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Computationally Efficient Modulation Level Classification Based on
Probability Distribution Distance Functions
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Abstract—We present a novel modulation level -classifica-
tion (MLC) method based on probability distribution distance
functions. The proposed method uses modified Kuiper and
Kolmogorov- Smirnov (KS) distances to achieve low computa-
tional complexity and outperforms the state of the art methods
based on cumulants and goodness-of-fit (GoF) tests. We derive
the theoretical performance of the proposed MLC method and
verify it via simulations. The best classification accuracy under
AWGN with SNR mismatch and phase jitter is achieved with the
proposed MLC method using Kuiper distances.

I. INTRODUCTION

Modulation level classification (MLC) is a process which
detects the transmitter’s digital modulation level from a re-
ceived signal using a priori knowledge of the modulation
class and signal characteristics needed for downconversion
and sampling. Among many MLC methods [1], a cumulant
(Cm) computation-based classification [2] is one of the most
widespread. However, Cm-based classification possesses some
limitations. First, MLC of some modulation classes (e.g. M-
PSK) requires sixth and eighth order cumulants which are
computationally expensive. Second, for multi-level modula-
tions, the difference among cumulants is small and requires
a large number of samples to achieve good accuracy. A
recently proposed method [3] based on a goodness-of-fit
(GoF) test using Kolmogorov-Smirnov (KS) statistic has been
suggested as an alternative to the Cm-based classification.
The KS method achieves better classification accuracy given
a particular sample size, especially at high values of SNR.
Both methods are equally computationally expensive [3| Sec.
1I1-A3].

In this letter, we propose a novel MLC method based on
distribution distance functions, mainly Kuiper (K) [4] and
KS distances, which is a significant simplification of methods
based on GoF. We show that using a classifier based only on
K-distance achieves a better classification than the KS-based
GoF classifier. At the same time our method requires only
2M L additions in contrast to 2M (log2M + 2K) additions
for the KS-based GoF test, where K is the number of distinct
modulation levels, M is the sample size and L < M is the
number of test points used by our method.
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II. PROPOSED MLC METHOD
A. System Model

Following [J3], we assume a sequence of M discrete,
complex, ii.d. and sampled baseband symbols, s(¥) 2
[sgk) - s%’})], drawn from a modulation order M; €
{My,..., Mk}, transmitted over AWGN channel, perturbed
by uniformly distributed phase jitter and attenuated by an
unknown factor A > 0. Therefore, the received signal is given
as r = [ry---ra], where 7, = Ae?®rs, + g, {gn M, ~
CN (0,0%) and {®,}2L, ~ U (—¢,+¢). The task of the
modulation classifier is to find My, from which s(®) was
drawn, given r. Without loss of generality, we consider unit
power constellations and define SNR as v = A2 /52,

B. Classification based on Distribution Distance Function

The proposed method modifies MLC technique based on
GoF testing using the KS statistic [3]]. Since the KS statistic,
which computes the minimum distance between theoretical
and empirical cumulative distribution function (ECDF), re-
quires all CDF points, we postulate that similarly accurate
classification can be obtained by evaluating this distance using
a smaller set of points in the CDF.

Let z £ [z - zy] = f(r) where f(-) is the chosen feature
map and N is the number extracted features. Possible feature
maps include |r| (magnitude, N = M) or the concatenation of
R{r} and S{r} (quadrature, N = 2M). The theoretical CDF
of z given M, and ~y, F¥(2), is assumed to be known a priori
(methods of obtaining these distributions, both empirically and
theoretically, are presented in [3, Sec. III-A]). The K CDFs,
one for each modulation level, define a set of test points

tg;) = arg max D' (2), )

)

with the distribution distances given by
DY) = (-1 (Fi(2) - Fi(2)), @)

for 1 <i4,j < K,i#j,and € € {0,1}, corresponding to the

maximum positive and negative deviations, respectively. Note

the symmetry in the test points such that tﬁ-?) = tz(-jl-). Thus,

there are L £ 2(2( ) test points for a K order classification.
The ECDF, given as

1 N
Fy(t) = D Iz <), 3)

n=1

is evaluated at the test points to form Fy £ {FN(tS))}
1<i,7 < K,i+#j. Here, I(-) equals to one if the input is



true, and zero otherwise. By evaluating Fy (¢) only at the test
points in (I, we get

7€) € (e) i (4(€)

D = (=1 (Fx (¢) - B (+))) (4)
which are then used to find an estimate of the maximum
positive and negative deviations

5 — H9, <)<

b; 1SR i) Dy, 1=isk ©)
of the ECDF to the true CDFs. The operation of finding the
ECDF at the given testpoints (4) can be implemented using
a simple thresholding and counting operation and does not

require samples to be sorted as in [3]]. The metrics in (3 are
used to find the final distribution distance metrics

by =max (|0}, |DP)), Vi =D+ D], ©)

which are the reduced complexity versions of the KS distance
(rcKS) and the K distance (rcK), respectivel Finally, we
use the metrics in (6) as substitutes to the true distance-based
classifiers with the following rule: choose M; such that

kD:arglglgnKDj, kV:arglg;lgnKVj. @)
In the remainder of the letter, we define hp(Fy) = kp and
h\”/(FN) = ky, where kD, ky € {1, . ,K}

C. Analysis of Classification Accuracy

Lett = [t; - - -t ] denote the set of test points, {tg;)}, sorted
in ascending order. For notational consistency, we also define
the following points, g = —oo and t74; £ +oco. Given that
these points are distinct, they partition z into L + 1 regions.
An individual sample, z,, can be in region [, such that t;_; <
2z, < t;, with a given probability, determined by F{¥(z).

Assuming z, are independent of each other, we can con-
clude that given z, the number of samples that fall into each
of the L + 1 regions, n = [ny ---nz41], is jointly distributed
according to a multinomial PMF given as

N epphtt R

— Ll if n; =N

fiN,p) = { et =N
0, otherwise,

where p £ [p1---pry1], and p; is the probability of an
individual sample being in region [. Given that z is drawn
from My, P = Féc(tl) — Fév(tlfl), for0< i <L+ 1.

Now, with particular n, the ECDF at all the test points is

l
Fn(n) 2 [Fx(t)--- Fn(tr)], FN(tl):%Zni. 9)
i=1

Therefore, we can analytically find the probability of classifi-
cation to each of the K classes as

Pr(k = AlMy) = 3 I(hy (Fx(n) = 5)f(n N, p), (10)
neNL+L
for the rcK classifier. A similar expression can be applied to
rcKS, replacing hy () with hp(-) in (10).

'Note, that other non-parametric distances used in hypothesis testing exist
(see introduction in e.g. [4])), although for brevity they are not addressed here.
‘We note, however, that our approach is easily applied to any assumed distance
metric.

TABLE 1
NUMBER OF OPERATIONS AND MEMORY USAGE

Method [ Multiply — Add Memory

Cm 6M 6M K

rcKS/reK 0 2ML WL(K +1)
KS/K 0 2M (log 2M + 2K) KWN
rcKS/reK (mag) | 2M M(L+1) WL(K +1)
KS/K (mag) oM M(logM +2K +1) KWN

D. Complexity Analysis

Given that the theoretical CDFs change with SNR, we
store W SNR profiles for each modulation level (impact of
the selection of W on the accuracy is discussed further in
Section [[II-B}) Further, we store KW theoretical CDFs of
length N each. For the non-reduced complexity classifiers
that require samples to be sorted, we also assume that we
use a sorting algorithm whose complexity is NV log N. Based
on the results shown in Table [ we see the rcK/rcKS tests
use less addition operations than K/KS-based methods [3|]
and Cm-based classification [2]. Furthermore, their memory
requirements are also smaller since N has to be large for a
smooth CDF. It is worth mentioning that the authors in [3]] used
the theoretical CDF, but used N as the number of samples
to generate the CDF in their complexity figures. The same
observation favoring the proposed rcK/rcKS (mag) methods
holds for the magnitude-based classifiers [3, Sec III-A].

III. RESULTS

As an example, we assume that the classification task is
to distinguish between M-QAM, where M € {4,16,64}.
For comparison we also present classification result based on
maximum likelihood estimation (ML).

A. Detection Performance versus SNR

In the first set of experiments we evaluate the performance
of the proposed classification method for different values of
SNR. The results are presented in Fig. |Il} We assume fixed
sample size of M = 50, in contrast to [3 Fig. 1] to evaluate
classification accuracy for a smaller sample size. We confirm
that even for small sample size, as shown in [3| Fig. 1], Cm has
unsatisfying classification accuracy at high SNR. In (10,17) dB
region rcK clearly outperforms all detection techniques, while
as SNR exceeds ~17dB all classification methods (except
Cm) converge to one. At low SNR region, 0—-10dB, KS,
rcKS, rcK perform equally well, with Cm having comparable
performance. The same observation holds for larger sample
sizes, not shown here due to space constraints. Note that the
analytical performance metric developed in Section for
rcK and rcKS matches perfectly with the simulations. For the
remaining results, we set v = 12dB, unless otherwise stated.

B. Detection Performance versus Sample Size

In the second set of experiments, we evaluate the perfor-
mance of the proposed classification method as a function of
sample size M. The result is presented in Fig. 2] As observed
in Fig. 1] also here Cm has the worst classification accuracy,
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Fig. 1. Effect of varying SNR on the probability of classification with M =50.
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Fig. 2. Effect of varying sample size on the probability of classification with
v =12dB.

e.g. 5% below upper bound at M = 1000. The rcK method
performs best at small sample sizes, 50 < M < 300. With
M > 300, the accuracy of rcK and KS is equal. Classification
based on rcKS method consistently falls slightly below rcK
and KS methods. In general, rcKS, rcK and KS converge to
one at the same rate.

C. Detection Performance vs SNR Mismatch and Phase Jitter

In the third set of experiments we evaluate the performance
of the proposed classification method as a function of SNR
mismatch and phase jitter. The result is presented in Fig.[3] In
case of SNR mismatch, Fig. @ our results show the same
trends as in [3| Fig. 4]; that is, all classification methods are
relatively immune to SNR mismatch, i.e. the difference be-
tween actual and maximum SNR mismatch is less than 10% in
the considered range of SNR values. This justifies the selection
of limited set of SNR values W for complexity evaluation
used in Section Interestingly, the ML method becomes
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Fig. 3. Effect of (a) SNR mismatch and (b) phase jitter on classification
accuracy with M = 50; (a) v = 12dB, (b) v = 15dB.

worse than methods based on distribution distance functions
and GoF tests, at SNR mismatch larger than approximately
+1dB. Note again the perfect match of analytical result of
Section with the simulations.

In the case of phase jitter caused by imperfect downconver-
sion, we present results in Fig. 3(b)| for v = 15dB as in [2], in
contrast to v = 12 dB used earlier, for comparison purposes. In
contrast to [2} Fig. 5] our proposed classification method using
signal magnitudes is invariant to phase jitter over the entire
phase range. rcK, rcKS and ML perform almost equally well,
while Cm is worse than the other three methods by ~10%.
Quadrature-based classifiers, as expected, are highly sensitive
to phase jitter. Note that in the small phase jitter, ¢ < 10°,
quadrature-based classifiers perform better than others, since
the sample size is twice as large as in the former case.

IV. CONCLUSION

In this letter we presented a novel, computationally efficient
method for modulation level classification based on distribu-
tion distance functions. Specifically, we proposed to use a met-
ric based on Kolmogorov-Smirnov and Kuiper distances which
exploits the distance properties between CDFs corresponding
to different modulation levels. The proposed method results in
lower computational complexity compared to both cumulant-
based and KS GoF-based methods.

REFERENCES

[1] O. A.Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic mod-
ulation classification techniques: Classical approaches and new trends,”
IET Communications, vol. 1, no. 2, pp. 137-156, Apr. 2007.

[2] A. Swami and B. M. Sadler, “Hierarchical digital modulation classifica-
tion using cumulants,” IEEE Trans. Commun., vol. 48, no. 3, pp. 416-429,
Mar. 2000.

[3] F. Wang and X. Wang, “Fast and robust modulation classification via
Kolmogorov-Smirnov test,” [EEE Trans. Wireless Commun., vol. 58,
no. 8, pp. 2324-2332, Aug. 2010.

[4] G. A. P. Cirrone, S. Donadio, S. Guatelli, A. Mantero, B. Masciliano,
S. Parlati, M. G. Pia, A. Pfeiffer, A. Ribon, and P. Viarengo, “A goodness
of fit statistical toolkit,” IEEE Trans. Nucl. Sci., vol. 51, no. 5, pp. 2056—
2063, Oct. 2004.



	I Introduction
	II Proposed MLC Method
	II-A System Model
	II-B Classification based on Distribution Distance Function
	II-C Analysis of Classification Accuracy
	II-D Complexity Analysis

	III Results
	III-A Detection Performance versus SNR
	III-B Detection Performance versus Sample Size
	III-C Detection Performance vs SNR Mismatch and Phase Jitter

	IV Conclusion
	References

