONS

In conclusion, we have studied a game-theoretical model
with feedback from the behavior of the agents to the rules
of the game, via the payoff matrix, and an active optimiza-
tion of both the contact structure between the agents and their
strategies. With respect to the average cooperation density,
the model is a non-equilibrium model. This makes the initial
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temptation value b0 a crucial model parameter. We identify
three regions of distinct dynamic behavior. In region I, the
average cooperator density relaxes to a stable level through
damped oscillations; in region III the systems reaches an all-
defect state. For intermediate b0-values (region II), the sys-
tem ends at one of three fixpoints, 0, ρ∗ or 1, with parameter-
dependent probabilities. For some parameter values in this re-
gion, the system will almost certainly reach an all-cooperator
state. The all-cooperator state is absorbing, but if one extends
this model to a non-equilibrium model, it would not be stable
to mutations in u. In the all-C state, the network has the most
heterogeneous degree distribution, and also a clear C ∼ 1/k
scaling of the clustering coefficient. Ref. [13] argues that this
feature is indicative of a hierarchical organization of the sys-
tem. This is in contrast to usual explanations of social hier-
archies as resulting from external factors such as age or fit-
ness [14] or internal heterogeneities. The latter case is true
also for our model in the limit of no environmental feedback,
in which case it reduces to the model of Ref. [4]. But also
the network dynamics is needed for the hierarchical topology
and cooperation to co-emerge. If there is no network dynam-
ics, the cooperation stabilizes at some intermediate ρ-value
and does not reach the all-C state. In this case a power-law
degree distribution emerges for intermediate cooperator lev-
els. In other game-theoretic situations, hierarchical organiza-
tion has sometimes proven to support cooperation [15], some-
times destabilizing it [16]. The source of the co-emergence of
cooperation and a hierarchical topology in our model comes
from the cooperators being stabilized by high-degree nodes,
while there is no similar effect for the defectors. A similar
positive feedback mechanisms between degree and payoff of
cooperators drive the emergence of cooperation in the model
of Ref. [17]. This model differs from ours in that the payoff

matrix is fixed and not a function of the state of the system.
To epitomize, our work shows a new possible mechanism

for the co-emergence of hierarchical structures and coopera-
tion. We foresee more studies of games in flexible settings
where the game itself determines its rules and the player can
choose when [18] and with whom [3] to interact from its strat-
egy.
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