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Abstract 
Gene regulation involves a hierarchy of events that extend from specific protein-

DNA interactions to the combinatorial assembly of nucleoprotein complexes. The 

effects of DNA sequence on these processes have typically been studied based either 

on its quantitative connection with single-domain binding free energies or on 

empirical rules that combine different DNA motifs to predict gene expression trends 

on a genomic scale. The middle-point approach that quantitatively bridges these two 

extremes, however, remains largely unexplored. Here, we provide an integrated 

approach to accurately predict gene expression from statistical sequence 

information in combination with detailed biophysical modeling of transcription 

regulation by multidomain binding on multiple DNA sites. For the regulation of the 

prototypical lac operon, this approach predicts within 0.3-fold accuracy 

transcriptional activity over a 10,000-fold range from DNA sequence statistics for 

different intracellular conditions. 
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Introduction 
In a now classic paper proposing the lac operon model, Jacob and Monod put forward the 

very basic principles of gene regulation (1). They reasoned that there are molecules that 

bind to specific sites in nucleic acids to control whether or not genes are expressed. Since 

then, a major challenge in biology has been to understand how site-specific regulatory 

factors function and the effects that they have in gene regulation. Thus, over the last 

decades, there have been a large effort to produce reliable and efficient computer 

algorithms for the analysis and prediction of DNA binding sites (2).  

 These algorithms have reached an extraordinary ability at predicting with high 

accuracy how proteins bind single sites (3, 4). At the same time, use of these highly 

accurate models to predict where additional binding sites might occur typically finds a 

wealth of sites that are not physiologically relevant (2). A rule of thumb to predict actual 

binding is that relevant sites often appear close to each other to act cooperatively (5). 

Clever refinement of this idea has led to heuristic approaches that have proved very 

successful at predicting the main gene expression trends on a genomic scale (6-12). The 

middle ground between detailed single site and broad genomic predictions, however, still 

remains largely unexplored. 

 Here, we develop a quantitative framework that accurately integrates sequence 

statistics with a biophysical model for multidomain binding on non-adjacent DNA sites 

using as a prototype system the lac operon. This choice is motivated by two key features 

of the lac operon. 

 First, the very simple, yet extremely powerful, original idea of the lac repressor 

preventing transcription upon binding to the operator DNA in the promoter region has 

kept evolving over the years to uncover a highly sophisticated mechanism that goes 

beyond simple binding events (13). It incorporates now an activator and two additional 

binding sites for the repressor outside the promoter region. These two additional sites are 

orders of magnitude weaker than the main one and by themselves do not affect 

transcription substantially. In combination with the main one, however, they can increase 

repression of transcription by almost a factor 100 (14, 15).  
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 Second, there is extremely detailed information about the lac operon that offers 

the possibility of considering the actual mode of binding. This point is important because 

the precise sequence has been shaped by evolution through the actual biophysical 

mechanism. The available information includes detailed quantitative models of how the 

lac repressor binds to two sites simultaneously (16, 17) and to the three sites for the 

repressor together with the effects of the Catabolite Activator Protein (CAP) (18, 19). 

The values of the molecular and cellular parameters needed by the models are also 

available, including the in vivo free energy of binding, the energetic costs of bending and 

twisting DNA upon two-site binding, and the effective transcription rate as a function of 

the binding state of the repressor (13, 20).  

 Therefore, the lac operon provides an efficient platform to accurately test 

multisite models. In this classical example, without considering the two additional sites, 

no matter how good the single site model is, it would be off by a factor of almost 100.  

 The focus here is to provide an avenue to extend traditional biophysical single-

domain-binding models (21-23) to incorporate the details of multidomain binding, which 

are inherently different from those of single-domain binding of multiple transcription 

factors. The traditional approach considers the interaction of a transcription factor, TF , 

with a DNA site,   S1, as a binding reaction of the type TF + S1⇔ TF ⋅ S1. The strength 

of the binding is typically assessed through position weight matrix (PWM) scores, which 

are directly related to the binding energy of the DNA–protein interaction (3, 24). The 

extension to multidomain transcription factors in the presence of additional binding sites, 

denoted   S2  and   S3, has to consider also reactions of the type 

  TF ⋅ S1+ S2 ⇔ S2 ⋅TF ⋅ S1 and S2 ⋅TF ⋅ S1+ S3⇔ S3 ⋅TF ⋅ S1+ S2 . These more 

complex reactions account for binding of one domain of the TF while its other domain is 

still bound to DNA and usually involve looping the DNA between each pair of 

simultaneously bound sites. 

 The multisite approach is explicitly implemented by considering first the three lac 

operators as DNA signals. They are used to construct a probabilistic model that provides 

PWM scores for binding of a lac repressor domain to these and similar mutated 

sequences. The scores are subsequently linked parametrically to binding free energies and 

incorporated directly into a detailed biophysical model of transcription regulation that 



 4

takes into account multidomain binding to multiple binding sites. The model considers a 

decomposition of the free energy of the protein-DNA complex into different modular 

contributions. The link between scores and free energies is calibrated by fitting the model 

to a subset of experimental transcription data. The calibrated model is then tested with 

different sets of data (Figure 1).  

Methods 

From sequence to score  

The PWM method is used to describe repressor-operator binding (3, 24).  It assigns a 

score S to the sequence 1 2...= wX x x x  according to 

 S = ln
i=1

w

∑
pxi

qx

, (1)  

where xip  is the estimated probability of having the nucleotide x at position i of the 

binding site and  qx   is the background frequency of that nucleotide. Taking into account 

small sample size,  pxi  is estimated from the observed positional frequency as 

 pxi =
nxi +1
N + 4

,  (2) 

where  nxi  is the number of sites having a nucleotide x at position i and N is the total 

number of sites in the training set. In our case, we have only three sequences in the 

training set corresponding to the three operators.  

 

From score to free energy 

We assume a linear relationship to transform the score S of each sequence into the 

interaction free energies, e , between the lac repressor domain and the DNA site: 

 e = aS + b , (3) 

where a  and  b  are constants to be inferred from experiments. With this linear 

assumption, a  selects the energy units and b  the reference zero of energy. 
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Multidomain binding 

The lac repressor is a tetramer consisting of two dimeric DNA binding domains. 

Multidomain binding is taken into account by decomposing the free energy of the 

protein-DNA complex into different modular contributions, including positional, 

interaction, and conformational free energies (19, 25).  

 The positional free energy, p , accounts for the cost of bringing the lac repressor 

to its DNA binding site. Its dependence on the repressor concentration,  n , is given by 

  p = p° − RT ln n , where  p°  is the positional free energy at 1M. Interaction free energies, 

e , arise from the physical contact between a binding domain and DNA site.  Thus, when 

only a single domain is involved, the free energy of binding is given by  ΔG = e + p .  For 

two domains, denoted by subscripts 1 and 2, the free energy of binding is given by 

  ΔG = e1 + e2 + c + p . Conformational free energies, c , account for changes in DNA and 

repressor conformation, which are needed to accommodate multiple simultaneous 

interactions (Figure 2).  

 All these contributions to the free energy, taking into account the three operators 

for specific binding of the lac repressor, can be expressed in mathematical terms as 

  

  

ΔG(s) = ( p + e1)s1 + ( p + e2 )s2 + ( p + e3)s3

+(cL12 − ps1s2 )sL12 + (cL13 − ps1s3)sL13 + (cL23 − ps2s3)sL23

+∞(sL12sL13 + sL12sL23 + sL13sL23) ,
 (4) 

where   s1 ,   s2 , and   s3  are state variables that can take the values 0 and 1 to indicate 

whether (= 1) or not  (= 0 ) the repressor is bound to O1, O2, and O3, respectively; and 

  sL12 ,   sL13 , and   sL23   are variables that indicate whether (= 1) or not  (= 0 )   DNA forms 

the loops  O1-O2,  O1-O3, and O2-O3, respectively.  The subscripts of the different 

contributions to the free energy have the same meaning as those of the corresponding 

binary variables. The infinity in the last term of the free energy implements that two 

loops that share one operator cannot be present simultaneously by assigning an infinite 

free energy to those states (18).  

 The set of 6 state variables, denoted by s = (s1, s2 , s3, sL12 , sL13, sL23) , describes the 

specific binding configuration of the repressor-DNA complex. For instance, a repressor 
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bound to O2 is specified by s = (0,1,0,0,0,0) ; a repressor bound to O1 and O3 looping the 

intervening DNA, by s = (1,0,1,0,1,0) ; and three repressors bound, one to each operator, 

by s = (1,1,1,0,0,0) . The specific value of the free energy is obtained by substituting the 

values of the state variables in the expression of the free energy. This description in terms 

of state variables can be visualized as a factor graph (Figure 3).  

 The probability of any of these states depends exponentially on its free energy and 

is obtained from statistical thermodynamics as 

 Ps =
e−ΔG(s )/RT

Z
, (5) 

where  RT  is the gas constant times the absolute temperature. The partition function, 
( ) /G s RT

s
Z e−Δ=∑ , is used as normalization factor. 

 

Transcriptional control 

Gene expression in the lac operon is completely abolished when the repressor is bound to 

O1; otherwise, transcription takes place either at an activated maximum rate,  Γmax , when 

O3 is free or at a basal reduced rate, χΓmax , when O3 is occupied. This reduction by a 

factor χ  arises because binding of the repressor to O3 prevents CAP from activating 

transcription (13, 18).    

 The transcription rate   Γ(s)  can be expressed in terms of state variables as 

   Γ(s) = Γmax (1− s1)(χs3 + (1− s3)) . (6) 

With this approach, the effective transcription rate, 

  Γ = Γ(s)PSs∑ =
1
Z

Γ(s)e−ΔG(s)/RT
s∑  (7) 

is obtained by computing the thermodynamic average over all the representative states; 

namely, by performing the sum above over all possible combination of values of s. 
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Model calibration 

The overall model has only two free parameters: the constants a  and b  that relate scores 

to free energies of binding. Their values are inferred by minimizing the square 

logarithmic error between measured and model normalized transcription (Γ / Γmax ). The 

values of the other four parameters, three conformational free energies and CAP 

activation, are taken from the experimental data. Explicitly, the value χ=0.03 was 

reported in Ref. (26); the value cL12=23.35 kcal/mol was obtained in Ref. (20) from 

experimental data in Ref. (26); the values cL13=22.05 kcal/mol and cL23 =23.50 kcal/mol 

were obtained from the value of cL12 by taking into account the dependence of the 

conformational free energy on the distance between operators (20, 27, 28) and the 

stabilization of the O1-O3 loop by CAP (29, 30).   

 

Results and Discussion 
We applied the multisite approach to classic experiments on the lac operon that 

considered gene expression for different repressor concentrations in E. coli strains 

covering all eight possible combinations of operator deletions (14). The sequences of the 

three wild-type (WT) operators O1, O2, and O3 were used to compute the PWM from 

which we obtained the scores for these three operators and their respective "deletions" 

O1M, O2M, and O3M (See Table 1). The scores correctly ranked the three WT operators 

according to their measured strength and consistently ranked all the deletions below all 

the WT operators. 

 The values of the parameters a  and b  were obtained by fitting the model to the 

experimental transcription data using  

 

  

ΔG(s) = ( p + aS1 + b)s1 + ( p + aS2 + b)s2 + ( p + aS3 + b)s3

+(cL12 − ps1s2 )sL12 + (cL13 − ps1s3)sL13 + (cL23 − ps2s3)sL23

+∞(sL12sL13 + sL12sL23 + sL13sL23)
 (8) 

as the free energy of the system. This expression is obtained after substitution of the 

relation  e = aS + b  in Equation 4.  In this way, the binding is described by the PWM 
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scores   S1 ,   S2 , and   S3  for each site together with the conformational contributions to the 

free energy from DNA looping (28). 

 The model, with just a  and b  as free parameters, is able to fit the experimental 

data (14) within 0.29-fold accuracy over a 10,000-fold range of transcriptional activity 

(Figure 4A). In total, there are 22 experimental points, accounting for 8 operator 

configurations, three different repressor concentrations, and different functional forms of 

the transcription curves.  The value FA  that quantifies the ability of the model to capture 

the experimental data within FA -fold accuracy is explicitly defined for a set of N  

experimental, exΓ , and computed, cpΓ , transcription rates through the expression 

2 2
1

log(1 ) log( / )N
i ii

N FA ex cp
=

+ = Γ Γ∑ , and it indicates that typically measured and 

computed values differ from each other by a factor 1 FA+ .   

 The interaction free energies obtained from the model for the best-fit a  and b  

parameters and the corresponding experimental in vivo values (18) are shown in Table 1. 

The results of the model exhibit a good agreement with the available experimental data. 

In terms of dissociation constants, the differences between the predicted and observed 

values are within the 2-fold range (Table 1). An advantage of the approach we have 

followed is that the in vivo free energies, and the corresponding dissociation constants, 

take into account implicitly the effects of non-specific binding. The reason is that their 

values are measured with respect to the reference state with no repressor bound to the 

operators, which includes the repressors in solution in the cytosol as well as the 

repressors bound non-specifically to DNA (for a detailed quantitative discussion see 

Appendix II of Ref. (16)).   

 To test the predictive potential of the multisite model, we used experimental data 

sets for two operator configurations to infer the values of the parameters a  and  b , and 

then used the calibrated model to predict the transcriptional activity for the other six 

configurations (Figure 4B). The model accuracy at predicting new data decreases only 

slightly with respect to the all-fit accuracy. In principle, only two experimental data 

points would be needed to calibrate model because there are only two free parameters. 

Indeed, just two experimental points can be used to calibrate the model with just a slight 

additional decease in global accuracy (Figure 4C). Therefore, without using any free 
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energy of binding, the multisite model is able to accurately predict gene expression 

curves over a 10,000-fold range for eight different E. coli strains covering all possible 

combinations of operator "deletions" from just two experimental calibration data points 

and the sequences of the six DNA sites involved.  

 There is an important prediction that goes beyond the experimentally observed 

free energies of binding. The deletion O1M of the main operator O1 involved the mutation 

of just three DNA base pairs. As a consequence, the model predicts for O1M an increase 

in free energy of 5.4 kcal/mol with respect to O1, or equivalently about an 8,000-fold 

increase of the dissociation constant, which is substantial but still remains relatively close 

to the free energy of binding to O3, the weakest WT operator (Table 1). We found that 

such a decrease has transcriptional consequences that make it distinguishable from a 

complete deletion (Figure 5).  Thus, the multisite approach is able not only to both 

accurately predict gene expression and recover known free energies but also to obtain 

precise affinity estimates for very weak sites that were assumed not to bind the lac 

repressor.  

 Typically, the effects of a given sequence depend on the context. This dependence 

has been noted explicitly as one of the main limiting factors for identifying 

physiologically relevant sites and for linking statistical sequence information, such as 

PWM scores, to transcriptional activity (31). This fundamental problem in gene 

regulation is believed to result from the interplay among multiple DNA sites in 

orchestrating the binding patterns of transcription factors that control gene expression (2). 

The approach presented here overcomes this limitation by using detailed biophysical 

modeling of multidomain binding to directly connect statistical sequence information 

with transcriptional activity. We have shown that, for the prototypical lac operon, which 

relies on a cluster of three non-adjacent sites over a 0.5 kb DNA region to control 

transcription, this multisite approach accurately recapitulates the observed transcriptional 

activity over a 10,000-fold range for all the possible combinations of operator deletions.  
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Tables 
 
Table 1: Operator sequences and their statistical and binding properties 

Name Sequence S  
aS + b  

(kcal/mol)
e  

(kcal/mol)
KD

sc  

(nM) 
KD

ex  
(nM)

O1 AATTGTGAGCGGATAACAATT -13.38 -27.62 -27.8 0.728 0.54 
O2 AAATGTGAGCGAGTAACAACC -12.17 -25.94 -26.3 12.1 6.62 
O3 GGCAGTGAGCGCAACGCAATT -10.95 -24.25 -24.1 201 259 
O1M AATTGTTAGCGGAGAAGAATT -9.51 -22.26 N/A 5600 N/A 
O2M GAAGGTTAATGAATAGCACCC -5.12 -16.16 N/A 1.44×108 N/A 
O3M TCGATCGAGCTCAACGCAATT -4.71 -15.60 N/A 3.37×108 N/A 

 
The PWM score,  S , for a given operator sequence is used to estimate its interaction free 

energy with the lac repressor as aS + b , with a = 1.387 kcal/mol  and 

  b = -9.064 kcal/mol . The experimental values of these free energies,  e , are from Ref. 

(18) . Dissociation constants are computed as KD
sc = e(aS+b+ p°)/ RT  for the predictions from 

PWM scores and as   KD
ex = e(e+ p°)/ RT  for the experimental data. N/A stands for data not 

available. 
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Figure legends 
Figure 1: Integration of sequence statistics into predictive biophysical multidomain 

models. The approach is implemented by considering first the three operators as DNA 

signals. They are used to construct a probabilistic model that provides binding scores for 

these and similar mutated sequences. The scores are subsequently linked parametrically 

to binding free energies and incorporated directly into a detailed biophysical model of 

transcription regulation. The link between scores and free energies is calibrated by fitting 

the model to a subset of experimental data. The calibrated model is then tested with 

different sets of data. 

 

Figure 2: Operator locations on DNA and binding of the lac repressor. (A) The main, O1, 

and the two auxiliary, O2 and O3, operators are shown as black rectangles on the black 

line representing DNA. Binding of the lac repressor to O1 prevents transcription of the 

three lacZYA genes. (B) A repressor is shown bound to the operator O2. The free energy 

of binding is   ΔG = e2 + p . (C) A repressor is shown looping DNA by binding 

simultaneously to O1 and O3. The free energy of this binding configuration is 

  ΔG = e1 + e3 + cL13 + p .  

 

Figure 3: Factor graph for the free energy components of the multisite lac represor-

operator binding.  The free energy of the system, ΔG(s) , as a function of the state 

variables, s = (s1, s2 , s3, sL12 , sL13, sL23) , has a graphical representation in the form of factor 

graph. The round nodes represent state variables and the rectangular nodes represent 

contributions to the free energy. The quantity in the rectangular node is present in the free 

energy when all its connecting state variables are equal to 1.  The experimental values for 

wild-type parameters are e1=-27.8 kcal/mol, e2=-26.3 kcal/mol, e3=-24.1 kcal/mol, 

cL12=23.35 kcal/mol, cL13=22.05 kcal/mol, and cL23 =23.50 kcal/mol. The dependence on 

the lac repressor concentration, n, is given by the positional free energy, p=p°-RT ln n, 

with  p°=15 kcal/mol.   

 



 15

Figure 4: Model calibration and prediction of the transcriptional activity as a function of 

the repressor concentration. The normalized transcription  (Γ / Γmax ) was obtained for 

WT and seven mutants accounting for all the combinations of deletions of the three 

operators. For each of the eight cases, the results of the model (continuous lines) as a 

function of the repressor concentration are compared with the experimental data from 

Ref. (14) (square symbols). The particular set of WT or "deleted" operators is indicated 

for each curve; for instance, O1-O2-O3 corresponds to WT lac operon and O1M-O2M-O3M, 

to the mutant with all three operators "deleted".  The values of the experimental 

parameters used are cL12=23.35 kcal/mol, cL13=22.05 kcal/mol, cL23 =23.50 kcal/mol, and 

χ=0.03. The PWM scores,  S , for each site are as shown in Table 1. (A) The values of the 

parameters a = 1.387 kcal/mol  and b = -9.064 kcal/mol  that connect interaction free 

energies with scores,  e = aS + b , were obtained by fitting the model to all the 

experimental transcription data. (B) The values of the parameters a = 1.348 kcal/mol  and 

  b = −9.531 kcal/mol  were obtained by fitting the model to the experimental data for the 

operator configurations O1-O2-O3 and O1M-O2-O3. The model accurately predicts the 

normalized transcription for the other six operator configurations. (C) Only two 

experimental points (indicated by big gray circles) are used to obtain the values of the 

parameters a = 1.462 kcal/mol  and b = −8.208 kcal/mol . The model is still able to 

accurately predict the normalized transcription for the remaining 20 experimental points.  

 

Figure 5: Deletions versus weak binding. The normalized transcription (Γ / Γmax ) for the 

four configurations with O1M is shown for the model as in Figure 4A (continuous line), 

for the model assuming that the free energy of binding to O1M is infinite as in a complete 

deletion (discontinuous line), and for the experimental data from Ref. (14) (square 

symbols). 
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