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Abstract

A global solution of Boltzmann equation is proposed after introducing

a three-dimensional closed Lie group to simplify the collision term.

molecular collision, Boltzmann equation, Lie Group

1 Introduction

Navier-Stokes equation is the first order approximation of Boltzmann equation[1].
Therefore, solving Boltzmann equation directly is useful to understand myster-
ies of fluid phenomena in detail[2]. The collision term in Boltzmann equation is
probably the main difficulty, and the traditional treatments are limited in Per-
turbation, Variation, BGK methods and so forth[3], among which BGK model
is the most successful to hydrodynamics; however, this method is still limited in
treating fluid dynamics with constant temperatures and low Mach number[4].

On the other hand, Lie group and Lie algebra, original in analyzing Partial
Differential Equations from the point of mathematics, is also used to deal with
Boltzmann equation. However, the corresponding solutions only exist locally,
and some of them are sensitive to the symmetrical structures as shown in[5, 6,
7, 8, 9]

To overcome such difficulties, a three-dimensional closed Lie group imbedded
in R

4, on which the collision term can be dismissed, is introduced in this paper,
and the global solution of Boltzmann equation is discussed.

2 Analysis of Collision Term and Results

Two molecules are m1 and m2 in mass, d1 and d2 in diameter, v1 and v2

in velocity before collision, and w1 and w2 after collision, respectively. The
collision between molecules is imperfect elastic. In terms of momentum theorem
and energy conservation law, we have

{

m1v1 +m2v2 = m1w1 +m2w2

1

2
m1v

2
1 +

1

2
m2v

2
2 = 1

2
m1w

2
1 +

1

2
m2w

2
2 +△E

(2.1)
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where

△E =
1

2
(1− ǫ2)

m1m2

m1 +m2

(v1 − v2)
2 (2.2)

and ǫ is the restitution coefficient. Define | d | the distance between centers of
m1and m2. Let n = d

|d| and
{

w1 − v1 = λ1n

w2 − v2 = λ2n
(2.3)

From Eq.2.1 and Eq.2.3, two cases of collision are deduced as
{

w1 = v1 + (1 + ǫ) m2

m1+m2

[(v2 − v1) · n]n

w2 = v2 − (1 + ǫ) m1

m1+m2

[(v2 − v1) · n]n
(2.4)

and
{

w1 = v1 + (1− ǫ) m2

m1+m2

[(v2 − v1) · n]n

w2 = v2 − (1− ǫ) m1

m1+m2

[(v2 − v1) · n]n
(2.5)

both of them may exist in experiment as shown in [1]. Write the collision term
of Boltzmann equation as[1]

∂f1

∂t
|coll=

∫∫

(J∗f
′

1f
′

2 − f1f2)
1

4
d2(v1 − v2) · ndv2dΩ (2.6)

where f(r,v, t) is an one-particle probability distribution function; f, f
′

denote
the one-particle probability distribution function before and after collision. Ω
is the scattering angle of the binary collision {W2,W1} → {v2,v1}. Here J∗ is
the Jacobean matrix defined as

J∗ =
∂(W2,W1)

∂(v2,v1)
(2.7)

In terms of Eq.2.4 and Eq.2.5

J∗ = ǫ (2.8)

Write Eq.2.6 in general form as matter of convenience

∂f

∂t
|coll=

∫∫

(ǫf
′

f
′

1 − ff1)
1

4
d2(v − v1) · ndv1dΩ (2.9)

In order to treat the above collision term, we shall first introduce a four-
dimensional Euclidean space. Let λ ∈ R \ {0}, (v1, v2, v3, v4) ∈ R

4, such that

v21 + v22 + v23 + v24 = λ2 (2.10)

then the following differentiable manifold

M = S3(1) = {(ϑ1, ϑ2, ϑ3, ϑ4) ∈ R
4 |

4
∑

i=1

ϑ2
i = 1}

is a Lie group[10], where ϑ = v

λ
.

According to [11], Boltzmann equation can be written as
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∂f

∂t
+ v · ∇f +

F

m
· ∇vf =

∂f

∂t
|coll (2.11)

Recall the General Stokes Formula[12]
∫

∂M

F =

∫

M

dF (2.12)

where the boundary ∂M of M is smooth and simple, F ∈ C∞(M), we can
obtain

∂f

∂t
|coll=

∫

s

[

∫

∂M

(ǫf
′

f
′

1 − ff1)
1

4
d2(v − v1) · ndv1]dΩ

=

∫

s

[

∫

M

∂[(ǫf
′

f
′

1 − ff1)
1

4
d2(v − v1) · n]

∂v4
dv4dv1]dΩ (2.13)

Here we can see the collision term on the Lie group M . Suppose (ǫf
′

f
′

1 −
ff1)

1

4
d2(v − v1) · n to be smooth. Since it is independent to v4, then we have

∂f

∂t
|coll= 0 (2.14)

Consequently, the Boltzmann equation can be written as Vlasov-Poisson
equation[13]

∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0 (2.15)

Suppose e the identity in M , let p = (0, 0, 0, 1), U = S3(1) \ {p}. Define
ϕ : U −→ R

3, thus (U, ϕ) is a chart of M containing identity e. where

ϕ(v1, v2, v3, v4) = (v∗1 , v
∗
2 , v

∗
3) = (

v1

1− v4
,

v2

1− v4
,

v3

1− v4
) (2.16)

Here let v = ϑ as a matter of convenience.
Eq.15 can be easily written in the form of

df

dt
+

F

m
· ∇vf = 0 (2.17)

where df
dt

= ∂f
∂t

+ v · ∇f , and from Eq.2.16

∂

∂vi
=

∂

∂v∗j

∂v∗j

∂vi
(2.18)

Let J =|
∂v∗

j

∂vi
|, and write Eq.2.15 as

df

dt
+ J

F

m
· ∇v∗f = 0 (2.19)

Let G(τ) be the one-parameter subgroup on Lie group M , and define

X =
JFi

m

∂

∂v∗i

which is treated as Lie algebra on M ; usually, we suppose constant acceleration
of molecules[11] and the external force F to be independent with time t such
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as gravitation. Recall the definition of tangent vectors on manifold and the
character of one-parameter subgroup[10, 14]

dG(
d

dτ
(0))f =

d

dτ
(f ◦G)(0) = Xf(e) (2.20)

Here we suppose f ∈ C∞(e), f ◦G ∈ C∞(0) . Then Eq.2.18 can be written
as

df

dt
(e) +

d

dτ
(f ◦G)(0) = 0 (2.21)

Since M is a global Lie group, we can write the above equation in the form
of

df

dt
+

d

dτ
(f ◦G) = 0 (2.22)

Moreover, let t = τ , integrate Eq.2.22

f + f(G) = C(v) (2.23)

where C(v) is independent with t, and determined by boundary and initial
conditions; G(t) is a known function.

3 Conclusion

We firstly derived the collision term in a general process with restitution coef-
ficient. However, this coefficient makes no difference to ours analysis, for the
collision term in Boltzmann equation is bound to disappear as long as it is on
a closed differentiable manifold. At the same time, we can always introduce a
higher dimensional space for any v = (v1, v2, v3) ∈ R

3 , such that

v21 + v22 + v23 + v24 = λ2

where the parameter λ controls the solution of Boltzmann equation, and man-
ifold S3(1) is a global Lie group. So the differentiable manifold is well-defined
and the corresponding results are global.
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