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Abstract We consider a fixed size population that undergoes an evolution-
ary adaptation in the weak mutuation rate limit, which we model as a biased
Langevin process in the genotype space. We show analytically and numeri-
cally that, if the fitness landscape has a small highly epistatic (rough) and
time-varying component, then the population genotype exhibits a high effec-
tive diffusion in the genotype space and is able to escape local fitness minima
with a large probability. We argue that our principal finding that even very
small time-dependent fluctuations of fitness can substantially speed up evo-
lution is valid for a wide class of models.

1 Introduction

Organisms adapt to their environment by sequential fixation of beneficial
mutations. This process is often visualized as motion of a population (spec-
ified by multi-dimensional genomic variables corresponding to the dominant
genotype in the population) in the fitness landscape, where the height of the
landscape corresponds to the reproductive fitness of an average individual in
the population [1]. Fitness landscapes are believed to be rough with many
local maxima, and a population may get stuck in one, so that every plausible
mutation is deleterious. In such cases adaptation to a global fitness maximum
requires the fixation of deleterious mutations, which is rare. Even when there
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is a path of only neutral or weakly selective mutations to the global optimum,
it may be difficult to find it, and navigating such paths can be slow due to
the low fixation probability (≈ 1/N for a population of N individuals for a
neutral mutation [2]).

It has been recognized that temporal fluctuations in the fitness landscape
can drive the population out of a local fitness maximum. For example, the
maximum of fitness at one time may be on a fitness slope at another time,
allowing the population to leave the area. Such connections between the fluc-
tuating selective pressure, the population size, and the population-genetics
dynamics have been studied extensively [3,4], starting with the introduc-
tion of the concept of adaptive topography by Wright [1]. More recently the
evolutionary dynamics of density regulated populations in fluctuating envi-
ronments have been elucidated in more ecologically realistic models [5,6,7],
bridging the gap between the classical population dynamics [8,9] and the
population genetics models.

In a recent pioneering numerical evolution experiment [10], these ideas
were further developed to show that certain type of fluctuating environmental
pressures speed up evolution many times in a particular model. However, it
remains unknown to what extent these results generalize. Is the speedup a
general property? How does it depend on the spatiotemporal structure of
the fluctuating environment? Can a population escape any local maximum?
How does the motion in the genotype space depend on time? Do fitness
fluctuations have to be dramatic, as in Ref. [10], or can small fluctuations
still speed the evolution up?

In this article, we answer some of these questions in the context of a
model of evolutionary dynamics that is simple enough to allow a thorough
analytical and numerical treatment, but is at the same time general enough
so that at least some of our predictions hold for a wide class of evolutionary
models. We consider the limit of a weak mutation rate, when the time scales
are well separated. The time between successive mutations is slower that the
typical fixation time, and the characteristic time scale of the fitness land-
scape changes is the longest. Further, we assume a constant population size,
so that the evolutionary dynamics depends only on the relative fitness dif-
ferences between the genotypes. We consider adaptation in a highly epistatic
genotypic space, such that the evolution takes place on a one dimensional
pathway with large, local fitness differences. Under these assumptions, we
show that the evolutionary search can be sped up substantially when only a
small component of the fitness landscape undergoes temporal variations.

2 The model

Our model of a fluctuating environment is based on an overdamped Langevin
particle in a potential. The position x is some generalized coordinate that
describes the dominant genotype in the population, and hence a change in x
is a fixation event. This genotype changes with the velocity given by

dx

dt
= − 1

γ

∂U(x, t)

∂x
+ η, (1)



3

where U is the potential, γ is the friction, η is a white Gaussian noise with
the variance 2D, where D is the intrinsic diffusivity. Notice that in the usual
physics language, the process will minimize the potential so that U is the
negative fitness.

Motion to minimize U represents fixation of beneficial mutations, while
Langevin noise allows low probability fixation of neutral and deleterious
mutations. The first phenomenon is called natural selection/drift in evolu-
tionary/physics languages, and the second is unfortunately referred to as
drift/diffusion, respectively. To avoid confusion, in the remainder of the ar-
ticle we use the physics terminology.

We write the potential as

U(x, t) = U0(x) + Φ(x)S(t), (2)

and we focus on the following range of parameters:

varS(t) ∼ 1, (3)

max[Φ(x)]−min[Φ(x)]� max[U0(x)]−min[U0(x)] (4)

This models the emergence of novel functions in a population. Namely, the
fitness is largely independent of time, as described by U0. However, small
temporal changes in fitness are allowed. For example, acquiring an enzyme
that can metabolize a certain chemical is generally advantageous if the chem-
ical is present, but somewhat deleterious if it is absent, so that the investment
into production of the enzyme cannot recovered. We model this by adding
the small fitness component Φ(x) that fluctuates as S(t), representing, for
example, changes in the availability of the metabolite due to seasonal or
geological variations. Finally, we choose to separate the global, almost non-
epistatic, fitness from the local, possibly highly-epistatic (but small) effects
by making the gradient of U0 smaller than that of Φ, even though the scale
of Φ itself is smaller than that of U0.

With the conditions above, we can redefine U0, Φ, and S without much
loss of generality, so that 〈S〉t = 0. We then consider the simplest form of
Φ(x) and S(t) that satisfy these conditions, and we will discuss how our
results generalize to other forms of the functions in Section 5. Namely, we
choose Φ to be a zero-mean periodic saw-tooth potential, and S to be a zero-
mean periodic telegraph signal. These considerations allow us to write near
a particular point x in the genotype space

1

γ

∂U

∂x
= −v + φ(x)s(t), (5)

φ(x) ≡ h

L
× sign

[
sin

πx

L

]
, (6)

s(t) ≡ sign

[
sin

πt

T

]
, (7)

where v is the intrinsic drift or bias, defined as positive for the drift to the
right, see Fig. 1. We always assume that |h|/L > |v|, so that the fluctuating
component of the potential can actually create local maxima and minima on



4

M

h
v

L

Fig. 1 The potential U(x, t) at a fixed time. An oscillatory, symmetric, sawtooth
perturbation is added on top of the average linear potential that creates a drift
velocity of v.

top of the global landscape U0(x). In what follows we denote by T the time
between subsequent potential flips (the half-period of the fluctuations), and
L is half of the spatial period.

This model is similar to various stochastic ratchets considered in the
literature [11,12,13,14]. Thus, intuitively, the question of whether the fitness
fluctuations can speed up the evolutionary search is a question similar to
whether a rectified or a high-variance motion can appear due to ratcheting.

2.1 Rescaling of the equation of motion

Using the choices above, we can rewrite the equation of motion, Eq. (1) as

dx

dt
= [−φ(x)s(t) + v] +

√
2Dη. (8)

where η is a Gaussian white noise of unit variance. In Eq. (8), the dynamics
explicitly depends on five different parameters L, T , v, h, and D. Neverthe-
less, by rescaling the time, the space, and the potential as x/L→ x, t/T → t,
L
hφ → φ, L

h v → v, we can reduce the number of parameters to only three:
the ratio of the typical diffusion time over half the spatial period to half

of the temporal period, ω = L2

2DT , the height of the fluctuating barriers in

diffusivity (temperature) units, β = h
D , and the ratio between the slope of

the average, large scale potential to the slope of the fluctuating perturbation,
v. In physical terms, ω represents the diffusion time over the distance L: if
ω is large, the particle has time to explore the entire valley of φ before the
potential flips. Further, β measures the difficulty of crossing the peaks by
diffusion. Finally, the condition that the perturbation induces local optima
is |v| < 1

Using the rescaled variables, the dynamics becomes

dx

dt
=

β

2ω
[−φ(x)s(t) + v] +

√
1

ω
η. (9)
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We will use these rescaled variables in the rest of the article, unless noted
otherwise. From this equation, it is easy to recover the dynamics in the orig-
inal, non-scaled units by simple multiplications. In what follows we present
simulation results obtained using first order Euler integration scheme of the
dynamics defined in rescaled variables, Eq. (9).

3 Fluctuating potentials enhances diffusion and drift

Numerical simulations suggest that the behavior of x(t) at large times is dif-
fusive, and anomalous scaling is not seen [15,16,17,18]. We can characterize
the genotype coordinate motion by an effective drift and a diffusion constant,
which depend on the spatial and the temporal periods of the fluctuations and
the barrier height. To characterize the enhancement or the suppression of the
motion compared to the intrinsic diffusivity and drift, we define

rD ≡
Deff

D
=

vart(x)

2t

L2

DT
=

vart(x)

t
ω, (10)

rv ≡
veff

v
=
〈x(t)〉
t

L

vT
=
〈x(t)〉
t

2ω

vβ
, (11)

where the time-dependent means and variances of the trajectories x(t) are
obtained numerically. As seen in the Fig. 2, both the effective drift and the
effective diffusion can be enhanced with respect to the intrinsic values, this
enhancement having a maximum for fluctuation periods comparable to the
average time to travel between two inflection points.

3.1 Building intuition

When β � 1, the sawtooth peaks are very small, and the diffusion has no
trouble crossing them. When β is larger, the behavior is more interesting. For
ω → 0, the particle has ample time to fall into a minimum of φ before s(t)
flips. Then when the potential flips, the particle can now go either left or right,
both with large probabilities, which creates a biased random walk behavior
with the effective diffusion coefficient ≈ L2/(2T ), or, equivalently, rD ≈ ω,
and the system is only weakly sensitive to the value of v. The fluctuating
potential allows the particle to diffuse against the drift, so that the speed of
the evolutionary search is strongly enhanced when the environment oscillates.

For low ω, rD ≈ ω is also small, so the diffusion is suppressed compared
to the internal value. However, for h � 1 and without the changing sign of
s(t), the particle would get stuck at a minimum of φ almost immediately,
and the overall diffusion would be, essentially, zero: it is hard to exit a deep
potential only well with the help of diffusion. Whether rD is greater or less
than 1, the fact that oscillations make it nonzero is our most important
finding, suggesting that temporal fluctuations can make fixation of rare-to-
fixate mutations a much more common process. Figure 2 demonstrates these
findings for different values of ω and for β = 10 and v = 1/10.
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Fig. 2 Enhancement of diffusion, rD = Deff
D

(circles) and drift, rv = veff
v

(pluses)

as a function of the relative flipping frequency ω = L2

2DT
, with β = 10 and v = 1/10.

At low ω, the particle has time to reach the minima, and Deff ≈ L2

2T
, or rD ≈ ω.

Simulations are averaged over 1000 trajectories and 1000 time steps. Solid line
indicates rD = ω. Error bars are smaller than the symbols.

When the flipping is fast compared to the diffusion time (large ω in the
Figure), the fluctuating potential ”blurs” together and is effectively zero. The
only motion is due to the internal diffusion D and rD goes to one.

3.2 Analytical treatment at β →∞

In the limit β � 1, the peaks are very high, the particle almost never crosses
them due to noise, and analytical progress can be made. First consider a
particle that starts close to a local minimum x0 of the sawtooth. After some
time ∼ D/v2, which goes to zero as β →∞, the particle equilibrates near x0

with a probability density

p(x|x ≷ x0) ∝ e−(1∓v)|x|. (12)

Then the ratio between the probability, k>, that a particle is located to
the right of x0 and will move to the right after the potential flips to the
probability, k<, that it is to the left of x0 and will move to the left is

k>
k<

=
1− v
1 + v

. (13)

When s(t) changes sign, for a small D the particle then glides down with a
constant velocity in its chosen direction, reaching the next minimum to the
right (>) or to the left (<) in

τ≷ =
2ω

β

1

(1∓ v)
. (14)

If τ≷ < 1, then the particle has the time to reach the minimum on either the
left or the right hand side (assuming, as always, that the sawtooth actually
forms the local minima, i.e., 0 < v < 1). Then when the potential flips



7

the next time, the process repeats. This results in a discrete random walk
between the extrema of the sawtooth, and (in unscaled variables)

Deff =
[
(k> + k<)− (k> − k<)2

] L2

2T
, (15)

veff = (k> − k<)
L

T
. (16)

In dimensionless units,

rD =
[
(k> + k<)− (k> − k<)2

]
ω, (17)

rv = (k> − k<)
2ω

vβ
. (18)

Using Eq. (13) results in:

rD =
(
1− v2

)
ω, (19)

rv =
2ω

β
. (20)

Notably rD ∝ 1
D →∞ when D → 0, but rD/β = Deff/h is finite.

In Fig. 3, we compare the analytical results to the numerically estimated
rD and rv (here rD is normalized by β/2). As β → ∞, the agreement is
clearly seen for small ω.

When the potential changes faster, and τ> > 1 > τ<, the particle fails
to make it to the minimum to the right and, after a subsequent flip, always
comes back to where it started from. However, it always reaches the left
minimum before the flip. When τ> > τ< > 1, it does not reach the left
minimum either, but goes the distance β

2ω (1 + v) to the left, then reverses

and travels β
2ω (1− v) to the right, reverses again and repeats until it reaches

the left minimum. After one flip, it moves β
2ω (1+v), after three flips it moves

β
2ω (1 + 3v), and so on. Eventually, when β/(2ω)[(2n + 1)v) + 1] > 1, the
particle reaches the next minimum. Thus every time 2ω/(βv) crosses an odd
integer more periods are needed to travel between the nearby extrema, and
the diffusive behavior changes, resulting in the discontinuities in Fig. 3. This
dynamics can be described by a master equation

Pi(t+ 1) = (1− k>)Pi+1(t− 2n) + k>Pi(t− 1), (21)

where Pi(t) stands for being at an extremum i at the end of the flip t, and
exactly 2n + 1 flips are needed to travel between the i + 1’th and the i’th
extrema. Solving this for the drift and the diffusion (see Appendix) gives

rv =
1− v

3 + v + 2n(1− v)

2ω

vβ
, (22)

rD =
8(1− v2)

(3 + v + 2n(1− v))3
ω. (23)

The analytical results and the numerical simulations verifying them are
shown in Fig. 3 with ω normalized by β/2.



8

0.5 1 1.5

1

2

3

4

2ω/β

r v

 

 
region 1 region 2

0.5 1 1.5

1

2

3

4

2ω/β

r v

 

 
region 1 region 2

Fig. 3 Effective diffusion (left) and effective drift (right) versus the period of the
fluctuations. Notice that rD is normalized by 2/β, and it remains finite even if
D → 0 and β → ∞. The data are obtained for (in decreasing order of noise
strength) β = 100 (squares), β = 1000 (crosses), β = 10, 000 (circles), β → ∞
(solid line, analytical result). In the small noise case, the behavior of the diffusing
particle is markedly different between Region 1 and Region 2. Region 1 corresponds
to small ω when a particle can always travel between two extrema of the potential,
performing an effective biased random walk. Region 2 corresponds to large ω, when
the particle spends most of the time traveling between minima but rarely reaching
them. Simulations are averaged over 1000 trajectories and 1000 time steps.

4 Fluctuating potential shortens the fitness barrier crossing time

We have shown that the typical diffusive/drift behavior of the system is
enhanced by the fluctuating component of the potential. However, what kind
of an effect does this enhancement have on the probability of rare, atypical
events, such as escape from a suboptimal fitness maximum?

To model a barrier in fitness, we place the overdamped particle in a
flipping sawtooth potential and a constant force v, and we observe the mean
first passage time for the particle to reach an unscaled distance LM, against
the drift, with a reflecting boundary at x = 0, see Fig. 1.

4.1 Fluctuation-activated escape from the minimum is possible even at zero
internal diffusion

If during one half period the particle is able to travel between the two ex-
trema, independent of the direction and without the help of the noise, τ≷ < 1,
the probability that the particle travels over multiple periods against the (ef-
fective) drift is finite even at a very low noise. As seen in Fig. 4, the escape
time over the average barrier in U0 depends on the length of the barrier M.
In order to understand this dependence, we consider our model in the limit
of zero fluctuating potential, which allows us to use an analytical expression
for the escape time [19]

〈t〉D =
M2

D

[
1

2Pe
− 1

4Pe2

(
1− e−2Pe

)]
, (24)
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Fig. 4 Mean first passage times for crossing a barrier of width M in our model
(simulation, circles) and in a continuous diffusion model with the appropriate ef-
fective parameters (crosses). The parameters are β = 10, ω = 2.5, v = −0.1, and
they correspond to the leftmost point in Fig. 3. The exit times from our model are
faster than in the diffusion model.

where Pe is the Péclet number

Pe =

∣∣∣∣vLM2D

∣∣∣∣ . (25)

In Fig. 4, we show the simulation results of the exit time for slow fluc-
tuations. We compare the results to what we would have expected under a
continuous diffusion with the drift and the diffusion constant given by the
values of the effective parameters as obtained in the previous section. We
observe that the escape times are well approximated with the “effective”
continuous diffusion model. Using a simple discrete space model does not
improve the approximation (not shown).

The conclusion is valid even for a very small intrinsic noise D → 0, which
implies that the average time to escape over the global barrier is fluctuation
activated (as opposed to noise activated), and is much faster.

4.2 Fluctuations enhance escape even for steep barriers

The qualitative behavior of particle trajectories changes if the fluctuating
potential is fast enough such that the particle can only move less than one
period in one direction in the absence of the noise. Even though, on aver-
age, the variance of the particle position grows linearly, and one can define
a proper effective diffusion coefficient, the particle never crosses a barrier
against drift in the absence of the intrinsic noise, β →∞. Hence the proba-
bility of rare excursions against the effective drift cannot be described using
the same effective drift-diffusion model.

Fig. 5 reports results of numerical simulations at different values of the
additive noise. The escape time as a function of M still can be fitted well
with a ”drift-diffusion” model, Eq. (24), with a noise dependent effective
Péclet number Pe(β). We conclude that, for small noises, the effective Péclet
number is approximatively inversely proportional to the noise strength (the
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Fig. 5 Dependence of the effective Peclet number, Peeff = BM on the intrinsic
noise. We simulate exit times for systems of lengths M = 1, 2, 3, 4, 5 for different
β. For each dataset with the same β, we performed a weighted least squares fit for
the average escape time of the form t = A[exp(BM)− 1−BM], fitting for A and
B. The error bars indicate the confidence bounds of the fits. We show B/β versus
β decreases sublinearly and reaches a constant at β → ∞. Thus the mean exit
time goes to infinity, but it approaches it much slower than for diffusion with the
fluctuating potential, for which B/β = 0.1 for these parameter values, 2ω/β = 1,
v = 0.1.

plot seems to reach a constant for β →∞). This implies that the escape times
will become infinite at zero noise. The dependence is consistent with a model
without any fluctuating potential, but with some effective parameters. The
parameters are such that, with the fluctuations, the escapes are significantly
faster. Indeed as shown in Fig. 5, the effective Péclet number, defined as
Peeff = BM, is always smaller than the equivalent quantity in Eq. (24),
such that

B �
∣∣∣∣ vL2D

∣∣∣∣ . (26)

5 Discussion

Using a one dimensional model of diffusion in the presence of a constant force
perturbed by small periodic fluctuations, we have shown that time depen-
dent potentials can significantly speed up the large scale drift, diffusion, and
barrier escape times. This conclusion is valid even for a very small intrinsic
diffusivity, the long time statistics of the particle trajectories being mainly
determined by the properties of the potential fluctuations, but not of the
Langevin noise.

Our model is a caricature of evolutionary dynamics in the limit of low
mutation rates and constant population sizes. Even in this limit, there are
several simplifying assumptions in our model that can be relaxed.

First, the periodicity of the potential time dependence is not crucial.
Based on the similarity with Brownian motor models [11,12], we expect that
our conclusions will still be valid for a nonperiodic s(t): the nonperiodic
flipping will mix together and average behaviors from the different regions
in Fig. 3. Further, Dubkov et al. [13] studied a randomly flipping sawtooth
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with no drift. Their potential flipped with dichotomous Markovian noise with
rate v. They found an analytic expression for the diffusion enhancement rD:
it grows slower than in our model for small ω, and the peak of rD is lower
and at larger ω. This is consistent with the averaging over different regions
in Fig. 3.

Our model is based on a piecewise linear periodic potential with dis-
continuous first derivatives (sharp minima and maxima). We expect that our
conclusions stay valid as long as the spatially periodic perturbations are sharp
enough so that, upon a flip, a particle can leave the vicinity of a maximum
in a time much faster than a typical travel time between the extrema. If the
potential is not periodic, this will introduce a quenched noise and is likely
to result in emergence of regions in x that are very hard to cross, similar to
[15].

If the assumption of well separated time scales and constant population
size are not satisfied, the Langevin microscopic dynamics used here is not
valid any more. Then different fitnesses can give rise to different population
sizes, and hence to varying fixation rates and to a space dependent D in
our language, which would require more complex models with position and
time dependent noise strengths. Such models would modify the probability of
individual trajectories [20,18], and more work is needed in order to identify
the regimes in which such diffusion models and their predictions apply to
population genetics dynamics.

A Diffusion and drift in the no-noise limit

If it takes 2n + 1 flips to go from site i + 1 to site i, and, going rightwards, one
returns back in two flips, then

Pi(t+ 1) = (1− b)Pi+1(t− 2n) + bPi(t− 1). (27)

Multiplying by i and summing over it, we get

〈i(t+ 1)〉 = (1− b)[〈i(t− 2n)〉+ 1] + b〈i(t− 1)〉. (28)

Assuming that the average can be written as

〈i(t)〉 = c+ vefft, (29)

we obtain

veff =
1− b

1 + 2n(1− b) + b
. (30)

Now multiplying Eq. (27) by i2 and summing over i, we get

〈i2(t+ 1)〉 = (1− b)[〈i2(t− 2n)〉+ 2〈i(t− 2n)〉+ 1] + b〈i2(t− 1)〉. (31)

This allows to write for the variance of i at moment t+ 1

σ2(t+ 1) = (1− b) + (1− b)σ2(t− 2n) + bσ2(t− 1) + 2(1− b)〈i(t− 2n)〉
− (1− b)[〈i(t− 2n)〉+ 〈i(t+ 1)〉]v(2n+ 1)

− 2bv[〈i(t− 2n)〉+ 〈i(t+ 1)〉]. (32)
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Now assuming
σ2(t) = C +Defft, (33)

we get

Deff =
4(1− b)b

(1 + b+ (1− b)2n)3 . (34)
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