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Bayesian estimation of GARCH model with an
adaptive proposal density

Tetsuya Takaishi

Abstract A Bayesian estimation of a GARCH model is performed for US-Dol
lar/Japanese Yen exchange rate by the Metropolis-Hastilggsithm with a pro-
posal density given by the adaptive construction scheméhdmdaptive construc-
tion scheme the proposal density is assumed to take a forrmuflévariate Stu-
dent’s t-distribution and its parameters are evaluatedsiryguthe sampled data and
updated adaptively during Markov Chain Monte Carlo simiala. We find that the
autocorrelation times between the data sampled by theigdapnstruction scheme
are considerably reduced. We conclude that the adaptiv@remtion scheme works
efficiently for the Bayesian inference of the GARCH model.

Key words: Markov Chain Monte Carlo, Bayesian inference, GARCH model,
Metropolis-Hastings algorithm

1 Introduction

In finance volatility of asset returns plays an importang tol manage financial risk.
To forecast volatility, various empirical models which niinthe properties of the
volatility have been proposed. Endle[1] proposed Autcesgive Conditional Het-
eroskedasticity (ARCH) model where the present volatifitgssumed to depend on
the squares of past observations. Later Bollerslev[2] eatteal Generalized ARCH
(GARCH) model which is an extension of the ARCH model andudels addi-
tional past volatility terms to the present volatility eséite. It is known that the
volatility of the financial assets exhibits clustering ir fnancial time series. The
GARCH model can captures this property. Furthermore themeatistribution gen-
erated from the GARCH process shows a fat-tailed distioutihich is also seen in
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the real financial markets. There also exists extensioned&ARCH model which
incorporates the asymmetric property of the volatilit435,[6].

A preferred algorithm to infer GARCH model parameters ishNteximum Like-
lihood (ML) method which estimates the parameters by maizimg the corre-
sponding likelihood function of the GARCH model. In this atghm there is a
practical difficulty in the maximization procedure when theput results are sensi-
tive to starting values.

By the recent computer development the Bayesian inferepdddrkov chain
Monte Carlo (MCMC) methods, which is an alternative apploée estimate
GARCH parameters, has become popular. There exist a vafatyethods pro-
posed to implement the MCMC scheme[7][12]. In a recenteyida] it is shown
that Acceptance-Rejection/Metropolis-Hastings (AR/Madgorithm works better
than other algorithms. In the AR/MH algorithm the proposasity is assumed to
be a multivariate Student’s t-distribution and the pararseto specify the distribu-
tion are estimated by the ML technique. Recently a new metbastimate those
parameters without relying on the ML technigue was propfsidin the method
the parameters are determined by an MCMC simulation. DuliegMCMC simu-
lation, the parameters are updated adaptively using tleesadanpled by the MCMC
method itself. We call this method "adaptive constructichesne”. The adaptive
construction scheme was tested for artificial GARCH dataitisdshown that the
adaptive construction scheme can significantly reducedhelation between sam-
pled datd[18]. In this study we apply the adaptive consioactcheme to real finan-
cial data, US Dollar/Japanese Yen exchange rate and exaheaireficiency of the
adaptive construction scheme.

2 GARCH Model

The GARCH(p,q) model by Bollerslev[2] is given by

Yt = Oté&, 1)

of = QH'_iathzi +_Zpiﬁi0t2iv ()

where the GARCH parameters are restrictedto 0, a; > 0 and; > 0 to ensure a
positive volatility, and the stationary conditiqfl‘:1 o + Zip:1 Bi < 1is also required.
& is an independent normal errerN(0,1).

In this study we focus on GARCH(1,1) model where the volgtiti? is given by

0 =w+ayf 1 +Bo ;. 3

The likelihood function of the GARCH model is given by
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2
exp(—y—t ). (4)

1
Y/2no2 of

L(yl6) = ML

3 Bayesian inference

Using Bayes’ rule the posterior densitiy6|y) with n observations denoted lyy=
(Y1,Y2,--.,Yn) iS given by

n(6ly) O L(y|6)m(6), (5)

whereL(y|0) is the likelihood function7i(6) is the prior density which we have
to specify depending of. In this study we assume that the prior dengity) is
constant.

With m(0]y) we infer 8 as expectation values éf. The expectation values are
given by

(0)= 3 [ omtede, (6)

whereZ = [ m(6|y)d6 is the normalization constant. Hereafter we ofhdince this
factor is irrelevant to MCMC estimations.

The MCMC technigue gives a method to estimate[éq.(6) numlérid he basic
procedure of the MCMC method is as follows. First we sanplérawn from a
probability distributionri(6]y). Sampling is done by a technique which produces a
Markov chain. After sampling some data, we evaluate the eggtien value as an
average value over the sampled data,

() = lim = k 61, (7

k— 00 i

wherek is the number of the sampled data. The statistical errok fodependent
data is proportional te\}—i_(. When the sampled data are correlated the statistical error

will be proportional to\/zkr wherer is the autocorrelation time between the sampled

data. The autocorrelation time depends on the MCMC methodmoy. Thus it
is desirable to take an MCMC method which can generate dateargmallr.

4 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithin[14] is an MCMC sitation method
which generates draws from any probability density. The Nigdathm is an exten-
sion of the original Metropolis algorithin[15]. Let us coderi a probability distribu-
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tion P(x) from which we would like to sample data x. The MH algorithm sisits
of the following steps.

(1) First we set an initial valugy andi = 1.

(2) Then we generate a new valMefrom a certain probability distribution
g(xi|xi—1) which we call proposal density.

(3) We accept the candidatewith a probability ofPyn (x_1,X%) where

P(x;) g(xi|xi1)]
P(xi-1) 9(Xi-1/x) ]

Aan(x-1.%) =min |1, ®)
Whenyx; is rejected we keep _1, i.e.X = X_1.

(4) Go back to (2) with an increment of= i + 1.

For a symmetric proposal densigyxi|xi_1) = 9(X_1/%), €q.[8) reduces to the
Metropolis accept probability:

(9)

Rvetro(Xi—1,X) = min {1, P() ]

P(Xi-1)

5 Adaptive construction scheme

Since the proposal densityx;|x; 1) is dependent of the previous valge;, usually
the sampled data are correlated. One may use an indepemdpasal densitg(x;)
which does not depend on the previous value. Although incdis& we can generate
independent candidates it is important to choose the one close enough to the
posterior density, in order to make the acceptance highginou

The posterior density of GARCH parameters often resemblasGaussian-like
shape. Thus one may choose a density similar to a Gaussiitwtisn as the
proposal density. Followind [10, 11], in order to cover thést of the posterior
density we use a (p-dimensional) multivariate Studend’stribution given by

g(0)= L+ D/2)/T(v/2) L. 6=z e —M) ~(v+p)/2

detz1/2(vm)p/2 v - 10
wheref andM are column vectors,
61 My
o) M>
6=1| . |.M= , (112)
6o Mp
andM; = E(&). X is the covariance matrix defined as
V2 E[(0—M)(O—M). (12)

v—2
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For later use we also define a matvbas
V=E[(6-M)(8-M)". (13)

v is a parameter to tune the shape of Student’s t-distributidnenv — o the
Student’s t-distribution goes to a Gaussian distributiotthis study we take = 10.
There are three parameters to be inferred for the GARCH(¢obtel. Therefore
in this casep =3 and6 = (01, 6,,63) = (a, 3, w), andX is a 3x 3 matrix. The val-
ues of> andM are not known a priori. We determine these unknown parasieter
andX through MCMC simulations. First we make a short run by therbfetlis al-
gorithm and accumulate some data. Then we estiiMaad> . Note that there is no
need to estimat®l andX accurately. Second we perform an MH simulation with the
proposal density of ed.(]L0) with the estimatddand >. After accumulating more
data, we recalculat®! and 2, and updatéM and > of eq.[10). By doing this, we
adaptively change the shape of Eql(10) to fit the posteriositemore accurately.
We call eq[(ID) with the estimatéd andX "adaptive proposal density”.
The random number generation for the multivariate Studedrdistribution can
be done easily as follows. First we decompose the symmaedviarance matrixz
by the Cholesky decomposition &s= LL!. Then substituting this result to dgq.[10)
we obtain
th:| —(v+p)/2

ax) ~ 1457

; , (14)

whereX = L=1(8 — M). The random numbeb$ are given byX = Y\/%, whereY

follows N(0, 1) andw is taken from the chi-square distributiordegrees of freedom
X2. Finally we obtain the random numbe@rby 8 = LX + M.

6 Empirical analysis

We make an empirical analysis based on daily data of the eggheates for US
Dollar and Japanese Yen. The sampling period of the exchatge is 4 January
1999 to 29 December 2006, which gives 2006 observationseXtigange ratep;
are transformed to = 100]n(pi/pi—1) — § wheres stands for the average value of
In(pi/pi-1)-

Our implementation of the adaptive construction schems i®kows. First we
make a short run by the Metropolis algorithm. We discard thst 8000 data as
burn-in process. Then we accumulate 1000 data to estivhaied>. The estimated
M and X are substituted tg(6) of eq.[10). The shape parameteiis set to 10.
We re-start a run by the MH algorithm with the proposal dgng{f). Every 1000
update we re-calculatd andX using all accumulated data and updgté) for the
next run. We accumulate 100000 data for analysis.

We also make a Metropolis simulation and accumulate 100a€0fdr analysis.
The Metropolis algorithm in this study is implemented asdok. We draw a nev@’
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Table 1 Results of parameters.

a B w
Adaptive construction 0.03151 0.9403 0.01104
standard deviation  0.0078 0.017 0.0047
statistical error ~ 0.00004 0.0001 0.00003
2Tint 28+03 38+04 41405
Metropolis 0.0318 0.9391 0.0114
standard deviation 0.0079 0.018 0.005
statistical error 0.0005 0.0014 0.0004
2Tint 400460 650+100 620+80

by adding a small random valdé to the presentvalu@ = (61, 6, 63) = (a, B, w):
9}::9j+-59b (15)

whered6; = d(r —0.5). r is a uniform random number ii®, 1] andd is a constant
to tune the Metropolis acceptance. We chods& that the acceptance becomes
greater than 50%.
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Fig. 1 Monte Carlo time histories oft sampled by the adaptive construction scheme (left) and
the Metropolis algorithm(right).

Fig. 1 compares the Monte Carlo time history @fsampled by the adaptive
construction scheme with that by the Metropolis algorithtris.clearly seen that the
dataa produced by the Metropolis algorithm are very correlatenti@ other hand
the sampled data by the adaptive construction scheme sdenwell de-correlated.
For other paramete® andw we also see the similar behavior.

In order to see correlations between sampled data, we neetimiautocorrela-
tion function (ACF) defined as

AN ) = ) (X +1) = (%)

ag

ACF(t) = (16)

3
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where(x) and g? are the average value and the variance of certain succelztze
X respectively.

ACF

15 2C 0 1000 2000t 3000 4000 5000

Fig. 2 Autocorrelation functions afr for the adaptive construction scheme (left) and the Metropo
lis algorithm (right).

Fig. 2 shows the ACF for the adaptive construction schemetlamdvietropo-
lis algorithm. The ACF of the the adaptive construction sebalecreases quickly
as Monte Carlo time increases. On the other hand the ACF of the Metropolis
algorithm decreases very slowly which indicates that theetation between the
sampled data is very large.

We estimate the autocorrelation time by the integratedcautelation timetiyy; .
To calculater; we definetin (T ) as

;
T (T) = %JrZLACF(i). 17)

Tint IS given byt (T = ). In practice, however, it is impossible to sumAQF (t)

to T = 0. Since typicallyri (T) increases witfl and reaches a plateau we estimate
Tin at this plateau. Fig. 3 illustratasy (T) of o sampled by the adaptive construc-
tion schemer;y (T) increases witll and reaches a plateau aroung 20.

Results oftj are summarized in Table 1. The valuegigf from the Metropolis
simulations are very large, typically several hundredstt@nother hand;,; from
the adaptive construction scheme are very smajly 2 2 — :ﬂ This results in a
factor of 10 reduction in terms of the statistical error. S’héduction property is
confirmed by the statistical errors of the sampled data (SdxeTl). Thus it is
concluded that the adaptive construction scheme is eftdgtivorking for reducing
the correlations between the sampled data.

Fig. 4 shows the convergence property of the maitixThe matrix elements
Vij are defined by = E[(6 —M)(6 —M)'] with 6 = (61, 62,63) = (a, B, w). For

127, is called an inefficiency factor.
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Fig. 3 The integrated autocorrelation tinmy:(T) of a sampled by the adaptive construction
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Fig. 4 The matrix elements of the symmetric covariance matriDiagonal elements (left) and
off-diagonal elements (right).

instanceV, = Vqg. All elements ofV converge quickly to certain values as the
simulations are proceeded.

Fig. 5 shows the acceptance at the MH algorithm with the adaptroposal
density of eg[(T0). Each acceptance is calculated ever Gip@ates and the cal-
culation of the acceptance is based on the latest 1000 datheAirst stage of the
simulation the acceptance is low. This is because at thie8faand > are not cal-
culated accurately yet. However the acceptances incregddyjas the simulations
are proceeded and reaches a plateau where the acceptarare ian 70%.
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Fig. 5 Acceptance at MH step with the adaptive proposal density.

7 Summary

We proposed the adaptive construction scheme to constiuctpmsal density for
the MH algorithm of the GARCH(1,1) model. The constructidthe proposal den-
sity is performed using the data generated by MCMC methodsnd the MCMC
simulations the proposal density is updated adaptivelthisxstudy we applied the
adaptive construction scheme for the Bayesian inferentteed6ARCH(1,1) model
by using US Dollar/Japanese Yen exchange rate. The nurhezmats show that
the adaptive construction scheme significantly reducesdhelations between the
sampled data. The autocorrelation time of the adaptivetogetion method is cal-
culated to be 8, ~ 2— 3, which is comparable to that of the AR/MH methiod[11].
It is concluded that the adaptive construction scheme idfaiemt method for the
Bayesian inference of the GARCH(1,1) model. The adaptivestaction scheme
is not limited to the GARCH(1,1) model and can be applied theo GARCH-type
models.
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