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Abstract

We study CP violation and the contribution of the strong pion-pion interactions in the three-body B± →
π±π∓π± decays within a quasi two-body QCD factorization approach. The short distance interaction

amplitude is calculated in the next-to-leading order in the strong coupling constant with vertex and penguin

corrections. The meson-meson final state interactions are described by pion non-strange scalar and vector

form factors. The pion scalar form factor is calculated from a unitary relativistic coupled-channel model

including ππ, KK̄ and effective (2π)(2π) interactions. The pion vector form factor results from a Belle

Collaboration analysis of τ− → π−π0ντ data. The recent B± → π±π∓π± BABAR Collaboration data are

fitted with our model using only three parameters for the S wave and one for the P wave. We find not

only a sizable contribution of the S wave above the ππ threshold and near 1.4 GeV but also a significant

interference between the S and P waves. Our model yields a unified unitary description of the contribution

of the three scalar resonances f0(600), f0(980) and f0(1400) in terms of the pion non-strange scalar form

factor.

PACS numbers: 13.25.Hw, 13.75Lb
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I. INTRODUCTION

Three-body charmless hadronic B meson decays offer one of the best tools for studies of direct

CP violation and provide an interesting testing ground for strong interaction dynamical models.

The present work, part of a program devoted to the understanding of rare three-body B decays [1–

4], is motivated by the recent BABAR Dalitz-plot analysis of the B± → π±π∓π± decays [5]. In

an isobar model description, the authors of ref. [5] find evidence for the f0(1370) but, within the

current experimental accuracy, no significant signal for the f0(980). The f0(600), not explicitly

included in that analysis, could be part of the non-resonant background.

Here, the aim is to provide a phenomenological analysis of the B± → π±π∓π± decay channels

relying on the QCD factorization scheme (QCDF) in the ππ effective mass range from threshold

to 1.64 GeV. The focus will be set on the final state ππ interactions involved since a partial wave

analysis of the Dalitz plot should use theoretically and phenomenologically well constrained ππ

amplitudes.

Studies of B decays into two-body and quasi-two-body final states have been performed in

the QCDF framework [6–12]. The naive factorization approach is a useful first order approxima-

tion which receives corrections proportional to the strong coupling constant αs at scales mb and
√

ΛQCDmb and in inverse powers of the b quark mass mb [13]. In the present study, we propose

an extension of these results to a class of three-body decays B± → π± π+π−.

The role of the f0(600) (or σ) in charmless three-body decays of B mesons has been examined

by Gardner and Meißner [8] in B0 → π+π−π0 decays. Within a QCD quasi two-body factorization

approach their f0(600)π amplitude is described by a unitary pion scalar form factor constrained by

ππ scattering and chiral dynamics, a different approach compared to the relativistic Breit-Wigner

expressions used in most experimental and in some theoretical analyses, for example in [14]. This

has led to improved theoretical predictions; these authors have found that the contribution of the

f0(600)π channel was important in the range of the dominant ρ0π0 intermediate state. However, in

recent B0 → π+π−π0 Dalitz plot analyses [15, 16] no contribution from B0 → f0(600)π
0 channel

has been found. This could be linked to the present limited statistics in the low effective ππ

mass region. Furthermore, such a contribution could be hidden in the nonresonant amplitude

introduced in the experimental analysis. Nevertheless we will show that the contribution of the S

wave is important in the B± → π± π+π− decays.

Charmless three-body decays of B mesons have also been investigated by Cheng, Chua and

Soni [12] in the framework of quasi two-body factorization approach using resonant and non-
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resonant contributions. In particular they have calculated the B− → π+π−π− branching fractions

and CP asymmetries and found a small rate for B− → f0(980)π
−decay. An achievement in the

theory of B decays into two mesons is the confirmation of the validity of factorization as a leading

order approximation. No proof of factorization has yet been given for the B decays into three

mesons. However, three-body interactions are suppressed when specific kinematical configurations

with the three mesons quasi aligned in the rest frame of the B meson are considered. This is the

case in the effective π+π− mass region smaller than 1.64 GeV in the Dalitz plot where most of the

π+π− resonant states are visible. Such processes will be denoted as B± → π±[π+π−], the mesons

of the [π+π−] pair moving more or less, in the same direction in the B rest frame. Then, it seems

reasonable to postulate the validity of factorization for this quasi two-body B decay [17] assuming

furthermore that the [π+π−] pair originates from a quark-antiquark state.

In the factorization approach the B± → π±1 [π+2 π
−
3 ] decay amplitudes are expressed as a su-

perposition of appropriate effective QCD coefficients and two products of two transition matrix

elements. The transition matrix elements between the B± meson and the π±1 pion multiplied by the

transition matrix elements between the vacuum and the
[

π+2 π
−
3

]

pion pair correspond to the first of

these products. The second is associated to the product of the transition matrix elements between

the B± meson and the [π+2 π
−
3 ] pion pair by the transition matrix elements between the vacuum

and the π±1 pion. In the π+2 π
−
3 center of mass frame, the bilinear quark currents involved force the

[π+2 π
−
3 ] pair to be in S or in P state. The [π+2 π

−
3 ]S,P transition matrix elements to the vacuum are

proportional to the pion scalar and vector form factors. We assume that the B± → π+2 π
−
3 matrix

elements are expressed as products of the B± → [π+2 π
−
3 ]S,P transition form factors by the relevant

vertex function describing the decay of the [π+2 π
−
3 ]S,P state into the final pion pair. The vertex

functions are in turn assumed to be proportional to the pion scalar or vector form factors. In the

present work, a single unitary function, namely the pion non-strange scalar form factor, describes

then the three scalar resonances, f0(600), f0(980) and f0(1400) present in the π+π− interaction.

In Sec. II we present the model used in the analysis. Sec. III is devoted to the construction of

the pion scalar and vector form factors. The pertinent observables and the fitting procedure are

described in Sec. IV while the results are discussed in Sec. V. A summary and some perspectives

are outlined in the final Sec. VI.
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II. DECAY AMPLITUDES

The amplitudes for the non-leptonic decays of the B meson are given as matrix elements of the

effective weak Hamiltonian [6, 7]

Heff =
GF√
2

∑

p=u,c

λp

[

C1O
p
1 + C2O

p
2 +

10
∑

i=3

CiOi +C7γO7γ + C8gO8g

]

+ h.c., (1)

where

λu = VubV
∗
ud, λc = VcbV

∗
cd, (2)

the Vpp′ (p′ = b, d) being Cabibbo-Kobayashi-Maskawa quark-mixing matrix elements. For the

Fermi coupling constant GF we take the value 1.16637 × 10−5 GeV−2. The Ci(µ) are the Wil-

son coefficients of the four-quark operators Oi(µ) at a renormalization scale µ. The Op
1,2 are

left-handed current-current operators arising from W -boson exchange, Oi=3−10 are QCD and elec-

troweak penguin operators involving a loop with a u or c quark and a W boson, O7γ and O8g are

the electromagnetic and chromomagnetic dipole operators [7].

Let pB be the four-momentum of the B± meson and p1 that of the isolated π±. Let then p2

denote the four-momentum of the π+ and p3 that of the π− of the interacting [π+π−] pair in

the B rest frame. One has pB = p1 + p2 + p3 and we introduce the invariants sij = (pi + pj)
2

for i, j = 1, 2, 3 with i < j. For the B− → π− [π+π−]S,P amplitude, we work in the center of

mass frame of the π+π− pair of pions with respective four-momenta p2 and p3 (or p1 and p2 for

the symmetrized amplitudes). These two pions will be either in a relative S or P state. In the

following we derive the amplitude for the B− → π− [π+π−]S,P processes. The transcription to the

B+ → π+ [π+π−]S,P processes is straightforward. Applying the QCD factorization formula for the

B− → π− [π+π−]S,P process, the matrix elements of the effective weak Hamiltonian (1) can be

written as [7]

〈

π−(p1) [π
+(p2)π

−(p3)]S,P |Heff |B−(pB)
〉

=
GF√
2

∑

p=u,c

λp
〈

π− [π+π−]S,P |Tp|B−
〉

, (3)

to which must be added the symmetrized term 〈π−(p3)[π+(p2)π−(p1)]S,P |Heff |B−(pB)〉. With

M1 ≡ π− and M2 ≡ [π+π−]S,P or M1 ≡ [π+π−]S,P while M2 ≡ π−, one has
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〈

π− [π+π−]S,P |Tp|B−
〉

= 〈π− [π+π−]S,P |
{

a1(M1M2)δpu(ūb)V−A ⊗ (d̄u)V−A

+ a2(M1M2)δpu(d̄b)V−A ⊗ (ūu)V−A + a3(M1M2)
∑

q

(d̄b)V−A ⊗ (q̄q)V−A

+ ap4(M1M2)
∑

q

(q̄b)V−A ⊗ (d̄q)V−A + a5(M1M2)
∑

q

(d̄b)V−A ⊗ (d̄q)V+A

+ ap6(M1M2)
∑

q

(−2)(q̄b)sc−ps ⊗ (d̄q)sc+ps

+ a7(M1M2)
∑

q

(d̄b)V−A ⊗ 3

2
eq(q̄q)V+A

+ ap8(M1M2)
∑

q

(−2)(q̄b)sc−ps ⊗
3

2
eq(d̄q)sc+ps

+ a9(M1M2)
∑

q

(d̄b)V−A ⊗ 3

2
eq(q̄q)V−A

+ a10(M1M2)
∑

q

(q̄b)V−A ⊗ 3

2
eq(d̄q)V−A

}

|B−〉, (4)

where apj are effective QCDF coefficients. In Eq.(4), (q̄1q2)V∓A = q̄1γµ(1 ∓ γ5)q2, (q̄1q2)sc±ps =

q̄1(1± γ5)q2 and eq denotes the electric charge of the quark q in units of the elementary charge e.

The sum on the index q runs over u and d and the summation over the color degree of freedom

has been performed. The notations sc and ps stand for scalar and pseudoscalar, respectively.

At next-to-leading order (NLO) in the strong coupling constant αs, the general expression of

the api quantities in terms of effective Wilson coeffficients is [9]

api (M1M2) =

(

Ci +
Ci±1

NC

)

Ni(M2) +
Ci±1

NC

CFαs

4π

[

Vi(M2) +
4π2

NC
Hi(M1M2)

]

+ P p
i (M2), (5)

where the upper (lower) signs apply when the index i is odd (even), NC is the number of colors,

NC = 3 and CF = (N2
C − 1)/2NC . The sum over the color degree of freedom have been performed

in Eq. (4). Note that in the leading-order (LO) contribution Ni(M2) = 0 for M2 = [π+π−]P and

i = 6, 8, otherwise Ni(M2) = 1. The NLO quantities Vi(M2) arise from one loop vertex corrections,

Hi(M1M2) from hard spectator scattering interactions and P p
i (M2) from penguin contractions.

Here the meson M2 is the meson which does not include the spectator quark of the B meson. The

superscript p in api (M1M2) is to be omitted for i = 1, 2, 3, 5, 7 and 9 since the penguin corrections

are equal to zero in these cases. In our calculation we shall not include the NLO hard scattering

corrections which require the introduction of two phenomenological parameters to regularize end

point divergences related to asymptotic wave functions [9].
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In Eq. (4) the symbol ⊗ indicates that the different components of the matrix elements

〈π− [π+π−]S,P |Tp|B−〉 are to be calculated in the factorized form,

〈

π−(p1)[π
+(p2)π

−(p3)]S,P |j1 ⊗ j2|B−(pB)
〉

≡
〈

[π+π−]S,P |j1|B−
〉 〈

π− |j2|0
〉

or

〈

π−|j1|B−
〉 〈

[π+π−]S,P |j2|0
〉

, (6)

since we neglect B− annihilation contributions which are expected to be small [6]. Furthermore, as

for the hard scattering corrections, their evaluation [9] introduces two phenomenological parame-

ters. In Eq. (6) j1 and j2 denote the appropriate quark currents entering in Eq. (4). Note that, in

our approach, in the evaluation of the long distance matrix element 〈[π+π−]S,P |j1|B−〉, we make

the hypothesis that the transitions of B− to the [π+π−]S,P states go first through intermediate

meson resonances RS,P which then decay into a π+π− pair. We describe these decays by a vertex

function modeled by assuming them to be proportional to the pion scalar or vector form factors,

respectively. For the short distance part of the decay amplitudes proportional to a combination

of the effective coefficients api (M1M2) it can be seen that for terms coming from the first line of

the right hand side of Eq. (6) M1 ≡ [π+π−]S,P , M2 ≡ π− and for those from the second line

M1 ≡ π− while M2 ≡ [π+π−]S,P . In the following, when M2 ≡ [π+π−]S,P , we assume that the

NLO corrections Vi(M2) and P
p
i (M2) are evaluated at the meson resonances RS,P position. Here

we take RP ≡ ρ(770)0 and RS ≡ f0(980). A similar approximation has been applied in Refs. [3, 4]

for the [Kπ]S,P states with RP ≡ K∗(892) and RS ≡ K∗
0 (1430).

Introducing the short distance terms

u(RS,Pπ
−) = λu

[

a1(RS,Pπ
−) + au4(RS,Pπ

−) + au10(RS,Pπ
−)−

(

au6(RS,Pπ
−) + au8(RS,Pπ

−)
)

rπχ
]

+λc
[

+au4(RS,Pπ
−) + ac10(RS,Pπ

−)−
(

ac6(RS,Pπ
−) + ac8(RS,Pπ

−)
)

rπχ
]

, (7)

v(π−RS) = λu
[

−2au6(π
−RS) + au8(π

−RS)
]

+ λc
[

−2ac6(π
−RS) + ac8(π

−RS)
]

, (8)

and

w(π−RP ) = λu

[

a2(π
−RP )− au4(π

−RP ) +
3

2

(

a7(π
−RP ) + a9(π

−RP )
)

+
1

2
au10(π

−RP )

]

+λc

[

−ac4(π−RP ) +
3

2

(

a7(π
−RP ) + a9(π

−RP )
)

+
1

2
ac10(π

−RP )

]

, (9)
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one obtains, from Eqs. (3), (4) and (6), the following S- and P -wave matrix elements

∑

p=u,c

λp
〈

π−(p1)[π
+(p2)π

−(p3)]S |Tp|B−
〉

= XS u(RSπ
−) + YS v(π

−RS), (10)

∑

p=u,c

λp
〈

π−(p1)[π
+(p2)π

−(p3)]P |Tp|B−
〉

= XP u(RPπ
−) + YP w(π−RP ). (11)

In Eq. (7) the chiral factor rπχ is given by rπχ = 2m2
π/[(mb + mu)(mu + md)], mu and md being

the u and d quark masses, respectively. The long distance functions XS,P and YS,P , evaluated in

appendix A, read

XS ≡
〈

[π+(p2)π
−(p3)]S |(ūb)V−A|B−

〉 〈

π−|(d̄u)V−A|0
〉

= −
√

2

3
χS fπ (M2

B − s23) F
BRS

0 (m2
π) Γ

n∗
1 (s23), (12)

YS ≡
〈

π−|(d̄b)sc−ps|B−
〉 〈

[π+(p2)π
−(p3)]S |(d̄d)sc+ps|0

〉

=

√

2

3
B0

M2
B −m2

π

mb −md
FBπ
0 (s23) Γ

n∗
1 (s23), (13)

XP ≡
〈

[π+(p2)π
−(p3)]P |(ūb)V−A|B−

〉 〈

π−|(d̄u)V−A|0
〉

=
fπ
fRP

(s13 − s12) A
BRP

0 (m2
π) F

ππ
1 (s23), (14)

YP ≡
〈

π−|(d̄b)V−A|B−
〉 〈

[π+(p2)π
−(p3)]P |(ūu)V−A|0

〉

= (s13 − s12)F
Bπ
1 (s23)F

ππ
1 (s23), (15)

where χS represents the S-wave strength parameter which will be fitted. To reduce the number

of parameters, we do not introduce here the possible RS dependence of χS and of FBRS

0 (m2
π).

We expect this RS dependence to be stronger in the pion scalar form factor Γn∗
1 (s). For the pion

decay constant we take fπ = 0.1304 GeV [18]. The RP decay constant is denoted by fRP
and

the B-meson mass by MB . Since the π+π− P -wave is largely dominated by the ρ(770) meson we

choose fRP
= fρ = 0.209 GeV [9]. The quantity B0 = −2 〈0|q̄q|0〉/f2π is proportional to the quark

condensate. We calculate it as B0 ≃ m2
π/(mu +md). At the renormalization scale µ = mb/2 we

use mb = 4.9 GeV and mu = md = 0.005 GeV. For the transition form factor between the B meson

and RS state we take FBRS

0 (m2
π) = 0.13 [19] and for that between the B meson and RP state

ABRP

0 (m2
π) = 0.37 [20]. For the Bπ scalar and vector transition form factors FBπ

0 (s) and FBπ
1 (s),

we use the following light-cone sum rule parametrization developed in appendix A of Ref. [21], viz.

7



FBπ
0 (s) =

0.258

1− s/s0
, (16)

FBπ
1 (s) =

0.744

1− s/M2
B∗

− 0.486

1− s/s1
, (17)

with s0 = 33.81 GeV2, MB∗ = 5.32 GeV and s1 = 40.73 GeV2. The pion non-strange scalar and

vector form factors Γn∗
1 (s) and F ππ

1 (s) will be discussed in the next section. Note that [27]

Γn∗
1 (s) =

√
3

2B0

〈

[π+π−]S |n̄n|0
〉

, (18)

with n̄n =
1√
2
(ūu+ d̄d).

In summary, from the S- and P -wave matrix elements (10) and (11), we obtain the total

symmetrized amplitude for the B− → π+π−π− decay as

M−
sym(s12, s23) =

1√
2

[

M−
S (s12) +M−

S (s23) +M−
P (s12)(s13 − s23) +M−

P (s23)(s13 − s12)
]

, (19)

with

M−
S (sij) =

GF√
3

[

−χSfπ
(

M2
B − sij

)

FBRS

0 (m2
π)u(RSπ

−) +B0
M2

B −m2
π

mb −md

FBπ
0 (sij)v(π

−RS)

]

Γn∗
1 (sij)

(20)

and

M−
P (sij) =

GF√
2

[

fπ
fRP

ABRP

0 (m2
π)u(RPπ

−) + FBπ
1 (sij)w(π

−RP )

]

F ππ
1 (sij). (21)

For the fully symmetrized B+ → π+π−π+ decay amplitude we have

M+
sym(s12, s23) =

1√
2

[

M+
S (s12) +M+

S (s23) +M+
P (s13)(s13 − s23) +M+

P (s23)(s13 − s12)
]

, (22)

with

M+
S,P (sij) = M−

S,P

(

sij, λu → λ∗u, λc → λ∗c , B
− → B+

)

. (23)

III. SCALAR AND VECTOR FORM FACTORS

As shown in Ref. [22] the full knowledge of strong interaction meson-meson form factors is

available if the meson-meson interaction is known at all energies. The calculation of the S- and
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P -wave amplitudes (20) and (21) requires the values of the scalar and vector Bπ, B(ππ) and pion

form factors. The knowledge of the B → π and B → [ππ]S,P transition form factors is needed

far below the Bπ and B[ππ]S,P scattering region. One has then to rely on theoretical models

constrained by experiment, as we do here for the B[ππ]S form factor, using the value (see above

in the previous section) determined in Ref. [19]. One could also use covariant light-front model,

like that of Ref. [23] or, if avalaible, semi-leptonic decay analysis results. For the Bπ form factors

we take the QCD light-cone sum rule results of Ref. [21] recalled above in Eqs. (16) and (17). The

special case of the pion form factors is developed below.

A. The pion scalar form factor

In the ππ case, the low-energy S wave being known and modeling the high-energy part one

can rely on the Muskhelishvili-Omnès equations [24] to build up the pion scalar form factors.

Their evaluation from these equations has been discussed in Ref. [25] and followed and developed

in Ref. [26]. However here, we shall use another approach, initiated in Ref. [27] and applied,

using a different ππ scattering matrix, in Ref. [1]. Extending this last work by introducing three

channels and keeping the off-shell contributions, the pion scalar form factor Γn∗
1 (s) entering in the

S-wave amplitude Eq. (20) is modeled according to the following relativistic three coupled-channel

equations

Γn∗
i (s) = Rn

i (E) +

3
∑

j=1

Rn
j (E)Hij(E), i = 1, 2, 3, (24)

with

Hij(E) =

∫

d3p

(2π)3
Tij(E, ki, p)

1

E − 2
√

p2 +m2
j + iǫ

k2i + κ2

p2 + κ2
, (25)

where E represents the total energy, i.e., in the ππ center of mass, E =
√
s and p is the off-shell

momentum. In Eqs (24) and (25), the indices i, j = 1, 2, 3 refer to the ππ, KK̄ and effective

(2π)(2π) channels, respectively. The center of mass momenta are kj =
√

s/4−m2
j , with m1 = mπ,

m2 = mK and m3 = m(2π). The T matrix is the corresponding three-channel two-body scattering

matrix. Here we use the solution A of the three-coupled channel model of Refs. [28, 29], where the

effective m(2π)= 700 MeV. The functions Rn
i (E) are the production functions responsible for the

formation of the meson pairs before their scattering. From Eqs. (24) and (25) one can check that
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Im Γn∗
i (s) = −

3
∑

j=1

kj
√
s

8π
T ∗
ji(E, kj , ki)Γ

n∗
j (s)θ(

√
s− 2mj). (26)

This is the same unitary relation as that of the corresponding Muskhelishvili-Omnès pion scalar

form factors constructed in Ref. [26] [see Eq. (28) therein].

In Eq. (25) the regulator function (k2i + κ2)/(p2 + κ2), which reduces to 1 on-shell (ki = p),

ensures the convergence of the integral. The range parameter κ will be fitted to data. The choice

of a separable form for the interaction yields analytic expressions for the T matrix elements. One

introduces a rank-2 separable potential in the ππ channel and a rank-1 separable potential in the

KK̄ and in the (2π)(2π) ones. According to the formalism developed in Ref. [30] and applied in

Ref. [28] one has for the T matrix elements:

T11(E, p, k1) = g0(k1)t00(E)g0(p) + g1(k1)t11(E)g1(p) + g0(k1)t10(E)g1(p) + g1(k1)t01(E)g0(p),

T21(E, p, k1) = g0(k1)t02(E)g2(p) + g1(k1)t12(E)g2(p),

T31(E, p, k1) = g0(k1)t03(E)g3(p) + g1(k1)t13(E)g3(p), (27)

where

g0(k1) =

√

4π

mπ

1

k21 + β20
,

gj(ki) =

√

4π

mi

1

k2i + β2j
, j = 1, 2, 3. (28)

The parameters βj, j = 0, 1, 2, 3, of the separable form of the scattering T matrix are given in

Table 1 of Ref. [28] (fit A).

One can extend the expressions of the reduced symmetric t(E) matrix elements given in terms

of the separable potential parameters in appendix A of Ref. [30] to the case of Ref. [28] which we

use here. The Yamaguchi form [31] of the g0(p) and gi(p) (28) in the T matrix elements (27) leads

the following analytic expression for Γn∗
i (s) in Eq. (24)

Γn∗
1 (s) =Rn

1 (E) +Rn
1 (E){[t00(E)g0(k1) + t01(E)g1(k1)]g0(k1)F10(k1)+

[t11(E)g1(k1) + t10(E)g0(k1)]g1(k1)F11(k1)}+

Rn
2 (E)[g0(k1)t02(E) + g1(k1)t12(E)]g2(k2)F22(k2)+

Rn
3 (E)[g0(k1)t03(E) + g1(k1)t13(E)]g3(k3)F33(k3),

(29)
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where

F10(k1) =
I1,0(k1)

g0(k1)h0(k1)
,

F11(k1) =
I1,1(k1)

g1(k1)h1(k1)
,

F22(k2) =
I2,2(k2)

g2(k2)h2(k2)
,

F33(k3) =
I3,3(k3)

g3(k3)h3(k3)
, (30)

with

hi(ki) =

√

4π

mi

1

k2i + κ2
, i = 1, 2, 3,

h0(k1) = h1(k1), (31)

and

Ii,j(ki) =

∫

d3p

(2π)3
gj(p)

1

E − 2
√

p2 +m2
i + iǫ

hi(p), (32)

where E = 2
√

k2i +m2
i , i = 1, 2, 3. The analytical expression for these integrals can be found in

Appendix A of Ref. [30].

As in Ref. [27] one constraints the Γn∗
i (s) to satisfy the low energy behavior given by next-to-

leading order one loop calculation in chiral perturbation theory (ChPT). One writes the expansion

at low s as

Γn
i (s)

∼= dni + fni s, i = 1, 2, 3, (33)

with real coefficients, Γn
i (s) being real below the ππ threshold. Using the expressions obtained in

NLO in ChPT for the Γn∗
i (s) given in Refs. [27, 32] one gets,

dn1 =

√

3

2

[

1 +
16m2

π

f2
(2Lr

8 − Lr
5) + 8

2m2
K + 3m2

π

f2
(2Lr

6 − Lr
4)

+
m2

π

36π2f2
+

m2
π

16π2f2
log

m2
π

ν2
− 1

96π2f2

(

m2
π

3
+m2

η

)

log
m2

η

ν2

]

,

fn1 =

√

3

2

[

4

f2
(2Lr

4 + Lr
5)−

1

16π2f2

(

1 + log
m2

π

ν2

)

− 1

64π2f2

(

1 + log
m2

K

ν2

)

− m2
π

192π2f2

(

1

m2
π

− 1

9m2
η

)]

, (34)
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and

dn2 =
1√
2

[

1 +
m2

η

48π2f2
log

m2
η

ν2
+

16m2
K

f2
(2Lr

8 − Lr
5) + 8

6m2
K +m2

π

f2
(2Lr

6 − Lr
4)

+
m2

K

72π2f2

(

1 + log
m2

η

ν2

)]

,

fn2 =
1√
2

[

4

f2
(2Lr

4 + Lr
5)−

1

64π2f2

(

1 + log
m2

η

ν2

)

− m2
K

432π2f2
1

m2
η

− 3

64π2f2

(

1 + log
m2

K

ν2

)

− 3

64π2f2

(

1 + log
m2

π

ν2

)]

, (35)

ν being the scale of dimensional regularization and f = fπ/
√
2 . Furthermore for the ChPT low-

energy constants, Lr
k, k = 4, 5, 6, 8, we use the recent determinations of lattice QCD at ν = 1 GeV

as given in Table X of Ref. [33]. For f = 92.4 MeV, we obtain dn1 = 1.1957, fn1 = 3.1329 GeV−2,

dn2 = 0.7193 and fn2 = 1.6719 GeV−2. Here we assume Γn
3 (0) = 0 which leads to dn3 = 0 and we

also assume fn3 = 0.

The real production functions are parametrized as

Rn
i (E) =

αn
i + τni E + ωn

i E
2

1 + cE4
, i = 1, 2, 3, (36)

the fitted parameter c controling the high energy behavior. The other parameters, αn
i , τ

n
i and ωn

i

are calculated by requiring that Γn
i (s) in Eq. (24) has the low energy expansion Eq. (33). These

nine parameters satisfy a linear system of nine equations displayed in appendix B. Their numerical

values, depending on the value of the range parameter κ [see Eq. (28)], will be given in Sec. V.

B. The pion vector form factor

As for the scalar case one could use the Muskhelishvili-Omnès equations to built up the pion

vector form factor. This was done in Ref. [3] for the Kπ vector form factor. Here, noting that

the knowledge of this form factor is required to describe the τ− → π−π0ντ decay, we shall use

the phenomenological model of the Belle Collaboration [34]. Fitting their high statistics data,

they built the pion vector form factor F ππ
1 (s23) by including the contribution of the three vector

resonances ρ(700), ρ(1450) and ρ(1700). Here we use the parameters given in the third column of

Table VII of Ref. [34].
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IV. OBSERVABLES AND DATA FITTING

A. Physical observables

The symmetrized B− → π−1 π
+
2 π

−
3 amplitude (19) depends on the two effective ππ masses,

m12 =
√
s12 and m23 =

√
s23 of the Dalitz plot. In the center of mass of π−(p1) and π

+(p2), the

pion momenta fulfill the equations

|−→p1| =
1

2

√

m2
12 − 4m2

π, |−→p2| = |−→p1|,

|−→p3| =
1

2m12

√

[

M2
B − (m12 +mπ)

2
] [

M2
B − (m12 −mπ)

2
]

, (37)

and the cosine of the helicity angle θ between the direction of −→p2 and that of −→p3 reads

cos θ =
1

2|−→p2 ||−→p3|

[

−m2
23 +

1

2

(

M2
B −m2

12 + 3m2
π

)

]

. (38)

For fixed values of the effective mass m12, the variables cos θ and m23 are equivalent.

The double differential B− → π−π+π− branching fraction is

d2B−

dm12 d cos θ
=

1

ΓB

m12|−→p2||−→p3|
8(2π)3M2

B

∣

∣M−
sym(s12, s23)

∣

∣

2
, (39)

where ΓB is the total width of the B−. Since the Dalitz plot is symmetric under the interchange

of m12 and m23, one can limit the integration range on m23 to the values larger than m12; hence,

the differential effective mass distribution reads

dB−

dm12
=

∫ cos θg

−1

d2B−

dm12 d cos θ
d cos θ, (40)

where cos θg corresponds to the value of cos θ in Eq. (38) with m12 = m23, viz.,

cos θg =
1

4|−→p2 ||−→p3|
(

M2
B − 3m2

12 + 3m2
π

)

. (41)

The variable m12 in Eq. (40) is also called the light (or minimal) effective mass mmin while m23

is the heavy (or maximal) effective mass, mmax. The B− → π−π+π− branching fraction is then

twice the integral of the differential branching fraction (40) over m12.
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FIG. 1: Modulus of the pion scalar form factor Γn
1 (solid line), obtained in our fit using the NLO api with

κ = 5 GeV and for which the fitted parameter c = 31.5 GeV−4, compared to that calculated in Ref. [26] using

the Muskhelishvili-Omnès equations (doubled-dashed dot line). The dashed-dot line (for c = 26.5 GeV−4)

and the dashed one (for c = 37.7 GeV−4) represent the variation of the Γn
1 modulus when c varies within

its error band.

B. Data fitting

We aim at describing the experimental π+π− distributions obtained by the BABAR Collab-

oration in the Dalitz plot analysis of the B± → π±π±π∓ decays [5]. Two different background

distributions, related to the qq̄ and the BB̄ components, are subtracted from Fig. 4 of Ref. [5]. Six

light effective π+π− mass distributions are extracted for B+ and B− decays with a subdivision of

the data into positive and negative values of the cosine of the helicity angle θ. For the B+ and B−

distributions we reject two data points corresponding to the π+π− effective masses equal to 485

and 515 MeV. Also two points at 470 and 530 MeV for the four mass distributions with cos θ > 0

or with cos θ < 0 are not taken into account. This is done to exclude the possible contribution of
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FIG. 2: The π+π− light effective mass distributions from the fit to the BABAR experimental data [5], a)

for the B− decays and b) for the B+ decays. The dashed line represents the S-wave contribution of our

model, the dotted line that of the P wave and the dot-dashed line that of the interference term. The solid

line corresponds to the sum of these contributions.

the decay processes B± → K0
Sπ

±.

As a by-product of the background subtraction, five data points, with a small number of events,

have negative values with small statistical errors. For these five data points we increase their errors

to values corresponding to those of the points lying in a close vicinity. This is done at 1385 MeV

for the B− distribution, at 1475 MeV for the B+ one, at 290 and 1610 MeV for the B− distribution

with cos θ > 0 and at 1490 MeV for the B− one with cos θ < 0.

We perform a χ2 fit to the 170 data points corresponding to the six invariant mass distributions

described above. The theoretical distributions are normalized to the number of experimental

events in the analyzed range from 290 up to 1640 MeV. In the fits, done for a fixed value of

the range parameter κ entering Eqs. (28), the following parameters were varied: the production

functions Rn
i (E) [Eq. (36)] parameter c, the real S-wave strength parameter χS and the real P -

wave normalization parameter NP . For both B
− and B+ decays, the first two parameters enter in

the S-wave part of the decay amplitude and the third one multiplies the P -wave amplitudes [see

Eqs. (20), (21) and (23)].
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FIG. 3: As in Fig. 2 but for the B− decays a) with cos θ < 0 and b) with cos θ > 0.

FIG. 4: As in Fig. 3 but for the B+ decays.

V. RESULTS AND DISCUSSION

In the fits to the selected BABAR data as described in the previous section, the CKM matrix

elements [see Eq. (2)] are calculated with λ = 0.2257, A = 0.814, ρ̄ = 0.135 and η̄ = 0.349 [18]

which leads to λu = 1.26 × 10−3 − i 3.27 × 10−3 and λc = −9.35 × 10−3 − i 1.72 × 10−6. The LO
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TABLE I: Leading order (LO) and next-to-leading order (NLO) coefficients api (RS,P , π
−), api (π

−, RS)

and api (π
−, RP ) [see Eq. (5)] entering into u(RS,Pπ

−) [Eq. (7)], v(π−RS)[Eq. (8)] and w(π
−RP ) [Eq. (9)],

respectively. The NLO coefficients are the sum of the LO coefficients plus next-to-leading order vertex and

penguin corrections. Here the renormalization scale is µ = mb/2. The superscript p is omitted for i = 1, 2,

3, 5, 7 and 9, the penguin corrections being zero for these cases.

api (RS,Pπ
−) api (π

−RS) api (π
−RP )

LO NLO LO NLO LO NLO

a1 1.039 1.071 + i0.03

a2 0.084 −0.041− i0.114

au4 −0.044 −0.032− i0.019 −0.044 −0.032− i0.019

ac4 −0.044 −0.039− i0.007 −0.044 −0.039− i0.007

au6 −0.062 −0.057− i0.017 −0.062 −0.075− i0.017

ac6 −0.062 −0.062− i0.004 −0.062 −0.079− i0.004

a7 0.0001 0.0 + i0.0001

au8 0.0007 0.0008 + i0.0 0.0007 0.0007 + i0.0

ac8 0.0007 0.0008 + i0.0 0.0007 0.0007 + i0.0

a9 −0.0094 −0.0097− i0.0003

au10 −0.0009 0.0006 + i0.0010 −0.0009 0.0006 + i0.0010

ac10 −0.0009 0.0006 + i0.0010 −0.0009 0.0006 + i0.0010

contributions of the Wilson coefficients to the api Eq. (5) are given in the second, fourth and sixth

columns of Table I. The sum of the leading order coefficient plus the next-to-leading order vertex

and penguin corrections for the api coefficients, entering into u(RS,Pπ
−) [Eq. (7)], v(π−RS)[Eq. (8)]

and w(π−RP ) [Eq. (9)], are displayed in columns three, five and seven, respectively. The corrections

are calculated according to Refs. [7] and [9] using the Gegenbauer moments for pions taken from

the Table 2 of Ref. [7] and the corresponding moments for the ρ meson from Table 1 of Ref. [35].

In the calculation of the coefficients ap6(π
−RS) and a

p
8(π

−RS), contributing to v(π−RS), we apply

the method explained in appendix A of Ref. [11]. Here the renormalization scale µ = mb/2 and we

take for the strong coupling constant αs(mb/2) = 0.303.

There are four free parameters at our disposal. Two of them, the regulator range κ and the

high energy cut-off c of the production functions [Eq. (36)] are linked to the determination of the

S-wave Γn
1 form factor. The other two, χS and NP are related to the strength of the S and P

amplitudes, respectively. The range κ should be larger than the upper limit ∼ 1.7 GeV of the

effective mππ used here. In our fits we find that the total χ2 decreases when κ increases and that
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TABLE II: Parameters of the production function Rn
i (E) Eq. (36) for κ = 5 GeV

i αn
i τni (GeV−1) ωn

i (GeV−2)

1 0.5361 −0.2101 1.2478

2 0.5455 0.0753 1.4115

3 1.1308 0.3765 3.0436

for κ beyond 5 GeV the improvement is smaller than 1. So we fix the range parameter κ to be

5 GeV. We perform thus two fits for the full S + P -wave amplitude calculated with the NLO and

with the LO api coefficients. Hereafter the quoted results given inside parentheses correspond to

the numbers obtained in the second fit.

A good overall agreement with BABAR ’s data is achieved with c = 31.5+6.2
−5.0

(

30.4+6.1
−5.2

)

GeV−4,

χS = −18.3+2.5
−2.3 (−18.4±2.5) GeV−1 and NP = 1.132+0.034

−0.035 (1.017±0.031). The total χ2 is equal to

321.3 (321.5) for the 170 experimental points of the fit. For both fits the branching fraction for the

B± → ρ(770)0π±, ρ(770)0 → π+π− decay is (8.2 ± 0.5×)10−6, to be compared with the BABAR

Collaboration determination of (8.1 ± 0.7± 1.2+0.4
−1.1)× 10−6 ≈ (8.1 ± 1.6) × 10−6 from their isobar

model analysis [5]. Note that for the LO fit we explain essentially the BABAR Collaboration’s

result without significant modification of the normalization, the parameter NP ≈ 1.02 being close

to 1. For the NLO fit, NP ≈ 1.13 ± 0.03 and one can compare N2
P − 1 ≈ 28% with the average

20% error of the experimental branching ratio.

The CP average total branching fraction of the B± → π±π∓π± decays calculated in the NLO

fit is equal to (13.2± 1.4)× 10−6 to be compared to the measured value of
(

15.2± 0.6 ± 1.2+0.4
−0.3

)

×
10−6 (table III of Ref. [5]). The S-wave contribution represents here as much as 25% of the

total branching fraction. This contribution is larger than that of the ρ(1450) and ρ(1700) which

represents only 15 % of the total P -wave contribution.

Before comparing our effective mass distributions to the experimental ones, we now give our

result for the pion scalar form factor Γn
1 (s). With the fixed value of κ = 5 GeV used in the fits, one

obtains for the αn
i , τ

n
i and ωn

i , i = 1, 2, 3, entering into Eq. (36), the values given in Table II. Then,

in Fig. 1, the modulus of the corresponding Γn
1 (s) obtained using the NLO coefficients api and for

which the fitted parameter c = 31.5 GeV−4 is compared to that calculated by Moussallam [36]

solving the Muskhelishvili-Omnès equations [26] with a high-energy ansatz starting at 2 GeV and

the same low-energy three coupled-channel scattering T matrix as in our model (see Sec. IIIA).

However, in his calculation the off-diagonal matrix elements T13(E, ki, p) and T23(ki, E, p) are set
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to zero in the unphysical region E < 2m3 = 1.4 GeV. Let us remind here that the imaginary parts

of these two pion form factors satisfy exactly the same relation given by Eq. (26). The functional

dependence of both Γn∗
1 (s) moduli is quite similar. It can be seen in Fig. 1 that, within our model,

the needed Γn∗
1 (s) is relatively well constrained. Let us note that if we choose κ = 3 GeV then the

moduls of Γn∗
1 (s) is slightly larger than that for κ = 5 GeV. Then one obtains c = 19.7 GeV−4,

χS = −17.6 GeV−1 with a total χ2 of 326.

For E =
√
s close to zero the behavior of our pion form factor is governed by the chiral

perturbation expansion Eq. (33). These ChPT constraints, not explicitly included in Moussallam’s

case, lead to Γn∗
1 (s) moduli of both approaches to differ only slightly near the ππ threshold. Above

the ππ threshold, there is a maximum corresponding to the f0(600) resonance, then follows, close

to 1 GeV, a characteristic dip due to the f0(980) and finally, below the spike at 1.4 GeV related

to the opening of the third channel, there is some enhancement generated by the f0(1400) present

in the ππ three-channel model used here [28, 29]. The third threshold energy equal to 1.4 GeV is

a parameter representing twice the mass of the effective two-pion mass m(2π) used to account for

the four pion decays of scalar mesons (see Ref. [28]). Thus, in nature there is no such sharp energy

behavior. These characteristic features of the pion scalar form factor Γn
1 (s) are essential to obtain

a good fit of the experimental effective mass distributions of the B± to 3π decays.

The results of the fit on the experimental distributions, obtained using the NLO coefficients

api in the B± → π±π∓π± amplitudes, are displayed in Figs. 2, 3 and 4. The ρ(770)-resonance

contribution dominates the π+π− spectrum, but that of the S-wave is non negligible. As seen, the

S-wave part is sizable near 500 MeV which is related to the contribution of the scalar resonance

f0(600). Near 1.4 GeV the f0(1400) scalar resonance [28, 29] gives some enhancement in the

distributions.

Figure 2 exhibits a small CP asymmetry, the B− and B+ effective mass distributions being

very close. Summing the number of experimental events in the mπ+π− range between 290 and

1640 MeV one finds 616 events for the B− decay and 606 for that of the B+. This leads to a CP

asymmetry of (0.8 ± 4.8)% which can be compared to the values of (3.0 ± 0.4)% for the NLO fit

and (0.07 ± 0.03)% for the LO fit. Taking into account the statistical error of 4.8% and adding to

it a few percent systematic error one sees that both fits agree with experiment. Let us recall here

the experimental value of the CP asymmetry ACP =
(

3.2± 4.4 ± 3.1+2.5
−2.0

)

% for the total sample

of π±π∓π± events [5]. For the particular decay mode, namely for the B± decay into ρ0(770)π±,

ρ0(770) → π+π−, the isobar model analysis gives ACP =
(

18 ± 7± 5+2
−14

)

%, while from our model

we get 4.4% (−0.03%). Note here that the asymmetries obtained for the fit corresponding to
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the amplitudes calculated with the real LO api coefficients are quite small as it could have been

expected.

Figures 3 and 4 show a spectacular feature, namely that the interference term of the S and P

waves is quite important even at the ρ(770)0 maximum. The sign of this interference term depends

on the sign of cos θ, so the ρ peak is reduced for the negative values of cos θ and enhanced for

the positive values. This is a clear indication that the π+π− effective mass distribution cannot

be reproduced without the S-wave contribution. The f0(980) resonance is not observed as a peak

in the π+π− spectrum. This fact is easily explained in our model since the decay amplitudes

are proportional to the pion scalar form factor which has a dip near 1 GeV as seen in Fig. 1.

One can notice some surplus of events in the π+π−effective mass close to 1.25 GeV. In the isobar

model analysis this was taken in account by introducing the f2(1270) resonance [5]. In the QCD

factorization model applied here tensor mesons cannot be generated by the presently existing

transition operators.

VI. SUMMARY AND OUTLOOK

The present paper is a continuation of our efforts [1–4] in constraining theoretically the meson-

meson final state strong interactions in hadronic charmless three-body B decays. If the strong

interaction amplitudes are sufficiently well understood then one can improve the precision of the

weak interaction amplitudes extracted from these reactions.

Our theoretical model for the B± → π±π∓π± is based on the application of the QCD factor-

ization [6, 7, 9, 13] to quasi two-body processes in which only two of the three produced pions

interact strongly, forming either an S- or P -wave state. One assumes that the third pion, being

fast in the B-meson decay frame, does not interact with this pair. This hypothesis is mainly valid

in a limited range of the π+π− effective mass, here taken between the ππ threshold and 1.64 GeV.

The short-distance interaction part of the decay amplitudes describes the flavor changing pro-

cesses b → uūd and b → dd̄d. It is proportional to Cabibbo-Kobayashi-Maskawa matrix elements

multiplied by effective coefficients calculable in the perturbative QCD formalism. This short-

distance amplitude is multiplied by a long-distance contribution expressed in terms of two prod-

ucts. The first one is the product of the pion decay constant by the B → ππ transition matrix

element and the second one is the product of the pion form factor by the B → π transition form

factor. The parametrization [Eqs. (16), (17)] of the scalar and vector B to π transition form factors

follow from the light-cone sum rule study of Ref. [21].
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The effective Wilson coefficients are calculated to next-to-leading order in the strong coupling

constant. They include vertex and penguin corrections but neither hard-scattering ones nor an-

nihilation contributions since these last two terms contain unknown phenomenological parameters

related to amplitude divergences [9]. We find that these vertex and penguin corrections are small in

comparison to the leading order term (see Table I). However, they allow to generate some non-zero

CP asymmetries.

We then assume the B to ππ transition matrix element to be equal to the product of the B to

intermediate meson transition form factor by the decay amplitude of this meson into two pions.

The next step is to suppose the latter decay amplitude to be proportional to the pion non-strange

scalar or vector form factor depending on the wave studied. For the S wave the proportionality

factor is given by a fitted parameter χS and for the P wave it is related to the inverse of the ρ

decay constant. For the limited range of the effective ππ mass, from ππ threshold to 1.64 GeV,

the B → ππ transition form factors are taken as constants given by the B → f0(980) [19] and by

the B → ρ(770) [20] transition form factors at q2 = m2
π.

The pion scalar form factor is modeled by the unitary relativistic three coupled-channel equa-

tion (24) using the ππ, KK̄ and effective (2π)(2π) scattering T matrix of Refs. [28, 29]. This form

factor depends on two fitted parameters: the first one κ insures the convergence of the involved

integrals and the second one, c, controls the high-energy behavior of the production functions

accountable for the meson pair formation. The pion vector form factor takes into account the

contribution of the ρ(770), ρ(1450) and ρ(1700), and follows from the parametrization of the Belle

Collaboration in their study of the semi-leptonic τ− → π−π0ντ decays. For the P -wave amplitude

we introduce a fitted overall normalization factor NP .

We obtain a good fit to the ππ effective mass distributions of the BABAR Collaboration data

of the B± → π±π∓π± decays [5]. The value of the branching fraction for the B± → ρ(770)0π±

decays, (8.2 ± 0.5×)10−6, agrees well with that, (8.1 ± 0.7 ± 1.2+0.4
−1.1) × 10−6, of the experimental

analysis. We find the normalization factor NP to be close to 1. The π+π− spectra are dominated

by the ρ(770)0 resonance but, at low effective mass, the S-wave contribution is sizable. Here the

f0(600) resonance manifests its presence. Furthermore one observes a strong interference of the S

and P waves in the event distributions for cos θ > 0 and cos θ < 0. Here the f0(980) is not directly

visible as a peak, since the pion scalar form factor has a dip near 1 GeV. At 1.4 GeV, the maximum

of the S-wave distribution comes from the scalar resonance f0(1400) [28, 29].

Our model yields a unified description of the contribution of the three scalar resonances f0(600),

f0(980) and f0(1400) in terms of one function: the pion non-strange scalar form factor. This reduces
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strongly the number of needed free parameters to analyze the Dalitz plot. The functional form of

our S-wave amplitude [Eq. (20)], proportional to Γn∗
1 (s), could be used in Dalitz-plot analyses and

the table of Γn∗
1 (s) values can be sent upon request.

The strong interaction phases of the decay amplitudes are constrained by unitarity and meson-

meson data, which should help in the extraction of the weak angle phase γ or φ3 equals to

arg(−λ∗u/λ∗c). Of course new experimental data with better statistics would be welcome. One

expects B± → π±π∓π± events from the Belle Collaboration, and probably, in the near future,

from LHCb and from the near term super B factories.
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Appendix A: Long-distance functions XS,P and YS,P

1. The function XS from the S-wave amplitude proportional to BRS transition matrix

element

From Eq. (12) the function XS reads

XS ≡
〈

[π+(p2)π
−(p3)]S |(ūb)V−A|B−

〉 〈

π−|(d̄u)V−A|0
〉

= Gn
RSπ+π−(s23)

〈

RS |(ūb)V −A|B−
〉 〈

π−|(d̄u)V−A|0
〉

, (A1)

where the vertex function Gn
RSπ+π−(s23) describes the RS decay into a [π+π−]S pair. The B to RS

transition matrix element reads (see e.g. Eq. (B6) of Ref. [12])

〈RS(p2 + p3)|ūγµ(1− γ5)b|B−(pB)〉

= i

{

[

(pB + p2 + p3)
µ − M2

B − s23
m2

π

pµ1

]

FBRS

1 (m2
π) +

M2
B − s23
m2

π

pµ1F
BRS

0 (m2
π)

}

, (A2)
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where FBRS

0 (m2
π) and FBRS

1 (m2
π) are the BRS scalar and vector form factors, respectively. The

pion decay constant fπ is defined as

〈π−(p1)|d̄γµ(1− γ5)u|0〉 = ifπp1µ. (A3)

The product of Eqs. (A2) and (A3) yields

〈

RS |(ūb)V−A|B−
〉 〈

π−|(d̄u)V−A|0
〉

= −(M2
B − s23)fπF

BRS

0 (m2
π). (A4)

The vertex function Gn
RSπ+π−(s23), as in Ref. [2], is modeled by

〈

[π+π−]S |n̄n|0
〉

= Gn
RSπ+π−(s23) 〈RS |n̄n|0〉 . (A5)

An effective scalar decay constant fnRS
can be introduced with

〈RS |n̄n|0〉 = mRS
fnRS

. (A6)

From Eqs. (A5), (18) and (A6) one obtains

Gn
RSπ+π−(s23) =

√

2

3
χS Γn∗

1 (s23) =

√

2

3

√
2B0

mRS
fnRS

Γn∗
1 (s23), (A7)

with

χS =

√
2B0

mRS
fnRS

. (A8)

The effective scalar decay constant has a role comparable to the RP decay constant as can be seen

comparing Eqs. (A7) and (A19). The product of Eqs. (A7), (A2) and (A3) gives

XS = −
√

2

3
χS fπ (M2

B − s23) F
BRS

0 (m2
π) Γ

n∗
1 (s23). (A9)

2. The function YS from the S-wave amplitude proportional to Bπ transition matrix ele-

ment

From Eq. (13) one has

YS ≡
〈

π−|(d̄b)sc−ps|B−
〉 〈

[π+(p2)π
−(p3)]S |(d̄d)sc+ps|0

〉

=
〈

π−|d̄b|B−
〉 〈

[π+(p2)π
−(p3)]S |d̄d|0

〉

. (A10)
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From the Dirac equations satisfied by b(pB) and d̄(p1) one obtains

〈

π−(p1)
∣

∣d̄(p1)b(pB)
∣

∣B−(pB)
〉

=

〈

π−(p1)

∣

∣

∣

∣

d̄(p1)
γ · (pB − p1)

mb −md
b(pB)

∣

∣

∣

∣

B−(pB)

〉

. (A11)

The B to π transition matrix element
〈

π−|(d̄b)V−A|B−
〉

, entering into the above expression, can

be written as (see e.g. Eq. (5) of Ref. [3])

〈π−(p1)|d̄γµ(1− γ5)b|B−(pB)〉

=

[

(pB + p1)
µ − M2

B −m2
π

q2
qµ
]

FBπ
1 (q2) +

M2
B −m2

π

q2
qµFBπ

0 (q2), (A12)

where FBπ
0 (q2) and FBπ

1 (q2) are the Bπ scalar and vector form factors, respectively and q =

pB − p1 = p2 + p3. Using Eqs. (A12) and (18) in Eq. (A10), yields

YS =

√

2

3
B0 Γ

n∗
1 (s23)

M2
B −m2

π

mb −md
FBπ
0 (s23). (A13)

3. The function XP from the P -wave amplitude proportional to BRP transition matrix

element

From Eq. (14) one has for the function XP (see Eq. (3.1) of Ref. [12])

XP ≡
〈

[π+(p2)π
−(p3)]P |(ūb)V−A|B−

〉 〈

π−|(d̄u)V −A|0
〉

=
Gn

RP π+π−(s23)√
2

ǫ · (p2 − p3)
〈

RP |(ūb)V−A|B−
〉 〈

π−|(d̄u)V−A|0
〉

, (A14)

where the RP decay into a [π+π−]P pair is described by the vertex function Gn
RP π+π−

(s23). Here ǫ

represents the polarization vector of the P -wave meson RP . The factor 1/
√
2 comes from the fact

that RP represents the ρ(770)0. As seen from e.g. Eq. (B6) of Ref. [12] or Eq. (24) of Ref. [6],

〈

RP (p2 + p3)|(ūb)V−A|B−(pB)
〉

= −i 2mRP

ǫ∗ · pB
p21

p1 A
BRP

0 (p21) + other terms. (A15)

The “other terms” do not give any contribution when multiplying this matrix element by that given

in Eq. (A3). Plugging this expression into Eq. (A14) one has a product of polarization vectors and

the sum over the three possible polarization eigenvalues of the state RP should be done. From

∑

λ=0,±1

ǫλµ(p)ǫ
λ∗
ν (p) = −(gµν −

pµpν
p2

), (A16)
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one obtains

∑

λ=0,±1

ǫλ · (p2 − p3)ǫ
λ∗ · pB = −p1 · (p2 − p3). (A17)

Then

XP =
fπ
fRP

F ππ
1 (s23) (s13 − s12) A

BRP

0 (m2
π). (A18)

Above, as shown in Ref. [3] for the K∗(892) → (Kπ)P decay case [see their Eq. (D9)], we have

parametrized the RPπ
+π− vertex function in terms of the pion vector form factor F ππ

1 (s23). One

has

GRP π+π−(s23) =

√
2

mRP
fRP

F ππ
1 (s23), (A19)

fRP
being the charged RP decay constant.

4. The function YP from the P -wave amplitude proportional to the Bπ transition matrix

element

From Eq. (15)

YP ≡
〈

π−|(d̄b)V−A|B−
〉 〈

[π+(p2)π
−(p3)]P |(ūu)V−A|0

〉

. (A20)

The pion vector form factor is defined by (see e.g. Eq. (36) of Ref. [6])

〈RP |(ūu)V−A|0〉 = 〈[π+(p2)π−(p3)]P |ūγµ(1− γ5)u|0〉 = − (p2 − p3)µ F
ππ
1 (q2). (A21)

The minus sign arises from the definition of the form factor F ππ
1 (q2) which contains a plus sign for

a (d̄d)V−A current [similar to Eq. (A12], then as ρ0 = 1/
√
2(uū − dd̄), there will be a minus sign

for a (ūu)V−A current. The product of Eqs. (A12) and (A21) gives

YP = −2 p1 · (p2 − p3)F
Bπ
1 (q2)F ππ

1 (q2) = (s13 − s12)F
Bπ
1 (q2)F ππ

1 (q2). (A22)

Appendix B: Linear system of equations for αn
i , τ

n
i and ωn

i

The linear system of nine equations satisfied by the nine production function parameters αn
i ,

τni and ωn
i , i = 1, 2, 3, is
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αn
i +

3
∑

j=1

αn
jHji(0) = dni ,

τni +

3
∑

j=1

(

τnj Hji(0) + αn
j

∂Hji(E)

∂E

∣

∣

∣

∣

E=0

)

= 0,

ωn
i +

3
∑

j=1

(

ωn
jHji(0) + τnj

∂Hji(E)

∂E

∣

∣

∣

∣

E=0

+
1

2
αn
j

∂2Hji(E)

∂E2

∣

∣

∣

∣

E=0

)

= fni . (B1)
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