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EXPECTED CROSSING NUMBERS

BOJAN MOHAR AND TAMON STEPHEN

ABSTRACT. The expected value for the weighted crossing number of a randomly weighted
graph is studied. A variation of the Crossing Lemma for expectations is proved. We focus
on the case where the edge-weights are independent random variables that are uniformly
distributed on [0, 1].

1. INTRODUCTION

The crossing number of a graph is the minimum number of internal intersections of edges in a
drawing of the graph on the plane. Computing the crossing number, even for complete graphs,
is a surprisingly challenging problem and an active area of research [RS09, [SSV95, Vrt10].

The notion of the weighted crossing number, when the edges have weights and each crossing
counts as the product of the corresponding weights, has been used in various situations, since it
mimics the possibility of having many edges in parallel. In this paper we study the expected
value of the weighted crossing number of the complete graph K, on n vertices, where the
weights of edges are independent random variables. We consider first the situation where the
weights are i.i.d. variables with the uniform distribution on [0,1]. The first non-trivial case
is K5; we show through an involved calculation that the expected value is li’gggéo. We then
briefly consider a simple discrete distribution where the edges have value either t or u, each
with probability %, and conclude that the expected crossing number is not controlled by the
first two moments of the distribution on the edges. Finally, we show that the expected crossing
number of K,, retains the ©(n?) asymptotics of the usual crossing number cr(K,) of complete
graphs. This is proved by using a similar recurrence as used for the usual crossing number
of complete graphs and, alternatively, by proving and applying a variation of the Crossing
Lemma for expectations.

2. PRELIMINARIES

Given a graph G = (V| E), we denote its crossing number by cr(G). This is the minimum
over all drawings of G in the Euclidean plane R? of the number of crossings of edges in the
drawing. All drawings are assumed to have simple polygonal arcs representing the edges of
the graph, and it is assumed that each pair of edges involves at most one intersection of
their representing arcs. Here and in the remainder of the paper, we consider only internal
intersections of edges. Formally, a crossing in a drawing D is an unordered pair {e, f} of edges
whose arcs in D intersect each other internally. We let X(D) denote the set of all crossings
and set cr(D) = |X(D)|.

Given non-negative weights w : E — R on the edges of GG, we define the crossing weight
of a drawing D of G as:

ca(Dw)= > wlewf)
{e.f}eX(D)
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We define the weighted crossing number of a weighted graph G as:
cr(G,w) = mDin cr(D,w). (1)

For a fixed graph, the function cr(G,-) is also called the crossing function for G. We take the
domain of cr(G, -) to be RE. We remark that cr(G, 0) = 0, cr(G,w) > 0 and cr(G, -) = 0 if and
only if cr(G) = 0. The function cr(G, ) is piecewise quadratic in w, and the chambers defined
by these pieces correspond to (groups of) optimal drawings for the contained weightings; the
forms in the chambers are neither convex nor concave. If 1 € Rf is the constant all-1 function,
then cr(G) = cr(G,1).

The crossing function of any n-vertex graph is just a specialization of the crossing function
cr(K,,w) of the complete graph K,,, where we put weight 0 for the non-edges in the graph.
In this sense the crossing functions of complete graphs contain information about crossing
numbers of all graphs. This universality property was the main goal to introduce this notion
in [Moh08| [Moh10] and to propose its study.

Note that we allow the edges to be represented by any (polygonal) line, they need not be
straight lines. The related question of rectilinear crossing numbers is also interesting and
well-studied. While rectilinear crossing number is in some cases larger than the usual crossing
number [Guy72|, they do not differ in the computations performed in this paper. As in the
unweighted case, minimal drawings can be obtained without using double crossings (pairs of
edges that cross more than once).

3. COMPUTATION OF THE EXPECTED CROSSING NUMBER

We begin by considering the expected crossing number of the complete graph K,, for some
small values of n. We take the weights on the edges to be independently identically distributed
random variables, with uniform distributions on the interval [0, 1]. Let us denote the expected
value of cr(K,,, w) under this distribution as Eu(n).

For n < 4, the graph can be drawn without crossings, so Eu(n) = 0 = cr(K,). For n > 5,
we have 0 < Eu(n) < cr(K,,). In this section, we compute Eu(5) directly from the definition
of expectation. Our somewhat cumbersome case analysis can also be viewed as determination
of the piecewise quadratic chambers for the crossing function of Ks.

We will number the edges of K5 as in Figure [I1

FiGURrE 1. Edge labelling of Kj

We will denote the random weight assigned to the ith edge by X;, ¢ = 1,...,10. We note
that cr(Ks) = 1 and by symmetry, for any two non-adjacent edges, K5 can be drawn so that
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those two edges are the single pair of crossing edges. Hence:
Eu(5) = E[min(X; Xy, X; Xy, X1 X0, X2 X5, X2Xg, X9 X9, X3X5, X3X7,
X3X87 X4X67 X4X87 X4X107 X5X107 X6X87 X7X9>]

We abbreviate the quantity inside the expectation as m(X).
This is a problem in order statistics, see for instance [DN03]. The direct way to obtain

Eu(5) is to evaluate:
1 1
/ / .. / m(x)dxl . dl’gdxlo (2)
o Jo 0

where m(x) is the function of x € R!? corresponding to the random variables of m(X). To do
this we break (2]) into 10! terms based on the increasing order of the variables, i.e. we compute

(@) via the sum:
o (10) a(9) o(2)
Z / / / / dl’cr(l dxa(g)dzo(IO) (3)

o€S10

Here the permutations o € Spg index the possible orderings of the random variables X. This
sum has 10! terms, but they can be grouped into a manageable number of cases. To begin,
we note that by reordering the vertices, we can assume that X; takes the smallest value, and,
using the labelling of Figure [Il, X, < X3, Xy, X5, Xg, X7 and X3 < Xy. This corresponds to
a labelling of K5 based on X, breaking ties arbitrarily. Actually, we may assume that the
weights X;, 1 <4 < 10, are pairwise different, since the set on which an equality occurs is of
measure zero. Thus, each case with the above assumptions corresponds to 120 terms in (3)).

With these assumptions, the minimum of the 15 pairs of random variables in m(X) must
be attained at one of X1X8,X1Xg,X1X10,X2X5,X2X6,X3X7 since X1Xg S X2X9,X7X9;
XoX5 < X3X5; et cetera. We note that these six terms are symmetric in the variables
Xs, X9, X9, and also in X5, Xg. Thus we will also take Xg = min(Xs, Xg, Xy9) and X5 =
min (X5, Xg), and treat the remaining cases by symmetry. Combined with our assumptions on
X1, X5 and X3 we break the 10! terms of ([B]) into groups of 720 terms based on symmetry; this
leaves us with 5040 terms up to these symmetries. It also allows us to simplify our integrand
further to min(X;Xg, XoXs5, X3X7).

We now divide into cases based on the relative orderings of some of the remaining variables.
We remark that, depending on the order of the variables, the integrand may simplify further
— for instance if the two smallest variables are X; and Xg, the minimum of the three terms
will always be X;Xgs. We organize the cases by how the integrand simplifies.

Case 1: Orderings which ensure X;Xg = min(X;Xg, X2 X5, X3X7).
In these cases, the computation is relatively simple: the integral depends only on which

position Xg occupies in the order of the X;’s. It can be anywhere from the second to fifth

smallest. Suppose it is the second smallest, i.e. that the order of the variables is:
XlSXSSXB §X24§X25 SXZG SXMSngSngSX

110

Then we compute:

1 wilO ZB,L'Q ZU'L'4 -'Eig xrg
/ / / e / / / Ill’gdxldl’gdxig Ce dxisdxigdxiw
Ti1o Tig [L’
/ / / / / —dasgda:23 ..dxdz,dr;,,
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1 Tiyg Tig Tiy l';l
= Ce 3 dl’ig e dxisdxigdxilo
0 JO 0 0 2-4

-/ 3
0 2:4-5-6-7-8-9-10-11 12!
th

A similar calculation shows that if Xg is 7' smallest variable, the integral for a fixed ordering

of the remaining variables Wlll be Zf;,l

Now observe that there are ﬂ = 1680 ways of ordering the variables with X; as the smallest
variable, Xg as the second smallest, Xy < X3, Xy, X5, Xg, X7, X3 < Xy, and X5 < Xg. We
remark that our symmetry assumptions guarantee that either X, or Xg is the second smallest
variable, so in the remainder of the analysis X, will always be the second smallest variable.

Thus if Xg is the third smallest variable, we have fixed the order of the first 3 variables,
and the remaining variables can be ordered in 7!/4 = 1260 ways, accounting for the facts that
X3 < X4 and X5 < X6.

If Xy is the fourth smallest variable, we have two possible choices for the third smallest: X5
and X7. In the former case we have 6!/2 = 360 possible ordering of the remaining variables
(accounting for X5 < Xg), while for the latter case we have 6!/4 = 180 possible orderings.

Finally, under the assumptions of Case 1, Xg can be the fifth smallest variable only if
the third and fourth variables are X3 and Xy, respectively. There are 5!/2 orderings of the
remaining variables compatible with this. We remark that in this case, we can never have
X5 < Xg, or X3, X; < Xg since then it may be the case that X;Xg is not minimal, depending
on the values chosen.

This already covers the majority of the cases, 3540 of the 5040. Thus the terms in ()
corresponding to these orderings of the variables have total weight per symmetry class of:

3 4 5! 6 13140
1680 - 5—1—1260 E+540 ﬁ+60 1= 1o
Case 2: Orderings which ensure min(X;Xg, X2Xj5, X3X7) is either X;Xg or XoXs.
In these cases, X, and X5 are between X; and Xg. However, X3 and X; are not both
between X, and Xj5. The integrand will be m(X) = min(X;Xg, X2X5), and the two smallest

variables are X; and X,. We break into subcases based on the positions of X5 and Xg. Only
the simplest case is described in detail.

Subcase 2i: The four smallest variables are X, X5, X5 and Xg. Then we need to evaluate:

//10 / / / / / min(z, s, vox5)dadredrsdasde,, . . . da,da,,

xil() 8
l’ll’gdxldl’gd$5dl’8dl’i5 ...dx;dz;,

0 0 0 0 0 0 0
1 Tigg Tig Tig T8 Ts5 T2
+/ / Ce / / / / / $2I5dl’1d$2dl’5d$8d.§(]i5 e dxigdxilo
0 Jo 0 0 0 0 %

1 T; ;i Tig
:/ / 10"./ 6/ / / ( x2l' )d[l’,’Qd[L’degde’Z . .dzigdzilo
0 0 0 I
Tito
dzsdzsdas, . . . dzg,dz;
// /0 /0 /0 ( 6%8) TsATgAT;, Tig ALy,




EXPECTED CROSSING NUMBERS 5

/ / " / / (—8——) degdas, ... dry,dus,
Tiyg Tig 71' 7.5 14
_ odradr = | 2 lhegy o 2%
/0/0 /0 130 Tig Cling /0 180 - 111 ¥ = 3779

The number of orderings of the variables in Subcase 2i up to symmetries is %! = 360, since we
require X3 < Xjy.

The integrals in the remaining cases are essentially similar, so we will simply list the initial
sequence of integrands and then compute the number of orderings of the variables correspond-
ing to each case.

Subcase 2ii: The five smallest variables are X, Xy, X5, X; and Xg. This produces the
following integrands:

2,.2 4 5 5 6 6 7
.’17225'5. LU5 .’175 . x] z] X .:C8 X Z; . 6!:1;210 . 36

20 3 6xg’ 15 36xg 140714077 " 140-111 7-12!
There are three possibilities for j: 3, 6 and 7. When 7 = 3 we have 5! cases, and when j = 6
or j = 7 we have %' cases as we need to account for the fact that X3 < X, in the remaining

variables. This is the total of 240 orderings.
Subcase 2iii: The six smallest variables are Xl, X9, X5, X, Xy, and Xg. The mtegrands

. )
mm(:cl:cg, LUQIL’5), Loy —

x” 27
remain as in the previous case up to £ . The next integrands will be — —k and
3690 36-7xg
Mzl 4o remaining simple inte ratlons ive
71440 g Sinp & give 5557

There are seven possibilities for (j, k) in this case: (3,4),(3,6),(3,7),(6,3),(7,3),(6,7) and
(7,6). The first five of these are each associated to 4! orderings of the remaining variables,
while the last two are each associated to 45!. This is a total of 144 orderings.

Subcase 2iv: The seven smallest variables are Xy, X9, X5, X, X}, X; and Xg. We proceed

. 26 1328

E _ o8
from the 1ntegra121d = to and then to =57
5

9.12!"

There are twelve possibilities for (7, k, [) arising from choosing three of 3,4, 6, 7 and requiring
4 to be preceded by 3. Each of these has 3! orderings of the remaining 3 variables, for a total
of 72 orderings.
Subcase 2v: The eight smallest variables are Xl, Xo, X5, X, Xy, X, X and Xyg. We

8 9
d] a8, zd
783625 10 7800 — T8os6s; and then to

7
Zy

8
xT . .
740 — TEac Continuing to the end,

ol
36-Txg
the integral is

proceed from the mtegrand o0 — Continuing

789120

to the end, the integral is 12,

Again there are 12 possibilities, as (j, k, [, m) are chosen from 3,4,6,7 with 3 preceding 4.
There are 2 ways of arranging the remaining two variables, for a total of 24 orderings.

Subcase 2vi: The five smallest variables are X, Xy, X;, X5 and Xg. The sequence of
integrands that we see is then:

2,2 .3 3 5 6 6 7 1o
) 9 Tors TiTs  X5T5 X3 Tp Ty T 6!z, 40
min(zix P T5Ts — ; — P2 — P — Do ; .
In{@ies, £225); 8505 = 5 N TG T Gy 12 2y 12601267126+ 110 7- 121
In this case, j must be either 3 or 7. If it is 3, there are 5! ways of ordering the remaining
variables, and if it is 7 there are 55' ways of ordering the remaining variables, for a total of 180

orderings.
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Subcase 2vii: The six smallest Varlables are Xl, Xg, XJ, X5, Xy and Xg We then see the

same integrands through

ko k8 8 Following the

remaining routine 1ntegratlons We get y 12,

The possibilities for (j, k) are similar to those of Subcase 2iii, but 6 cannot be used in the
first position. This leaves (3,4), (3,6),(3,7),(7,3) and (7,6). The first four cases correspond
to 4! orderings of the remaining variables, while (7,6) corresponds to 45! as 3 must precede 4.
This gives a total of 108 orderings.

Subcase 2viii: The seven smallest varlables are X1, Xo, Xj, X5, Xk, X; and Xg We proceed

xl xs
then to 772 821z and 7872 — 780z Lhe

as in the previous subcase through — = 2 7

remaining integrations bring us to 3. 12,

In this subcase we have (j,k,1) chosen from 3,4,6,7 with the conditions that 4 must be
preceded by 3, and 6 may not appear in the first position. This second condition removes 3 of
the 12 orderings as compared to Subcase 2iv, leaving us with 9. There are always 3! orderings
of the remaining variables, giving a total of 54 orderings for this case.

Subcase 2ix: The eight smallest variables are Xl, Xg, XJ, X5, X, X7, X, and Xg. We

proceed as in the previous subcase through — . The next integrand is

7T T TE 24
8 9
w'm — IEm 7m8 Tar
5% — 7so51ss lollowed by 55—, and eventually -~ o

There are 9 possible choices for (j,k,[,m) since we have the same conditions as in the
previous subcase, with the remaining number assigned to m. There are two orders for the
remaining two variables, giving a total of 18 orderings.

Subcase 2x: The six smallest variables are X, Xy, X;, X}, X5 and Xg. We proceed as in the

1‘31‘2 . . .
3—5 Contlnulng, we see integrands

adas a2 g6 o1 T
kU5 TpTs a5
12 275’ 60 12078’ and - 760 — Togo O our way to g 12'

In fact this case requires j = 3 and k£ = 4, since we can’t have either X4 or both of X3 and
X precede X5. There are 4! = 24 ways of ordering the remaining variables.

Subcase 2xi: The seven smallest varlables are X1, Xo, X3, X4, X5, X| and Xs. Thrs matches

the previous subcase through =2 120m ; the next two integrands are
8

8
_Ts T8 22
=60 — 393 continuing we arrive at 555;.

We must have [ = 6 or [ = 7. There are 3! ways of ordering the remaining variables for a
total of 12 orderings.

Subcase 2xii: The eight smallest Varlables are Xl, X, X3, Xy, X5, Xl, X,, and X8 This

xm xm
7860 8912078 and

xl
7 60 8-120xg

and

matches the previous subcase through — . Next we have

IEQ 9
78960 8910120 5 12'

We must have (I, m) equal to (6,7) or (7,6), and there are 2 ways of ordering the remaining
2 variables, for a total of 4 orderings.

This completes Case 2, which contains 1240 possible orderings up to the symmetries. The
terms in (3)) corresponding to these orderings of the variables have total weight per symmetry

. L4 _ 235797
class of: 360 - 355 +... +4- 512, = o0

Case 3: Orderings Wthh ensure min(X;Xg, Xy X5, X3X7) is either X;Xg or X3X7.
Since X, is the second smallest variable, these will occur only when X3, X,; < Xg, but
Xg < Xj5. Only the simplest case is described in detail.

760 8 1209:
Continuing we arrive at
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Subcase 3i: The five smallest variables are X5, Xy, X3, X7 and Xg or X1, Xs, X7, X3 and Xg.

We proceed to evaluate:

1 Tiyg Tig g x7 x3 )
/ / c. / / / / / min(xlxg, Igl’7)d$1dl’2d$3dl’7d$8 c. dl’igdl’ilo
0 Jo 0 0 0 0 0

The inner integral is piecewise linear in z;, with a single break point at z; = x;—?, however
x;—? may or may not be greater than x,. We decompose the inner integral as:

377

min(mz,%) T2
/ l’lxgdl’l + / l’gI?dSL’l
0

min(:cg,%)

Evaluating this integral leaves us with the new inner integral:

x3

1 . T3T7 9 . T3T7 d

— min(z, ) s + row3ry — min(zy, Yrzxr | dag
0 2 Ts I

m3m7

This again needs to be split, this time with breakpoint at x5 =

z3x7
2 3 2,.2 2 2
rg8 QE#ES (i :E337 :I7 (i
—— + o337 — X2X3X7 9 + —_— + LoX3ly — — D)
0 2 z3z7 21’8 xTs
zg

Happily, we see some cancelation of terms, both before evaluating the integral and after. This

yields:
/m x%xj n ZL’§$7 _ x%x% dLL’g
0 6x§ 2 2xg

We proceed through the following integrands:

xg wyoxp llag 165
2422 T8 Srg 1344° 7 28 12!

Accounting for the fact that X5 < Xg, there are %' orderings of the remaining variables.
With the two orderings of X3 and X; (which do not affect the computation of the integral),
we have the total of 120 orderings corresponding to this subcase.

Subcase 3ii: The six smallest variables are X, X5, X3, X7, X, and Xg, with X3 and X
possibly switched.

7 5 6 8
The integrands then remain identical through % + % — 5=+ These are followed by g5 +
8

6 7
e S

41 . ..
65— Tins and = =5+ Subsequent integrations yield =2 5 12, There are 5 orderings of the remaining

variables, and X3 and X7 can be switched, giving a total of 24 orderings.
Subcase 3iii: The six smallest variables are X, X5, X3, X4, X7 and Xg.

w3x7 . w3x7

The integrands are identical to Subcase 3i until 3m7 + We proceed to:

2xg
rird  wirg _ [Eﬁl’% 8 ﬁ _ ﬂ ' 83x] . 83
2422 8 8rs = 120xzZ 40 40zg’ 60480° T 12-12!

There are 43! = 12 orderings of the remaining variables.
This completes Case 3, which comprises 156 orderings of the variables. The terms in (3))

corresponding to these orderings of the variables have total weight per symmetry class of 561521,

Case 4: Orderings in which min(X;Xg, X,X5, X3X7) can be attained at all 3 terms.
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This comprises a small number of orderings that feature a messy inner integral. We note
that in all these cases the two smallest variables are X; and Xy, while the third smallest
variable is either X3 or X7. Our integrand is symmetric in X3 and X7, so we will do the
computation only with X3 as the smaller of the two variables. We will proceed to evaluate
the three innermost integrals before breaking into subcases, assuming that the fourth smallest

variable is X;:
x; T3 T2
/ / / min(xlxg, ToTs5, $3I7)d.§l]1d$2d.§(f3

min(zozs,377)

z2
g X
/ / / legdilfl —|—/ Il’llIl(LUQZL’g), LU3.CL’7)dLU1dZL’2dLU3
min(zoxs,x327)
8

Tj 3 1 2 I ?
:/ / (mln(x2:c5,x3x7) + 1y min(zazs, 2577) — min(zoxs, T3r7) )dx2dx3

2:178 T

i s . min(l'gl’g,, 1'31’7)2
= To min(zoxs, T3T7) — dzodas

// g

2.2 T3 2.2
T5T 3T
SL’2 5 — 275 dl’gdl’g—'— ToX3Xy — 377 dSL’gdLL’g
2:178 3Ty 2:178
5
T 3.3 3302 3 2 3.3 3.3
:/ j <x3x7x5 R C R £ N ) dus
0

3

?)I'g 625'85(7% 2 2:178 225'% 25(785(75

(7 sfer 2 ad a? dirs — vj [ar  af o Ty
= Tg —————2+ Tr3 = — —————2+
0 2 2:178 6LU5 3I8I5 4 2 2LU8 6:175 35(78255
We now proceed to the subcases which are based on the ordering of the remaining variables.

Subcase 4i: The six smallest variables are X, Xo, X3, X7, X5 and Xg. Then X; = X7 and
we need to evaluate:

[ E 2 ) andnanan e ana
8!13'8 241’% 12z525 L7AT5AT8AL, AT ATy ALy,
5“1() xﬁ 5:67
_/ / / / / /0 (75 - 21;8) dzsdrgdr; dzv;dz;,dx;,,
o ! T 105
768/ / / / / T dradriding = 76701 = 16 121

As noted previously, there is a second ordering corresponding to this subcase, in which
X3 and X7 are reversed, and there are 4! orderings of the remaining variables, giving us 48
orderings in this case.

Subcase 4ii: The seven smallest variables are X, Xy, X3, X7, X5, X, and Xg.

This calculation is quite similar to the previous one until it reaches the integral with inte-

grand < [— — ;’M |. Subsequent integrands are:
1 [z 51 1 [ 5xg q 1 [17a%
— | = - f— | == — ; and —— :
32 [14 168xg| 32 [112 1512z’ 1792 | 54

_85

The remaining integrations bring us to 5735
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There are 3! orderings of the remaining variables, k& may be either 4 or 6, and X3 and X5
can again be reversed, giving us a total of 24 orderings in this subcase.

Subcase 4iii: The seven smallest variables are X, X5, X3, X7, X4, X5 and Xg.

The first integration is similar to the first integration in Subcase 4i, and we proceed from
there, via the following integrands:

1[2% 2] zh zh } 1 [293:7_13:62}. 15728

4012 1das 4822 + 2475 | 12096 ' 870912°
The remaining integrations bring us to %.

There are 3! orderings of the remaining variables, and X3 and X7 can be again be switched,
giving 12 orderings in this subcase.

Subcase 4iv: The seven smallest variables are X, Xy, X3, X4, X7, X5 and Xg. Unlike the
previous cases, we have X; = Xy, so we restart with just the inner 3 integrals evaluated at
the top of the section:

/ /‘1‘210 /‘ / /‘ /‘ /907 x4 |:_ _ _% _ x_% N 1’3
s 65(:5 3LU8.§(Z5
Tito 3 xg
/ / / / / / T + dz;dxsdzsdx;. dr; dz;
205 612 ' 3wsrs s ALig ALiyo
e 1027 1z
540 / / / / / < " 165172) Cl375Cl:L’S(:l:ljigdl’igdl’ilo

Tiyg Tig 1()31'8 103 - 8! 206
dasdz, do, dz;, = _ ,
540/ / / / 1008 C8G s Qi Cline = Fie007 191 T 27+ 121

There are 3! orderings of the remaining variables, and X3 cannot be interchanged with Xz
due to the interceding X,.

Subcase 4v: The eight smallest variables are X, X5, X3, X7, X5, X, X; and Xg.

} dl’4dl’7d$5dl'8dl'zs dzzg dxno

7 8
This follows Subcase 4ii until we arrive at integrand % [x—k — %

] We continue through

14 ~ T168xs
integrands
8 9 9
Lo 5 and 8
32 (112 1512z 96768

and eventually to = 12,
There are two orderings of the remaining variables, (k,[) can be (4,6) or (6,4) and X3 and
X7 may be reversed, giving a total of 8 orderings in this subcase.

Subcase 4vi: The eight smallest variables are Xy, Xs, X3, X7, X4, X5, Xg and Xg.

8
This follows Subcase 4iil until we arrive at the integrand [29:5; - li—Z] Two more

12096
integrations bring integrands:

1 [2993% 13932} and 1 [31z§]

12096 | 8  9as 12096 | 120

Continuing we get =2 ¥ 9, There are two orderings of the remaining variables, and X3 and X7
can be reversed, giving a total of 4 orderings in this subcase.

Subcase 4vii: The eight smallest variables are X, X, X3, Xy, X7, X5, X4 and Xs.
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This follows Subcase 4iv until we arrive at the integrand = [107:(; 5 15:] Continuing, we
see:
Lo[10ef  1af] 1 (12320
540 | 56 144xg 540 | 10080

on our way to % In this subcase, X3 and X; cannot be interchanged, and there are 2

orderings of the remaining 2 variables.
This completes Case 4, which contains the remaining 104 possible orderings of the variables,
and the terms in (3] corresponding to these orderings of the variables have total weight per

3627
symmetry class of £35;.
f 13140 285797 6651 .. q 361227'

Summing over the four cases, the contributions of 5=, S25r, =35 respectively,
give a total of 1g71726!3 summed over the 5040 symmetry class representatives in (3]). Multiplying

by the 720 symmetries of the variables, we find that Eu(5) = 1?’32;30 = 0.032396284271.

As noted in Section (], the computed value of Eu(5) is used in a lower bound for Eu(n)
for n > 5.

It is easy to compute the first few digits of this number by simulating the ten uniform random
variables. A short MATLAB program sampled the ten variables 10'? times and computed the
minimum, the computed number agreed with our calculation to the 7th decimal place. While
this number arises in a relatively simple way, we do not know of it arising in other places.

Unfortunately, it would be much harder to use such a simulation to get approximate values
of Eu(6) or Eu(7). The proof method used above for K5 does not generalize to K4 or K7 either.
To simulate Eu(6) we would need to catalogue the minimal ways of drawing Kg, i.e. drawings
D for which X(D) is inclusion-wise minimal.

4. OTHER DISTRIBUTIONS AND MOMENTS

For some other very simple discrete probability distributions, it is possible to compute the
expected crossing number exactly. Here we do this for the simplest example and conclude
that the first two moments of the distribution do not determine the expectation.

Consider for 0 < t < wu, the discrete distribution where edges have weight ¢ or u with
probability % Let Edisc(n,t,u) be the expected weighted crossing number of K,, with the
distribution for given ¢, u; if the parameter u is omitted we will assume it is 1 — ¢. Then it is
easy to see that

2 if there is a pair of non-adjacent edges of weight t
cr(Ks,w) = ¢ u? if all edges have weight u
tu otherwise.

All 210 possible assignments of ’s and u’s to the edges are equally likely. There is only one
way for all edges to have weight u. Otherwise, if we do not have two non-adjacent edges of
weight ¢, we must either have all edges of weight ¢ incident with a single vertex, or three edges
forming a triangle. In the former situation, we may have one edge (10 assignments), two edges
(30 assignments), three edges (20 assignments) or four edges (5 assignments). For the triangles,
we have 10 more assignments. The remaining 948 assignments of t’s and u’s to the edges have
a pair of non-adjacent edges of weight t. Therefore, Edisc(5,t,u) = 948t% + 75tu + u?),
which simplifies to Edisc(5, ) = 1557 (874¢* + 73t + 1) when u =1 —¢.

. —)2
The mean and variance of the considered discrete distribution are and %, respec-
1

tively. If we take u = 1 — ¢, then the mean is 5, matching the the mean of the uniform

1024 (

u+t
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(l_ft)2. Since the variance of the uniform case is 1—12, by
choosing t = %, we get a distribution that matches the uniform distribution in its first two

moments. However the above calculation shows that
3 — ﬁ) 1973 — 947v/3
6 6144

We conclude that the first two moments of the input distribution on the edges are not
sufficient to determine the expected crossing number. We believe that a constant number of
higher moments is not sufficient either. Perhaps, up to (g) moments are required.

distribution, while the variance is

Edisc(5, ~ 0.05416 > Eu(5).

5. ASYMPTOTICS

Some standard arguments used for crossing number estimates work also for the expectations.
In this section we show that simple adaptations of these arguments show that Eu(n) is ©(n?).
Since cr(K,,) is O(n*) and an upper bound for Eu(n), we need only show the lower bound. We
remark that the asymptotic upper bound cr(K,,) can be obtained trivially from the fact that
there are only O(n*) pairs of edges in K,,, but that much better constructive upper bounds
exist and are an ongoing research challenge, see for instance [AAKO0G, [PRO7].

5.1. Asymptotics via a recurrence. We recall that we denote the crossing weight of a
given drawing D of a graph weighted by w as cr(D, w), and the weighted crossing number of
G weighted by w (i.e. the minimum over all drawings) by cr(G, w).

Given a drawing D of K,, with weights w, we can consider the induced drawings of copies
of K,, —v = K,,_; obtained by removing each vertex v € V = V(K,,) from K,, in turn. Then

> ex(Dlk, v, wlk, —) = (n —4) cr(D, w) (4)

veV

since each pair of disjoint edges ij,4'j" of K, appear in all but four of the terms on the left
side of ().

Now consider K,, for n > 4 with a fixed weighting w. There is some optimal drawing D* of
K,, such that cr(K,,w) = cr(D*, w). Now:

1
cr(K,, w) = cr(D*, w) = — Z cr(D*|k,, —v, WK, —v)
n veV
1 1
> ! UEZVIIgHCI(Dh(n oy WK, —v) = —] UEZVCT(Kn —0, W[k, —v)-

If the weights in w are i.i.d. random variables, we can take expectations on both sides to
get Eu(n) > "3 Eu(n — 1). Applying this inequality recursively, we find for n > 6 that
Eu(n) > 1 () Eu(5).

5.2. Asymptotics via the Crossing Lemma. The following result, known as the Crossing
Lemma, was proved independently by Ajtai et al. [ACNS82] and Leighton [Lei84]. The version
given below (with the specific constant 1024/31827 > 0.032) is due to Pach et al. [PRTT06].

Theorem 5.1 (Crossing Lemma). Let G be a graph of order n with m > %n edges. Then

16
1024 m?
>
a(G) 2 37597 2
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Let 7 be a probability distribution with expectation E(7) = . We define the complementary
probability distribution m* by setting 7*(u + x) = m(u — x). For the purpose of the following
argument, let us assume that our probability distribution is symmetric, i.e., 7 = 7*. Then,
given a random weight function w, the complementary weight function w*, defined as w*(e) =
2pu — w(e), has the same distribution as w. Let us define w’ to be either w or w*, so that
w'(e) > p holds for at least half of the edges e € E(G). Finally, let wy be defined as wy(e) =0
if w'(e) < p, and wy(e) = 1ifw'(e) > p. Since cr(G,w)+cr(G, w*) > cr(G,w') > p? cr(G, wy),
the following holds:

E(cr(G,w)) = $E(cr(G,w) + cr(G,w*)) > %E(cr(G, w'))

2 3 2,3
w® o 1024 (m/2) 64 m
E(cr(G > — = —.

(@) =25 31507 w2~ 31807 w2
This gives a version of the crossing lemma for expectations. With a little more care we can
improve the above bound and also get rid of the symmetry condition. In order to do this, we

replace the mean by the median, i.e. the largest number v such that Problw(e) > v] > 3.

7; N[

>

Theorem 5.2 (Crossing Lemma for Expectations). Let G be a graph of order n with m >
ﬁn edges. Suppose that each edge e € E(G) gets a random weight w(e), where the
weights of distinct edges are independent non-negative random variables (not necessarily i.d.)

whose median is at least v > 0. Then

12802 m3
E(er(G,w)) > 31807t
Proof. Given w, we introduce related weights w” and ws in a similar (but not identical) way
as above: we let w”(e) = 0 if w(e) < v, and w”(e) = v if w(e) > v; we let wy(e) = w”(e)/v
be the corresponding weight with values 0 and 1. Note that Problw”(e) = v] > 1 and
Problwy(e) = 1] > 3. Similarly as before, we have cr(G,w) > cr(G,w”) = v* cr(G, ws).

Note that w determines a spanning subgraph F,, C G, whose edges are those edges of G for
which ws(e) = 1. The graph F, is a random subgraph of GG, and for each spanning subgraph
F of G we let Prob(F) be the probability that F' = F,,. We will need a lower bound for the
sum Y cr(F)Prob(F) taken over all (spanning) F' C G. To do this, let us define F’ C F as
the spanning subgraph of G such that e € E(F') if w(e) > v. > v, where v, is the median
of the random variable w(e). The threshold case when w(e) = v, is to be considered so that
Proble € E(F')] = 5. Then F” is also a random spanning subgraph of G and Prob(F') = 27™,
Since the event that an edge e is in F” is contained in the event that e € E(F), we have for

each F

Prob(F) =Y o(F,F')Prob(F"),
FICF
where o(F, F') > 0 is the probability that we have F,, = F under the condition that F’ is
given. Clearly, > .~ a(F, F') =1 for every fixed F'. Since cr(F”) is an increasing function,
we have:

> cr(F)Prob(F) = Y c(F) Y a(F,F')Prob(F')

FCG FCG F'CF
> > a(F)Prob(F') Y a(F, F)
F'CG FDF'

:Z r(F")Prob(F ZQ’”

FICG FICG
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We will employ another notion:
A(k,n) = min{er(F) [ [V (F)| = n, [E(F)| = k}.

By the Crossing Lemma, \(k,n) > 311082247 B k> 10371 Using the introduced quantities, we
obtain the following estimate:

Elcr(G,w)] = /]RE cr(G,w)dw > /RE cr(G,w')dw = v? /RE cr(G,wy)dw
> 12 ) a(F)Prob(F) > v* > 27" cx(F)

FCG FICG

> 22 > 2ma(F)
k=0 FCG,|E(F)|=k
> 1/22_mz (7]?))\ k,n
k=0
102412 " m
> 0 k3.
= 31827 -2mn2 Z (k)

k=[103n/16]

Note that we have k% + (m — k)* > 1m? for 0<k< m and that for k& < 103n/16, we have
(m —k)* > (m —103n/16)*> > (m — (1 — 47/3)m)* = im®. Thus,

S (W zay (e =g
=0

k=[103n/16]
The above inequalities imply:
102412 1 5 1282 .m3
31827-2mn2 8~ | 31827 n?
which we were to prove. U

Eler(G,w)] >

Acknowledgments. B.M. was supported in part by an NSERC Discovery Grant (Canada),
by the Canada Research Chair program, and by the Research Grant P1-0297 of ARRS (Slove-
nia). He is on leave from: IMFM & FMF, Department of Mathematics, University of Ljubl-
jana, Ljubljana, Slovenia. T.S. was supported in part by an NSERC Discovery Grant. The
authors are grateful to Luis Goddyn for some helpful discussions on the subject.

REFERENCES

[AAKO6] O. Aichholzer, F. Aurenhammer, and H. Krasser, On the crossing number of complete graphs,
Computing 76 (2006), 165-176.

[ACNS82] M. Ajtai, V. Chvatal, M. M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Theory and
practice of combinatorics, North-Holland Math. Stud., vol. 60, North-Holland, Amsterdam, 1982,
pp- 9-12.

[DN03] H. A. David and H. N. Nagaraja, Order statistics, third ed., Wiley Series in Probability and
Statistics, Wiley-Interscience, 2003.

[Guy72] Richard K. Guy, Crossing numbers of graphs, Graph theory and applications (Proc. Conf., Western
Michigan Univ., Kalamazoo, Mich., 1972, Lecture Notes in Math., Vol. 303, Springer, Berlin, 1972,
pp. 111-124.

[Lei84] Frank Thomson Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17 (1984),
47-70.



14

[MohO8]

[Moh10]

[PRO7]

[PRTTOG]

[RS09]

[SSV95]

[Vrt10]

BOJAN MOHAR AND TAMON STEPHEN

Bojan Mohar, Crossing numbers of graphs on the plane and on other surfaces, Abstracts of the
20th Workshop on Topological Graph Theory in Yokohama, Nov. 25 to 28, 2008, Yokohama, Japan,
2008.

, Do we really understand the crossing numbers?, Mathematical foundations of computer
science 2010. 35th international symposium, MFCS 2010, Brno, Czech Republic, August 23-27,
2010. Proceedings. Hlinény, Petr et al. (ed.), Lecture Notes in Computer Science 6281, Springer,
Berlin, 2010, pp. 38-41.

Shengjun Pan and R. Bruce Richter, The crossing number of K11 is 100, J. Graph Theory 56
(2007), 128-134.

Janos Pach, Rado§ Radoici¢, Gabor Tardos, and Géza Téth, Improving the crossing lemma by
finding more crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527-552.

R. Bruce Richter and G. Salazar, Crossing numbers, Topics in topological graph theory, Encyclo-
pedia Math. Appl., vol. 128, Cambridge Univ. Press, Cambridge, 2009, pp. 133—-150.

Farhad Shahrokhi, Laszl6 Székely, and Imrich Vrt’o, Crossing numbers of graphs, lower bound
techniques and algorithms: A survey, Graph Drawing (Roberto Tamassia and Ioannis Tollis, eds.),
Lecture Notes in Computer Science, vol. 894, Springer, 1995, pp. 131-142.

Imrich  Vrt’o, Crossing mnumbers of graphs: A bibliography, 2010, available at:
http://www.ifi.savba.sk/"imrich.

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, 8888 UNIVERSITY DRIVE, BURNABY,
BriTisH CoLUuMBIA V5A 156, CANADA



	1. Introduction
	2. Preliminaries
	3. Computation of the expected crossing number
	4. Other distributions and moments
	5. Asymptotics
	5.1. Asymptotics via a recurrence
	5.2. Asymptotics via the Crossing Lemma
	Acknowledgments

	References

