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Abstract

Many biological and physical systems exhibit population-density dependent transitions to syn-

chronized oscillations in a process often termed “dynamical quorum sensing”. Synchronization

frequently arises through chemical communication via signaling molecules distributed through an

external media. We study a simple theoretical model for dynamical quorum sensing: a heteroge-

nous population of limit-cycle oscillators diffusively coupled through a common media. We show

that this model exhibits a rich phase diagram with four qualitatively distinct mechanisms fueling

population-dependent transitions to global oscillations, including a new type of transition we term

“dynamic death”. We derive a single pair of analytic equations that allows us to calculate all

phase boundaries as a function of population density and show that the model reproduces many

of the qualitative features of recent experiments of BZ catalytic particles as well as synthetically

engineered bacteria.
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Unicellular organisms often undertake complex collective behaviors in response to envi-

ronmental and population cues. A beautiful example of this phenomenon is the population-

density dependent transition to synchronized oscillations observed in communicating cell

populations recently termed dynamical quorum sensing [1]. Density-dependent synchro-

nization has been observed in a wide variety of biological systems including suspensions of

yeast in nutrient solutions [2], starving cellular colonies of the social amoeba Dictyostelium

[3], and synthetically engineered bacteria [4]. Such transitions have also been observed in

experimental studies of electrochemical oscillators and Belousov-Zhabotinsky (BZ) catalytic

particles [5, 6].

Previous theoretical work has shown that oscillators coupled through quorum sensing

can display synchronized oscillations [7–9]. Recently, a dynamic quorum sensing transi-

tion was found [2] in a simple model of coupled identical limit-cycle oscillators introduced

to study synchronization in yeast populations. Additionally, numerical studies of BZ cat-

alytic particles indicate that heterogeneity in oscillator populations leads to interesting new

phenomenon [5, 6, 10]. The study of population-density dependent synchronization in het-

erogeneous populations of oscillators is still in its infancy, in stark contrast to oscillators

with direct coupling where many analytic results are available [10–12].

In this paper, we consider a large population of limit-cycle oscillators with a distribution

of natural frequencies, coupled diffusively through a common external media. Our work

generalizes earlier models [2] and exhibits extremely rich dynamics as the coupling strength,

population density, and frequency distribution are varied. We derive several analytic results

and find that model exhibits a rich phase diagram. In particular, there exist four quali-

tatively different mechanisms leading to synchronization as a function of coupling strength

and population density: (1) a Kuramoto-like incoherence to coherence transition, (2) an

amplitude death transition due to oscillator heterogeneity, (3) a loss of both global and in-

dividual oscillations due degradation in the external media, and (4) a new type of transition

we term “dynamic death” where the external media dynamics are not fast enough to support

global oscillations. We show that the model reproduces many qualitative features observed

in recent experiments on heterogeneous populations of BZ catalytic particles [5] as well as

synthetically engineered bacteria [4].

To illustrate this diverse set of phenomena, we introduce a simple model of N � 1 coupled

limit-cycle oscillators where the amplitude and phase of individual oscillators are represented
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by a complex number zj, (j = 1 . . . N), with natural frequency ωj. The oscillators are

diffusively coupled to an external media, represented by a complex number Z, through a

coupling D. Furthermore, when chemicals leave the oscillators and enter the medium, they

are diluted by a factor α = Vint/Vext � 1, which is the ratio of the volume of the entire

system to the that of an individual oscillator. The external media is degraded at a rate J .

The dynamics of the system are captured by the equation

dzj
dt

= (λ0 + iωj − |zj|2)zj −D(zj − Z)

dZ

dt
= αD

∑
j

(zj − Z)− JZ

where the ωj are drawn from a distribution h(ω) which we assume to be an even function

about a mean frequency ω0. By introducing a dimensionless density, ρ = αN , and shifting

to a frame rotating with frequency ω0, we can rewrite the equations above as

dzj
dt

= (λ0 + iωj − |zj|2)zj −D(zj − Z)

dZ

dt
=
ρD

N

∑
j

(zj − Z)− (J + iω0)Z, (1)

where the frequencies ωj are now drawn from an even distribution g(ω) with mean zero.

To build intuition for the system, it is helpful to consider the special case of a homoge-

nous population where g(ω) is a delta function and all ωj = 0 in (1). This model was used

previously [2] to model dynamical quorum sensing in yeast suspensions. For homogenous

populations, the equations for all the zj are identical and there are two possible behav-

iors. The individual oscillators are quiescent with Z = zj = 0 or there are synchronized

oscillations. We can compute the stability of the oscillator death state by linearizing the

system around zj = Z = 0 and computing the eigenvalues, µ, of the corresponding lin-

earized system. In this calculation, since all of the oscillators are identical, the dynamics

are completely specified by two differential equations, one for the mean-field parameter

z = 1
N

∑
j zj = zj and one for Z. Oscillator death is stable when Re(µ) < 0 for all eigen-

values. The corresponding requirement that the trace be negative implies D > λ0 in the

oscillator death phase. Furthermore, the characteristic equation for the eigenvalues takes

the form (µ + A)(µ + B + iω0) = ρD2, with B = Dρ + J and A = D − λ0. To find the

phase boundary, we plug in µ = a+ ib and separate the characteristic equation into real and
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FIG. 1. (Top) Phase boundaries for homogeneous oscillators in the ρ vs. D plane for various

values of J , ω0 = 1, and λ0 = 1. (Bottom) Heat map of the amplitude of collective oscillations

from simulations of N = 40 identical oscillators, showing the transition from a “dynamic” death

phase with J = 0 to synchronized oscillations for D > 1. Inset: Real part of z and Z during low

density oscillations showing ∼ 1000-fold slowing of oscillations (D=2.5, ρ = 0.001).

imaginary parts,

a+B =
ρD2(a+ A)

(a+ A)2 + b2
(2)

b+ ω0 =
−ρD2b

(a+ A)2 + b2
. (3)

This allows us to solve for b as a function of a, b(a) = − ω0(a+A)
2a+B+A

and plug this into (22). The

resulting equation can be analyzed graphically plotting the left and right sides of (22) as a

function of a [13]. Since the characteristic equation is quadratic, there are two solutions, a

solution with negative a which guarantees the stability of the external medium, and a second

solution which can change sign depending on parameters. Examining the aforementioned

plot, it is clear that if the left-hand side of (22) is greater than the right-hand side at a = 0,

then the second solution must also be negative. Thus, the amplitude death phase is stable

when
(Dρ+ J)(D − λ0)

ρD2
≥ (ρD + J +D − λ0)2

(ρD + J +D − λ0)2 + ω2
0

, (4)

where we have rewritten A and B in terms of the original parameters of the model.

This equation indicates that there are two qualitative ways to stabilize amplitude death.

First, when J � 1, the left side is much larger than the right, indicating that oscillations

are lost due to degradation of the external medium. Second, even when J = 0, if the
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natural frequency of the oscillators is large, ω0 � 1 or the density of oscillators is small,

amplitude death can be stable because the right hand side of (4) is extremely small. The

underlying reason for this is that sinceD−λ0 > 0, isolated individual oscillators are silent and

synchronization can only occur by transmitting information through the external medium.

The external medium has an effective time scale, (ρD)−1, on which it can respond. If ω0

is large, the medium cannot track the dynamics of the individual oscillators and the death

phase is stable. We term this “dynamic death” to indicate that the underlying cause for

the loss of oscillations are the dynamical properties of the external medium. Figure 3 shows

the phase boundaries in this model as a function of J , ρ, and D. Notice the dynamic death

region for small J and ρ. We have also confirmed the existence of this phase using numerical

simulations (see Figure 3, bottom).

We now analyze (1) for the case where the natural frequencies ωj are drawn from an even

distribution g(ω) with zero mean. In this case, the system has three phases: an amplitude

death phase where all oscillators are quiet; global, synchronized oscillations; and an incoher-

ent phase where individual elements are oscillating but the oscillations are unsynchronized.

For finite densities, we did not numerically observe any unsteady behavior analogous to that

seen in [10]. The stability boundary of the amplitude death phase can again be calculated

as in the homogenous case by linearizing the system around the death state zj = 0, Z = 0

(for details see [13]). In the large N limit, the boundaries of stability for the death phase

are D − λ0 > 0 and

ρD + J

ρD2
=

∫
dω g(ω)

D − λ0

(D − λ0)2 + (b− ω)2
(5)

b+ ω0

ρD2
= −

∫
dω g(ω)

b− ω
(D − λ0)2 + (b− ω)2

. (6)

It is useful to consider various limits of these equations. Notice that when g(ω) = δ(ω), these

equations reduce to (22) with a = 0 as expected. Alternatively, consider the case ρ → ∞.

In this limit, the left hand side of (24) is zero implying that b = 0, since g(ω) in an even

function. Plugging this into (5) yields a single equation for stability of the death state,

ρD + J

ρD2
=

∫
dω g(ω)

D − λ0

(D − λ0)2 + ω2
. (7)

This equation was derived in [10, 11] for the stability boundary of the death phase in a

system of directly coupled limit-cycle oscillators. This follows naturally by noting that in the

limit ρ → ∞, the external media can respond infinitely quickly. Thus, Zext is equal to the
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order parameter of the system, Zext = 1
N

∑
j zj, and the model reduces to the one studied

in [10–12]. In this limit, the loss of oscillations is due to the heterogeneity of individual

oscillator frequencies and has been termed amplitude death. These two limits show that a

single set of equations (5)-(24), capture all four qualitatively distinct types of transitions to

synchronized oscillations.

To gain further insight into the system, it is useful to consider the mean-field equations

for the system. To do so, we put zj = rje
iθj and Z = Reiφ into (1) and equate real and

imaginary parts:

drj
dt

= (λ0 −D − r2
j )rj +DR cos (φ− θj)

dθj
dt

= ωj +
DR

rj
sin (φ− θj)

dR

dt
=
ρD

N

N∑
j=1

rj cos (φ− θj)− (ρD + J)R

dφ

dt
= −ω0 +

ρD

N

N∑
j=1

rj
R

sin (φ− θj). (8)

We look for uniform rotating solutions whose angular frequency in the lab frame is ω0 + b

by requiring dR
dt

=
drj
dt

= 0 and dφ
dt

=
dθj
dt

= b in (32). In general, these equations cannot be

solved analytically. However for the special case R = 0 corresponding to the death phase

one finds that the equations reduce to (24) (see [13]). This allows us to attach a physical

meaning to the parameter b. When oscillators are directly coupled to each other (ρ→∞),

they rotate at the mean frequency ω0 and b = 0. In contrast, when oscillators are coupled to

each other through the external media, there is an effective “viscosity ” which slows down

the oscillations so that they rotate with an angular frequency ω + b, with b < 0. Thus, b

measures the change in angular frequency of oscillations due to delays induced by the ex-

ternal medium (see Figure 3 inset). Furthermore, increasing J decreases the absolute value

of b and hence increases the angular frequency. Thus, somewhat surprisingly, the system

exhibits positive period-amplitude coupling. This behavior was observed in a population of

synthetically engineered bacteria in recent experiments [4], though interestingly, the same

phenomena occurs as degradation is decreased. The effect of time delays on synchroniza-

tion of directly coupled oscillators was studied previously and the equations governing the

stability of amplitude death bear some similarity to those found in this work [14, 15].

When D < λ0, the system can be incoherent, where individual oscillators are oscillating in
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an unsynchronized fashion. The stability equations for the incoherent phase were calculated

by generalizing the calculations in [10]. We looked for solutions of (32) of the form R = 0,

r2
j = λ0−D, and θj = ωjt. For such solutions, individual oscillators oscillate at their natural

frequencies but there are no coherent oscillations. We calculated the stability boundary for

incoherence by checking the stability of the state to small perturbations (see [13]). We

find that for distributions g(ω), there is a tri-critical point on the line D = λ0 where the

incoherent phase, the synchronized oscillation phase, and the death phase meet.

The derivation presented above is for arbitrary g(ω). When g(ω) is either a rectangular

or Lorentzian distribution, we can perform the integrations in (24) explicitly (see [13]). The

answers are particularly simple for a Lorentzian distribution, g(ω) = 1
π

Γ
Γ2+ω2 , and are given

by

ρD + J

ρD2
=

D − λ0 + Γ

(D − λ0 + Γ)2 + b2

b+ iω0

ρD2
= − b

(D − λ0 + Γ)2 + b2
. (9)

These equations are identical to the homogenous case, (22), except with λ0 → λ0−Γ on the

right hand side. Thus, heterogeneity “renormalizes” the distance individual units are from

their Hopf bifurcation. An analogous set of equations–albeit more unwieldy–can also be

derived for a rectangular frequency distribution, and Figure 2 shows the phase boundaries

for this case as a function of ρ, D, and J . As expected, for D > λ0, the death phase

and synchronized oscillations are both possible. For large D, as density is increased across

the transition, the amplitude of the synchronized oscillations rises sharply with density.

For smaller D, this rise in amplitude is less pronounced. When D < λ0, one also sees a

Kuramoto-like transition from incoherent to synchronized oscillations. The same qualitative

behavior was observed in recent experiments on BZ catalytic particles with a distribution

of natural frequencies [5, 6].

In this letter, we considered the physics of limit-cycle oscillators diffusively coupled

through an external media. We have found that there are four qualitatively different types of

density-dependent transitions to synchronized oscillations including a new type of transition

we term “dynamic death”, where the dynamics of the external medium are too slow to sup-

port oscillations. This simple model captures many qualitative features seen in a variety of

experiments on oscillators coupled diffusively through an external medium. For example, it

was previously argued that when all oscillators are identical, the model is a good description
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FIG. 2. (Top) Phase boundaries in ρ vs D plane for heterogeneous oscillators drawn from a

rectangular distribution ( Γ = 0.6, ω0 = 1, and λ = 1 and J = .05 − 0.5 from bottom to top).

(Bottom) Heat map of the amplitude of collective oscillation from simulations of N = 100 oscillators

drawn from a rectangular frequency distribution with parameters above for J = 0.5. Notice the

transitions from an incoherent phase with D < 1 to synchronized oscillations or death. Incoherence

phase (spotted red region for D < 1) can be identified by the 1/N1/2 fluctuations of the order

parameter.

of glycolitic oscillations in suspensions of yeast cells. The model also shows how large am-

plitude oscillations can emerge as one varies the density and how this behavior crosses-over

into a Kuramoto-like transition as D is decreased (see Fig. 2). These qualitative features

are in good agreement with [5, 6]. Finally, the model also captures many of the mean-field

properties of coupled synthetically-engineered bacteria, including the sudden emergence of

oscillations and scaling of amplitude and period of oscillations as one changes the external

degradation rate J . However, unlike [4], the period and amplitude of the oscillations de-

crease with increasing J . This discrepancy likely arises from the highly non-linear nature

of the “degrade-and-fire” oscillations [16] characterizing the synthetic bacteria. Despite this

discrepancy, our results suggest that properly constructed simple models may be able to

capture interesting, qualitative behaviors of coupled oscillators. In the future, it will be

interesting to directly relate this simple model to more detailed models [16] and extend

the simple mean-field model of dynamical quorum sensing explored here to include spatial

effects.
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I. SUPPORTING INFORMATION: EQUATIONS FOR STABILITY OF AMPLI-

TUDE DEATH

In this section, we derive equations for the stability of the amplitude death phase. We

start with the equations

dzj
dt

= (λ0 + iωj − |zj|2)zj −D(zj − Z) (10)

dZ

dt
=
ρD

N

∑
j

(zj − Z)− (J + iω0)Z. (11)

where we have transformed to a frame rotating at the mean frequency, ω0. To calculate the

stability of amplitude death, we linearize these equations around the solution zj = Z = 0.

Doing so yields the equations,

dδzj
dt

= (λ0 + iωj −D)δzj −DδZ (12)

dδZ

dt
=
∑
j

ρD

N
δzj − (ρD + J + iω0)δZ. (13)

These equations can be written in matrix form as

˙δz1

˙δz2

·

·
˙δzN

˙δZ


=



(λ0 −D + iω1) 0 · · 0 −D

0 (λ0 −D + iω2) · · 0 −D

· · · · · ·

· · · · · ·

0 0 · · (λ0 −D + iωN) −D
ρD
N

ρD
N

· · ρD
N

−(ρD + J + iω0)





δz1

δz2

·

·

δzN

δZ


(14)

Denote the matrix on the right hand side of (14) by M for notational convenience. Stability

requires the eigenvalues, µ, of M to satisfy Re[µ] < 0. First notice that stability requires

Re[Tr(M)] < 0. This gives the condition

(λ0 −D)− (ρD + J)

N
> 0. (15)

We can also calculate the eigenvalues using the characteristic equation of the matrix,

Det(µI −M) = 0. A straightforward calculation yields

(µ+ (ρD+ J + iω0))
N∏
j=1

(µ− (λ0−D+ iωj)−
ρD2

N

N∑
s=1

N∏
j=1,j 6=s

(µ− (λ0−D+ iωj) = 0 (16)
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In order to take the thermodynamic limit, we rewrite this equation as

(µ+ (ρD + J + iω0)) =
ρD2

N

N∑
s=1

1

µ− (λ0 −D + iωj)
(17)

In the thermodynamic limit N → ∞ but with ρ held fixed, (15) and (17) become, respec-

tively,

(λ0 −D) < 0 (18)

and

µ+ (ρD + J + iω0)) = ρD2

∫
dω

g(ω)

µ− (λ0 −D + iω)
, (19)

where we have replaced the sum by an integral over the distribution function g(ω) for the

oscillator frequencies. In practice, it is often helpful to write this as two real equations.

Substituting µ = a+ ib yields the coupled equations.

a+ ρD + J

ρD2
=

∫
dω g(ω)

a+D − λ0

(a+D − λ0)2 + (b− ω)2
(20)

b+ ω0

ρD2
= −

∫
dω g(ω)

b− ω
(a+D − λ0)2 + (b− ω)2

(21)

Stability requires that all solutions of these equations obey a ≤ 0. By considering the mean-

field equations derived below (and considering various limiting cases of the equations above),

it is clear that the stability boundary can be found by putting a = 0 in the above equations,

i.e. there exists at most one solution with positive real part.

We illustrate this explicitly for the case of uniform frequencies, where all the oscillators

are identical g(ω) = δ(ω) (since by assumption the center of the distribution is around

ω = 0). Then, the equations above can be rewritten as

a+B =
ρD2(a+ A)

(a+ A)2 + b2
(22)

b+ ω0 =
−ρD2b

(a+ A)2 + b2
. (23)

where A = D − λ0 and B = Dρ + J . Dividing the equations and solving for b in terms

of a to get b(a) = − ω0(a+A)
2a+B+A

results in an equation for a that can be analyzed graphically.

Plotting the left-hand and right-hand sides of equation (23) in Figure 3, we see that there

always exists a solution with negative real part. Recall that the characteristic equation is

quadratic, assuring at most two solutions. The second solution can be either positive or

negative and, since there are no other solutions with positive real part, setting a = 0 safely

identifies the phase boundary.
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FIG. 3. Graphical analysis of the structure of the solutions to eq. (22) and (23). There always

exists a solution with a < 0, shown as a black dot. A second solution, shown as a red dot, can

have positive or negative a, and thus solving for a = 0 properly identifies the phase boundary.

Putting a = 0 for the case with heterogeneous frequencies results in a pair of coupled

integral equations that determine the boundary of stability of the death phase:

ρD + J

ρD2
=

∫
dω g(ω)

D − λ0

(D − λ0)2 + (b− ω)2
(24)

b+ ω0

ρD2
= −

∫
dω g(ω)

b− ω
(D − λ0)2 + (b− ω)2

(25)

We can consider various limiting cases of the equations above. For uniform frequencies,

the resulting equations are precisely those derived by Del Monte and co-workers. We can also

consider the ρ → ∞ limit. This corresponds to the case where the oscillators are directly

coupled through the mean-field parameter. In this case, the left-hand side of the second

equation in (25) is zero. Since g(ω) is an even function, this implies b = 0. Plugging this

into the top equation in (25) and taking the limit ρ→∞ yields the equation

1

D
=

∫
dω g(ω)

D − λ0

(D − λ0)2 + ω2
. (26)

This is precisely the equation derived by Mirollo et al. for direct all-to-all coupling.
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II. MEAN-FIELD EQUATIONS FOR FREQUENCY LOCKING

Here we derive the mean-field equations for the model and show that they reproduce the

results from the determinant calculations. We begin again with the equations

dzj
dt

= (λ0 + iω − |zj|2)zj −D(zj − Z) (27)

dZ

dt
=
ρD

N

∑
j

(zj − Z)− (J + iω0)Z. (28)

In writing these equations we have assumed that ωj are drawn from a normalized, even,

probability distribution g(ωj). Now define zj = rje
iθj and Z = Reiφ. Then, we can rewrite

these equations in polar coordinates to get

drj
dt

= (λ0 −D − r2
j )rj +DR cos (φ− θj) (29)

dθj
dt

= ωj +
DR

rj
sin (φ− θj) (30)

dR

dt
=
ρD

N

N∑
j=1

rj cos (φ− θj)− (ρD + J)R (31)

dφ

dt
= −ω0 +

ρD

N

N∑
j=1

rj
R

sin (φ− θj) (32)

We now look for uniform, rotating, locked solutions where dR
dt

=
drj
dt

= 0 and dφ
dt

=
dθj
dt

= b.

In this case, the position of each oscillator is determined purely by its frequency, so we can

regard each oscillator as a function of ω. Using equations (29) and (30) and plugging in the

expressions for the derivatives on the left hand side one can easily show that

((ω − b) cot (θ − φ) + λ0 −D)(1 + cot2 (θ − φ))(ω − b)2 = D2R2 (33)

Now, in the thermodynamic limit plugging in the desired solutions yields

R(ρD + J) = ρD

∫
dωg(ω)r(ω) cos (φ− θ(ω)) (34)

b+ ω0 = ρD

∫
dωg(ω)

r(ω)

R
sin (φ− θ(ω)), (35)

where we have written r(ω) and θ(ω) to emphasize the amplitude and phase of each oscillator

is a function of only the frequency. Using equation (30) and the fact that
dθj
dt

= b yields

r =
DR sin (θ(ω)− φ)

(ω − b)
. (36)
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Plugging this into (34) and (35) gives the equations

(ρD + J)

ρD2
=

∫
dωg(ω)

sin (θ(ω)− φ) cos (θ(ω)− φ)

ω − b
(37)

b+ ω0

ρD2
= −

∫
dωg(ω)

sin (θ(ω)− φ) sin (θ(ω)− φ)

ω − b
(38)

Combined (37), (38), and (33) define the mean-field equations for the system for frequency

locking with amplitude R.

In general, we cannot solve this analytically because (33) is a cubic equation in cot.

However, for the special case R = 0 (oscillator death), we have the unique solution to (33)

that

tan (θ(ω)− φ) =
ω − b
λ0 −D

. (39)

Plugging this into the equations (34) and (35) yields the equations for amplitude death to

be stable

(ρD + J)

ρD2
=

∫
dωg(ω)

D − λ0

(D − λ0)2 + (b− ω)2
(40)

(b+ ω0)

ρD2
= −

∫
dωg(ω)

(b− ω)

(D − λ0)2 + (b− ω)2
(41)

These are precisely our equations obtained from the derivative expansion. It gives as an

interpretation of the imaginary part of the eigenvalue b as the shift of the frequency of the

collective oscillations from ω0. This should be contrasted with the case where oscillators are

directly coupled and b = 0.

Finally, we can ask intersect the stability boundary D = λ0. We can do this by taking

the limit (D− λ)→ 0 in the equations above. A straightforward calculation shows that the

equations reduce to

(ρD + J)

ρD2
= πg(b)

(b+ ω0)

ρD2
= P

[∫ ∞
−∞

dω
g(ω)

ω − b

]
, (42)

where the P denotes the principal value.

III. MEAN FIELD EQUATIONS FOR INCOHERENT STATE

In this section, we derive the mean field equations for the stability of the incoherent state

when D < λ. In this case, we look for solutions of (29)-(32) of the form R = 0, r2
j = λ0−D.
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In such a solution, individual oscillators oscillate at their natural frequencies but there is no

coherent oscillations.

We now examine the stability of the coherent state. To do so, we follow the analysis

developed by Mathews et al. Define a density function ρ(r, θ, ω, t) so that the fraction of

oscillators of frequency ω between r and r + dr and between θ and θ + dθ is ρrdθdr. The

evoloution for ρ is given by the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~ν) = 0 (43)

where ~ν is the velocity of oscillators given by ~ν = (ṙ, rθ̇). Substituting (29) and (30) gives

∂ρ

dt
+

1

r

∂

∂r

(
ρ
[
r2(a2 − r2) +KRr cos(θ − φ)

])
+

1

r

∂

∂θ
(ρ [rω −KR sin(θ − φ)]) = 0, (44)

where a2 = (λ0 −D). In the incoherent state

ρ =
δ(r − a)

2πr
. (45)

We now consider a small perturbation in the radial and angular directions and check

when the density is stable to these perturbations. In particular, consider

ρ = δ(r − a− εr1(θ, ω, t))

(
1

2πr
+ εf1(θ, ω, t)

)
. (46)

For such a perturbation, by the chain rule we have

ṙ = ε
∂r1

∂θ
· θ + ε

∂r1

∂t
. (47)

Writing R = εR1, substituting in (29) and (30), and keeping terms first order in ε yields

− 2a2r1 +DR1 cos(θ − φ) = ω
∂r1

∂θ
+
∂r1

∂t
. (48)

We seek solutions in which R1 and r1 are proportional to e(λ+ib)t and we find that r1 must

obey the equation

ω
∂r1

∂θ
+ (λ+ ib+ 2a2)r1 = DR1 cos(θ − φ). (49)

The solution for r1 which is periodic in θ is of the form

r1 = A cos(θ − φ) +B sin(θ − φ), (50)
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where

A =
DR1(λ+ ib+ a2)

ω2 + (λ+ ib+ 2a2)2
(51)

B =
DR1ω

ω2 + (λ+ ib+ 2a2)2
(52)

We now consider the small angular perturbations. We can substitute ρ = δ(r−a)[1/2πr+εf1]

into the continuity equation and keep terms linear in ε to get

∂f1

∂t
+ ω

∂f1

∂θ
− KR1 cos(θ − φ)

2πa2
= 0 (53)

Assuming the periodic solution is proportional to e(λ+ib)t as above, one finds

f1 = C cos(θ − φ) +D sin(θ − φ) (54)

with

C =
DR1(λ+ ib)

2πa2(ω2 + (λ+ ib)2)
(55)

D =
DR1ω

2πa2(ω2 + (λ+ ib)2)
(56)

We can now rewrite the steady-state equations stemming from (31) and (32) in terms of

the density to get

ρD + J

ρD
R =

∫ ∞
−∞

∫ ∞
0

∫ 2π

0

r cos (θ − φ)ρ r dθ dr g(ω) dω

b+ ω

ρD
=

∫ ∞
−∞

∫ ∞
0

∫ 2π

0

r sin (θ − φ)ρ r dθ dr g(ω) dω, (57)

where we have used that the order parameter for the solutions is chosen so that dφ
dt

= b.

Plugging in (46), (50), and (54), and keeping terms first order in ε,

2(ρD + J)

ρD
=

∫ ∞
−∞

λ+ ib

(λ+ ib)2 + ω2
g(ω)dω +

∫ ∞
−∞

λ+ ib+ 2a2

(λ+ ib+ 2a2)2 + ω2
g(ω)dω (58)

2(b+ ω0)

ρD2
=

∫ ∞
−∞

ω

(λ+ ib)2 + ω2
g(ω)dω +

∫ ∞
−∞

ω

(λ+ ib+ 2a2)2 + ω2
g(ω)dω (59)

The bifurcation condition requires that λ = 0. So the stability boundary is given by setting

λ = 0 in the equation above. This gives (using usual relationships for principal values of

integrals in the limit λ = 0+)

2(ρD + J)

ρD
= πg(b) +

∫ ∞
−∞

ib+ 2a2

(0+ + ib+ 2a2)2 + ω2
g(ω)dω (60)

2(b+ ω0)

ρD2
= P

[∫ ∞
−∞

dω
g(ω)

ω − b

]
+

∫ ∞
−∞

ω

(0+ + ib+ 2a2)2 + ω2
g(ω)dω (61)

where P denotes the principal value. For the line D = λ0 (i.e. a = 0+) these equations

reduce to (42) showing that the incoherence joins the corner of the death state.
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IV. EXPRESSIONS FOR LORENTZIAN & RECTANGULAR DISTRIBUTIONS

A. Lorentzian Distributions

We now derive analytic expression for the boundary for the special case where g(ω) is a

Lorentzian,

g(ω) =
1

π

Γ

Γ2 + ω2
(62)

For a Lorentzian distribution, the equations are particularly simple because the Fourier

transform is a simple exponential:

ĝ(p) = e−|p|Γ. (63)

We now plug this into the equations for the stability of amplitude death (25) and use the fact

that these equations can be thought of as a convolution for b. A straightforward calculation

then shows that the resulting equations for the stability boundary are identical to the case

where g(ω) = δ(ω), given by (23), except with D − λ0 → D − λ0 + Γ,

ρD + J

ρD2
− D − λ0 + Γ

(D − λ0 + Γ)2 + b2

b+ iω0

ρD2
= − b

(D − λ0 + Γ)2 + b2
. (64)

Thus Γ has the intriguing effect of decreasing the effective λ0, thereby pulling the individual

oscillators closer to their supercritical Hopf bifurcation.

B. Rectangular Distributions

The integrals can also be performed for the case where g(ω) is drawn from a rectangular

distribution,

g(ω) = 1/Γ if − Γ/2 < ω < Γ/2

= 0 otherwise (65)

In this case, the integrals in (24) and (25) can be performed and yield the equations

a+ A

ρD2
=

1

2Γ
(arctan[(b+ Γ)/(a+B)]− arctan[(b− Γ)/(a+B)]) (66)

b+ ω0

ρD2
=

1

2Γ
log

[
(b+ Γ)2 + (a+B)2

(b− Γ)2 + (a+B)2

]
(67)
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