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Bayesian estimation of GARCH model with an
adaptive proposal density

Tetsuya Takaishi

Abstract A Bayesian estimation of a GARCH model is performed for US Dol-
lar/Japanese Yen exchange rate by the Metropolis-Hastingsalgorithm with a pro-
posal density given by the adaptive construction scheme. Inthe adaptive construc-
tion scheme the proposal density is assumed to take a form of amultivariate Stu-
dent’s t-distribution and its parameters are evaluated by using the sampled data and
updated adaptively during Markov Chain Monte Carlo simulations. We find that the
autocorrelation times between the data sampled by the adaptive construction scheme
are considerably reduced. We conclude that the adaptive construction scheme works
efficiently for the Bayesian inference of the GARCH model.

Key words: Markov Chain Monte Carlo, Bayesian inference, GARCH model,
Metropolis-Hastings algorithm

1 Introduction

In finance volatility of asset returns plays an important role to manage financial risk.
To forecast volatility, various empirical models which mimic the properties of the
volatility have been proposed. Engle[1] proposed Autoregressive Conditional Het-
eroskedasticity (ARCH) model where the present volatilityis assumed to depend on
the squares of past observations. Later Bollerslev[2] advocated Generalized ARCH
(GARCH) model which is an extension of the ARCH model and includes addi-
tional past volatility terms to the present volatility estimate. It is known that the
volatility of the financial assets exhibits clustering in the financial time series. The
GARCH model can captures this property. Furthermore the return distribution gen-
erated from the GARCH process shows a fat-tailed distribution which is also seen in
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the real financial markets. There also exists extension of the GARCH model which
incorporates the asymmetric property of the volatility[3,4, 5, 6].

A preferred algorithm to infer GARCH model parameters is theMaximum Like-
lihood (ML) method which estimates the parameters by maximaizing the corre-
sponding likelihood function of the GARCH model. In this algorithm there is a
practical difficulty in the maximization procedure when theoutput results are sensi-
tive to starting values.

By the recent computer development the Bayesian inference by Markov chain
Monte Carlo (MCMC) methods, which is an alternative approach to estimate
GARCH parameters, has become popular. There exist a varietyof methods pro-
posed to implement the MCMC scheme[7]-[12]. In a recent survey[11] it is shown
that Acceptance-Rejection/Metropolis-Hastings (AR/MH)algorithm works better
than other algorithms. In the AR/MH algorithm the proposal density is assumed to
be a multivariate Student’s t-distribution and the parameters to specify the distribu-
tion are estimated by the ML technique. Recently a new methodto estimate those
parameters without relying on the ML technique was proposed[13]. In the method
the parameters are determined by an MCMC simulation. Duringthe MCMC simu-
lation, the parameters are updated adaptively using the data sampled by the MCMC
method itself. We call this method ”adaptive construction scheme”. The adaptive
construction scheme was tested for artificial GARCH data andit is shown that the
adaptive construction scheme can significantly reduce the correlation between sam-
pled data[13]. In this study we apply the adaptive construction scheme to real finan-
cial data, US Dollar/Japanese Yen exchange rate and examinethe efficiency of the
adaptive construction scheme.

2 GARCH Model

The GARCH(p,q) model by Bollerslev[2] is given by

yt = σtεt , (1)

σ2
t = ω +

q

∑
i=1

αiy
2
t−i +

p

∑
i=1

βiσ2
t−i, (2)

where the GARCH parameters are restricted toω > 0, αi > 0 andβi > 0 to ensure a
positive volatility, and the stationary condition∑q

i=1 αi+∑p
i=1 βi < 1 is also required.

εt is an independent normal error∼ N(0,1).
In this study we focus on GARCH(1,1) model where the volatility σ2

t is given by

σ2
t = ω +αy2

t−1+β σ2
t−1. (3)

The likelihood function of the GARCH model is given by
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L(y|θ ) = Π n
i=1

1
√

2πσ2
t

exp(− y2
t

σ2
t
). (4)

3 Bayesian inference

Using Bayes’ rule the posterior densityπ(θ |y) with n observations denoted byy =
(y1,y2, . . . ,yn) is given by

π(θ |y) ∝ L(y|θ )π(θ ), (5)

whereL(y|θ ) is the likelihood function.π(θ ) is the prior density which we have
to specify depending onθ . In this study we assume that the prior densityπ(θ ) is
constant.

With π(θ |y) we infer θ as expectation values ofθ . The expectation values are
given by

〈θ 〉= 1
Z

∫

θπ(θ |y)dθ , (6)

whereZ =
∫

π(θ |y)dθ is the normalization constant. Hereafter we omitZ since this
factor is irrelevant to MCMC estimations.

The MCMC technique gives a method to estimate eq.(6) numerically. The basic
procedure of the MCMC method is as follows. First we sampleθ drawn from a
probability distributionπ(θ |y). Sampling is done by a technique which produces a
Markov chain. After sampling some data, we evaluate the expectation value as an
average value over the sampled dataθ (i),

〈θ 〉= lim
k→∞

1
k

k

∑
i=1

θ (i), (7)

wherek is the number of the sampled data. The statistical error fork independent
data is proportional to1√

k
. When the sampled data are correlated the statistical error

will be proportional to
√

2τ
k whereτ is the autocorrelation time between the sampled

data. The autocorrelation time depends on the MCMC method weemploy. Thus it
is desirable to take an MCMC method which can generate data with a smallτ.

4 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm[14] is an MCMC simulation method
which generates draws from any probability density. The MH algorithm is an exten-
sion of the original Metropolis algorithm[15]. Let us consider a probability distribu-
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tion P(x) from which we would like to sample data x. The MH algorithm consists
of the following steps.

(1) First we set an initial valuex0 andi = 1.
(2) Then we generate a new valuexi from a certain probability distribution

g(xi|xi−1) which we call proposal density.
(3) We accept the candidatexi with a probability ofPMH(xi−1,xi) where

PMH(xi−1,xi) = min

[

1,
P(xi)

P(xi−1)

g(xi|xi−1)

g(xi−1|xi)

]

. (8)

Whenxi is rejected we keepxi−1, i.e.xi = xi−1.
(4) Go back to (2) with an increment ofi = i+1.
For a symmetric proposal densityg(xi|xi−1) = g(xi−1|xi), eq.(8) reduces to the

Metropolis accept probability:

PMetro(xi−1,xi) = min

[

1,
P(xi)

P(xi−1)

]

. (9)

5 Adaptive construction scheme

Since the proposal densityg(xi|xi−1) is dependent of the previous valuexi−1, usually
the sampled data are correlated. One may use an independent proposal densityg(xi)
which does not depend on the previous value. Although in thiscase we can generate
independent candidatesxi, it is important to choose the one close enough to the
posterior density, in order to make the acceptance high enough.

The posterior density of GARCH parameters often resembles to a Gaussian-like
shape. Thus one may choose a density similar to a Gaussian distribution as the
proposal density. Following [10, 11], in order to cover the tails of the posterior
density we use a (p-dimensional) multivariate Student’s t-distribution given by

g(θ ) =
Γ ((ν + p)/2)/Γ (ν/2)

detΣ1/2(νπ)p/2

[

1+
(θ −M)tΣ−1(θ −M)

ν

]−(ν+p)/2

, (10)

whereθ andM are column vectors,

θ =











θ1

θ2
...

θp











,M =











M1

M2
...

Mp











, (11)

andMi = E(θi). Σ is the covariance matrix defined as

νΣ
ν −2

= E[(θ −M)(θ −M)t ]. (12)
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For later use we also define a matrixV as

V = E[(θ −M)(θ −M)t ]. (13)

ν is a parameter to tune the shape of Student’s t-distribution. Whenν → ∞ the
Student’s t-distribution goes to a Gaussian distribution.In this study we takeν = 10.

There are three parameters to be inferred for the GARCH(1,1)model. Therefore
in this casep = 3 andθ = (θ1,θ2,θ3) = (α,β ,ω), andΣ is a 3×3 matrix. The val-
ues ofΣ andM are not known a priori. We determine these unknown parametersM
andΣ through MCMC simulations. First we make a short run by the Metropolis al-
gorithm and accumulate some data. Then we estimateM andΣ . Note that there is no
need to estimateM andΣ accurately. Second we perform an MH simulation with the
proposal density of eq.(10) with the estimatedM andΣ . After accumulating more
data, we recalculateM andΣ , and updateM andΣ of eq.(10). By doing this, we
adaptively change the shape of eq.(10) to fit the posterior density more accurately.
We call eq.(10) with the estimatedM andΣ ”adaptive proposal density”.

The random number generation for the multivariate Student’s t-distribution can
be done easily as follows. First we decompose the symmetric covariance matrixΣ
by the Cholesky decomposition asΣ = LLt . Then substituting this result to eq.(10)
we obtain

g(X)∼
[

1+
X tX

ν

]−(ν+p)/2

, (14)

whereX = L−1(θ −M). The random numbersX are given byX = Y

√

ν
w

, whereY

follows N(0, I) andw is taken from the chi-square distributionν degrees of freedom
χ2

ν . Finally we obtain the random numberθ by θ = LX +M.

6 Empirical analysis

We make an empirical analysis based on daily data of the exchange rates for US
Dollar and Japanese Yen. The sampling period of the exchangerates is 4 January
1999 to 29 December 2006, which gives 2006 observations. Theexchange ratespi

are transformed tori = 100[ln(pi/pi−1)− s̄] where ¯s stands for the average value of
ln(pi/pi−1).

Our implementation of the adaptive construction scheme is as follows. First we
make a short run by the Metropolis algorithm. We discard the first 3000 data as
burn-in process. Then we accumulate 1000 data to estimateM andΣ . The estimated
M andΣ are substituted tog(θ ) of eq.(10). The shape parameterν is set to 10.
We re-start a run by the MH algorithm with the proposal density g(θ ). Every 1000
update we re-calculateM andΣ using all accumulated data and updateg(θ ) for the
next run. We accumulate 100000 data for analysis.

We also make a Metropolis simulation and accumulate 100000 data for analysis.
The Metropolis algorithm in this study is implemented as follows. We draw a newθ ′
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Table 1 Results of parameters.

α β ω
Adaptive construction 0.03151 0.9403 0.01104
standard deviation 0.0078 0.017 0.0047

statistical error 0.00004 0.0001 0.00003
2τint 2.8±0.3 3.8±0.4 4.1±0.5

Metropolis 0.0318 0.9391 0.0114
standard deviation 0.0079 0.018 0.005

statistical error 0.0005 0.0014 0.0004
2τint 400±60 650±100 620±80

by adding a small random valueδθ to the present valueθ =(θ1,θ2,θ3) = (α,β ,ω):

θ ′
j = θ j + δθ j, (15)

whereδθ j = d(r−0.5). r is a uniform random number in[0,1] andd is a constant
to tune the Metropolis acceptance. We choosed so that the acceptance becomes
greater than 50%.
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Fig. 1 Monte Carlo time histories ofα sampled by the adaptive construction scheme (left) and
the Metropolis algorithm(right).

Fig. 1 compares the Monte Carlo time history ofα sampled by the adaptive
construction scheme with that by the Metropolis algorithm.It is clearly seen that the
dataα produced by the Metropolis algorithm are very correlated. On the other hand
the sampled data by the adaptive construction scheme seem tobe well de-correlated.
For other parametersβ andω we also see the similar behavior.

In order to see correlations between sampled data, we measure the autocorrela-
tion function (ACF) defined as

ACF(t) =
1
N ∑N

j=1(x( j)−〈x〉)(x( j+ t)−〈x〉)
σ2

x
, (16)
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where〈x〉 andσ2
x are the average value and the variance of certain successivedata

x respectively.
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Fig. 2 Autocorrelation functions ofα for the adaptive construction scheme (left) and the Metropo-
lis algorithm (right).

Fig. 2 shows the ACF for the adaptive construction scheme andthe Metropo-
lis algorithm. The ACF of the the adaptive construction scheme decreases quickly
as Monte Carlo timet increases. On the other hand the ACF of the Metropolis
algorithm decreases very slowly which indicates that the correlation between the
sampled data is very large.

We estimate the autocorrelation time by the integrated autocorrelation timeτint .
To calculateτint we defineτint(T ) as

τint(T ) =
1
2
+

T

∑
i=1

ACF(i). (17)

τint is given byτint (T = ∞). In practice, however, it is impossible to sum upACF(t)
to T = ∞. Since typicallyτint(T ) increases withT and reaches a plateau we estimate
τint at this plateau. Fig. 3 illustratesτint(T ) of α sampled by the adaptive construc-
tion scheme.τint (T ) increases withT and reaches a plateau aroundT ≥ 20.

Results ofτint are summarized in Table 1. The values ofτint from the Metropolis
simulations are very large, typically several hundreds. Onthe other handτint from
the adaptive construction scheme are very small, 2τint ∼ 2− 31. This results in a
factor of 10 reduction in terms of the statistical error. This reduction property is
confirmed by the statistical errors of the sampled data (See Table 1). Thus it is
concluded that the adaptive construction scheme is effectively working for reducing
the correlations between the sampled data.

Fig. 4 shows the convergence property of the matrixV . The matrix elements
Vi j are defined byV = E[(θ −M)(θ −M)t ] with θ = (θ1,θ2,θ3) = (α,β ,ω). For

1 2τint is called an inefficiency factor.
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Fig. 3 The integrated autocorrelation timeτint(T ) of α sampled by the adaptive construction
scheme.
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Fig. 4 The matrix elements of the symmetric covariance matrixV . Diagonal elements (left) and
off-diagonal elements (right).

instanceV12 = Vαβ . All elements ofV converge quickly to certain values as the
simulations are proceeded.

Fig. 5 shows the acceptance at the MH algorithm with the adaptive proposal
density of eq.(10). Each acceptance is calculated every 1000 updates and the cal-
culation of the acceptance is based on the latest 1000 data. At the first stage of the
simulation the acceptance is low. This is because at this stageM andΣ are not cal-
culated accurately yet. However the acceptances increase quickly as the simulations
are proceeded and reaches a plateau where the acceptance is more than 70%.
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Fig. 5 Acceptance at MH step with the adaptive proposal density.

7 Summary

We proposed the adaptive construction scheme to construct aproposal density for
the MH algorithm of the GARCH(1,1) model. The construction of the proposal den-
sity is performed using the data generated by MCMC methods. During the MCMC
simulations the proposal density is updated adaptively. Inthis study we applied the
adaptive construction scheme for the Bayesian inference ofthe GARCH(1,1) model
by using US Dollar/Japanese Yen exchange rate. The numerical results show that
the adaptive construction scheme significantly reduces thecorrelations between the
sampled data. The autocorrelation time of the adaptive construction method is cal-
culated to be 2τint ∼ 2−3, which is comparable to that of the AR/MH method[11].
It is concluded that the adaptive construction scheme is an efficient method for the
Bayesian inference of the GARCH(1,1) model. The adaptive construction scheme
is not limited to the GARCH(1,1) model and can be applied for other GARCH-type
models.
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