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ABSTRACT

Quantum calculus based on the right invertible divided difference
operator Dτ

σ is proposed here in context of algebraic analysis [9].
The linear operator Dτ

σ, specified with the help of two fixed maps
σ , τ : M → M , generalizes the quantum derivative operator used in
h- or q-calculus [5]. In the domain of Dτ

σ there are special elements
defined as Dτ

σ-polynomials and the corresponding Taylor formula is
proved.
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1 Introduction

The usual h- or q-calculus as well as many other types of quantum calculi are
specified by a fixed right invertible linear operator D, the so-called quantum
derivative. The right inverses of D allow us to define the concept of indefinite
D-integrals. Then, for example by applying Jackson formula, one can define
the corresponding definite integrals [4, 5]. On the other hand, the calculus of
right invertible operators turns out to be a part of algebraic analysis devel-
oped by D. Przeworska-Rolewicz. For a right invertible operator D, its right
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inverses give rise to the corresponding indefinite D-integrals, while definite
D-integrals are defined with the help of the corresponding initial operators.
For the comprehensive study of the topic we recommend Ref. [9].

The general concept of D-polynomials defined for a right invertible linear
operatorD is analyzed in Section 2. In particular, an interesting result is that
the dimension of the linear space Pn(D) of all D-polynomials of degree less
or equal n, n ∈ N, additionally depends on the dimension of kerD (the so-
called space of D-constants), i.e. dimPn(D) = (n+1)·kerD, which is infinite
if kerD is of infinite dimension. Then, in Section 3 we define the so-called
(σ, τ)-quantum derivative as a divided difference operator Dτ

σ based on three
fixed mappings σ, τ : M → M (shifts) and θ : M×M → R (tension function),
specifying the essence of quantum calculus considered. One can show that
Dτ

σ is right invertible [7]. In analogy to the usual concept of polynomials,
their (σ, τ)-quantum counterparts are defined in Section 4 for the assumed
(σ, τ)-quantum derivative Dτ

σ. Finally, in Section 5 the corresponding (σ, τ)-
quantum Taylor formula is proved (for analogy with q-calculus see [5]).

2 Polynomials in algebraic analysis

Let X be a linear space over a field K and L(X) be the family of all linear
mappings D : U → V , for any U , V - linear subspaces of X . We shall use
the notation dom(D) = U , codom(D) = V and imD = {Du : u ∈ U} for
the domain, codomain and image of D, correspondingly. For any operators
D1, D2 ∈ L(X) and scalars k1, k2 ∈ K, the linear combination k1D1 + k2D2

as well as the composition D1D2 are the elements of L(X) defined on the
corresponding domains

dom(k1D1 + k2D2) = dom(D1) ∩ dom(D2) , (2.1)

and
dom(D1D2) = D−1

2 (dom(D1)) . (2.2)

The domains of all linear mappings considered in the sequel will be under-
stood in the sense of formulae (2.1), (2.2).

Throughout this paper we use the notation

N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .} . (2.3)

Whenever D1 = . . . = Dm = D ∈ L(X), we shall write Dm = D1 . . .Dm,
for m ∈ N, and additionally D0 = I ≡ iddom(D).
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For any D ∈ L(X) and m ∈ N, we assume the notation

Z0(D) = {0} and Zm(D) = kerDm \ kerDm−1 . (2.4)

Evidently, for any D ∈ L(X) there is

Zi(D) ∩ Zj(D) = ∅, (2.5)

whenever i 6= j, and
m
⋃

k=0

Zk(D) = ker Dm. (2.6)

In the sequel we shall use the notation

Z(D) = ker D , (2.7)

and refer to Z(D) as the space of constants for D ∈ L(X).

Proposition 2.1. Let D ∈ L(X), m ∈ N, and Zi(D) 6= ∅ for i = 1, . . . , m.
Then, any elements ui ∈ Zi(D), i = 1, . . . , m, are linearly independent.

Proof. Consider a linear combination u = λ1u1+ . . . λmum and suppose that
u = 0 for some coefficients λ1, . . . , λm ∈ K. Hence we obtain the sequence of
equations: Dku = λk+1D

kuk+1 + . . . + λmD
kum = 0, for k = 1, . . . , m − 1.

Step by step, from these equations we compute λm = 0, . . . , λ1 = 0.

Let us define

R(X) = {D ∈ L(X) : codom(D) = imD}, (2.8)

i.e. each element D ∈ R(X) is considered to be a surjective mapping (onto
its codomain). Thus, R(X) consists of all right invertible elements.

Definition 2.2. An operator R ∈ L(X) is said to be a right inverse of
D ∈ R(X) if dom(R) = im(D) and DR = I ≡ idim(D). By RD we denote
the family of all right inverses of D.

In fact, RD is a nonempty family, since for each y ∈ im(D) we can select
an element x ∈ D−1({y}) and define R ∈ RD such that R : y 7→ x.

The fundamental role in the calculus of right invertible operators play the
so-called initial operators, projecting the domains of linear operators onto the
corresponding space of their constants.

3



Definition 2.3. Any operator F ∈ L(X), such that dom(F ) = dom(D),
im(F ) = Z(D) and F 2 = F is said to be an initial operator induced by
D ∈ R(X). We say that an initial operator F corresponds to a right inverse
R ∈ RD whenever FR = 0 or equivalently if

F = I − RD . (2.9)

The family of all initial operators induced by D will be denoted by FD.

The families RD and FD uniquely determine each other. Indeed, for-
mula (2.9) characterizes initial operators by means of right inverses, whereas
formula

R = R′ − FR′ , (2.10)

which is independent of R′, characterizes right inverses by means of initial
operators. Both families RD and FD are fully characterized by formulae

RD = {R + FA : domA = imD, A ∈ L(X)}, (2.11)

FD = {F (I − AD) : domA = imD, A ∈ L(X)}, (2.12)

where R ∈ RD and F ∈ FD are fixed arbitrarily.
Let us illustrate the above concepts with two basic examples.

Example 2.4. X = R
R - the linear space of all functions, D ∈ R(X) -

usual derivative, i.e. Dx(t) ≡ x′(t), with dom(D) ⊂ X consisting of all
differentiable functions. Then, for an arbitrarily fixed a ∈ R, by formula

Rx(t) =
t
∫

a

x(s)ds one can define a right inverse R ∈ RD and the initial

operator F ∈ FD corresponding to R is given by Fx(t) = x(a).

Example 2.5. X = R
N - the linear space of all sequences, D ∈ R(X) -

difference operator, i.e. (Dx)n = xn+1 − xn, for n ∈ N. A right inverse

R ∈ RD is defined by the formulae (Rx)1 = 0 and (Rx)n+1 =
n
∑

i=1

xi while

(Fx)n = x1 defines the initial operator F ∈ FD corresponding to R.

An immediate consequence of Definition 2.3, for an invertible operator
D ∈ R(X), i.e. ker D = {0}, is that FD = {0}. Therefore, the nontrivial
initial operators do exist only for operators which are right invertible but not
invertible. The family of all such operators is denoted by

R+(X) = {D ∈ R(X) : dimZ(D) > 0}. (2.13)
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Proposition 2.6 (Taylor Formula). Suppose D ∈ R(X) and let F ∈ FD be
an initial operator corresponding to R ∈ RD. Then the operator identity

I =
m
∑

k=0

RkFDk + Rm+1Dm+1 , (2.14)

holds on dom(Dm+1), for m ∈ N0.

Proof. (Induction) See Ref.[9].

Equivalent identity, expressed as

x =
m
∑

k=0

RkFDkx+Rm+1Dm+1x , (2.15)

for x ∈ dom(Dm+1) and m ∈ N0, is an algebraic counterpart of the Taylor
expansion formula, commonly known in mathematical analysis. The first
component of the last formula reflects the polynomial part while the second
one can be viewed as the corresponding reminder.

Example 2.7. To clearly demonstrate the resemblance of formula (2.15)
with the commonly used Taylor expression, we take D, R and F as in Ex-
ample 2.4. Since there are many forms of the reminders in use, it is more
interesting to calculate the polynomial part, which gives the well known re-

sult
m
∑

k=0

RkFDkx(t) =
m
∑

k=0

x(k)(a)
k!

(t− a)k, for any function x ∈ dom(Dm+1).

Proposition 2.8. Let D ∈ R(X) and R ∈ RD. Then R is not a nilpotent
operator.

Proof. Suppose that Rn 6= 0 and Rn+1 = 0, for some n ∈ N. Then 0 6= Rn =
IRn = DRRn = DRn+1 = 0, a contradiction.

Proposition 2.9. If D ∈ R+(X), then Zm(D) 6= ∅, for any m ∈ N.

Proof. The relation Z1(D) 6= ∅ is straightforward. Let R ∈ RD and z ∈
Z1(D) be arbitrarily chosen elements. Then, for anym ∈ N, there is Rm−1z ∈
Zm(D).

With right invertible operators possessing nontrivial kernels we associate
the following concept of D-polynomials.
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Definition 2.10. If D ∈ R+(X), then any element u ∈ Zm+1(D) is said to
be a D-polynomial of degree m, i.e. deg u = m, for m ∈ N0. We assign no
degree to the zero polynomial u ∈ Z0(D) ≡ {0}.

For the convenience’ sake, one can also use the convention deg 0 = −∞.

Proposition 2.11. If D ∈ R+(X) and R ∈ RD, then for any D-polynomial
u ∈ Zm+1(D) there exist elements z0, . . . , zm ∈ Z1(D) such that

u = z0 +Rz1 + . . .+Rmzm. (2.16)

Proof. By formula (2.15) we can write the identity u =
∑m

k=0R
kFDku since

u ∈ Zm+1(D) and Rm+1Dm+1u = 0. Then we define elements zk = FDku,
k = 0, . . . , m , which ends the proof.

Definition 2.12. Let D ∈ R+(X) and R ∈ RD. Then, any element Rkz ∈
Zk+1(D), for z ∈ Z1, is said to be an R-homogeneous D-polynomial (or R-
monomial) of degree k ∈ N0.

Thus, any D-polynomial u ∈ Zm+1(D), of degree deg u = m, is a sum
of linearly independent R-homogeneous elements Rkzk, k = 0, . . . , m. The
linear space of all D-polynomials is then

P (D) =
∞
⋃

k=0

ker Dk (2.17)

whereas

Pn(D) =

n
⋃

k=0

ker Dk = ker Dn (2.18)

is the linear space of all D-polynomials of degree at most n ∈ N0.
Let us fix a basis

{ζs}s∈S ⊂ Z(D) , (2.19)

of the linear space Z(D), D ∈ R+(X), and define

Zs(D) = Lin{ζs} , (2.20)

for s ∈ S. Then
Z(D) =

⊕

s∈S

Zs(D) . (2.21)
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Proposition 2.13. For an arbitrary right inverse R ∈ RD, the family
{Rmζs : s ∈ S,m ∈ N0} is the basis of the linear space P (D). Naturally,
{Rmζs : s ∈ S,m = 0, 1, . . . n} forms the basis of the linear space Pn(D), for
n ∈ N0.

Proof. Let u =
∑k

i=1

∑

s∈Si
aisR

miζs, m1 < . . . < mk and Si ⊂ S be finite
subsets for i = 1, . . . , k. Assume u = 0 and calculate Dmku =

∑

s∈Sk
aksζs =

0, which implies aks = 0, for all s ∈ Sk. Hence u =
∑k−1

i=1

∑

s∈Si
aisR

miζs =
0 and analogously we get Dmk−1u =

∑

s∈Sk−1
a(k−1)sζs = 0, which implies

a(k−1)s = 0, for all s ∈ Sk−1. Similarly we prove that ais = 0, for all s ∈ Si, i =
k − 2, . . . , 1. Now, let u ∈ P (D) be a polynomial of degree deg u = n ∈ N0}.
Then, on the strength of Proposition 2.11, we can write u =

∑n

k=0R
kzk, for

some elements z0, . . . , zn ∈ Z(D). In turn, each element zk can be expressed
as a linear combination zk =

∑

s∈Sk
aksζs, for some finite subset of indices

Sk ⊂ S. Hence we obtain u =
∑n

k=0

∑

s∈Sk

aksR
kζs .

With a right inverse R ∈ RD, s ∈ S and n ∈ N0, we shall associate the
linearly independent family {Rmζs : m ∈ {0, . . . , n}} forming a basis of the
linear space of s-homogeneous D-polynomials

V n
s (D) = Lin{Rmζs : m ∈ {0, . . . , n}} , (2.22)

(independent of the choice of R) of dimension

dimV n
s (D) = n + 1 , (2.23)

being a linear subspace of Pn(D). Then, on the strength of Proposition 2.13,
the linear space Pn(D) is a direct sum

Pn(D) =
⊕

s∈S

V n
s (D) . (2.24)

Corollary 2.14. If dimZ(D) < ∞, the following formula holds

dimPn(D) = (n+ 1) · dimZ(D) , (2.25)

for any n ∈ N0.

Naturally, one can extend formula (2.22) and define

Vs(D) = Lin{Rmζs : m ∈ N0} , (2.26)
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which is both D- and R-invariant subspace of P (D), i.e.

DVs(D) ≡ {Du : u ∈ Vs(R)} ⊂ Vs(D) , (2.27)

RVs(D) ≡ {Ru : u ∈ Vs(D)} ⊂ Vs(D) . (2.28)

Thus, P (D) turns out to be simultaneously D- and R-invariant linear sub-
space of X , since it can be decomposed as the following direct sum

P (D) =
⊕

s∈S

Vs(D) . (2.29)

Since P (D) is a linear subspace of X , there exists (not uniquely) another
linear subspace Q(D) of X such that

X = P (D)⊕Q(D) . (2.30)

Then, every linear mapping φ : X → X can be decomposed as the direct sum

φ = φ
P
⊕ φ

Q
, (2.31)

of two restrictions φ
P
= φ|P (D) and φ

Q
= φ|Q(D), i.e. for any x′ ∈ P (D) and

x′′ ∈ Q(D) there is φ(x′+x′′) = φ
P
(x′)+φ

Q
(x′′). In particular, the mappings

D ∈ R+(X), R ∈ RD can be decomposed as direct sums D = D
P
⊕ D

Q
,

R = R
P
⊕R

Q
such that

I = DR = D
P
R

P
⊕D

Q
R

Q
= I

P
⊕ I

Q
, (2.32)

RD = R
P
D

P
⊕ R

Q
D

Q
, (2.33)

which allows for the decomposition of the initial operator F corresponding
to R

F = I − RD = I
P
⊕ I

Q
− R

P
D

P
⊕R

Q
D

Q
=

= (I
P
− R

P
D

P
)⊕ (I

Q
− R

Q
D

Q
) = F

P
⊕ F

Q
. (2.34)

Proposition 2.15. Let D ∈ R+(X), R′, R′′ ∈ RD be any right inverses and
F ′, F ′′ ∈ FD be the initial operators corresponding to R′ and R′′, respectively.
Then R := R′

P
⊕R′′

Q
∈ RD and F := F ′

P
⊕ F ′′

Q
∈ FD corresponds to R.
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Proof.

DR = (D
P
⊕D

Q
)(R′

P
⊕ R′′

Q
) = D

P
R′

P
⊕D

Q
R′′

Q
= I

P
⊕ I

Q
= I ,

RD = (R′
P
⊕ R′′

Q
)(D

P
⊕D

Q
) = R′

P
D

P
⊕ R′′

Q
D

Q
,

F = F ′
P
⊕ F ′′

Q
= (I

P
− R′

P
D

P
)⊕ (I

Q
− R′′

Q
D

Q
) =

= I
P
⊕ I

Q
−R′

P
D

P
⊕ R′′

Q
D

Q
= I − RD .

The last results allow one to combine right inverses and initial operators
as direct sums of independent components.

3 Divided difference operators in (σ, τ )-quantum

calculus

Quantum calculus is based on a difference operator, called also a quantum
differential, defined as

d
hq
h′q′f(x) = f(qx+ h)− f(q′x+ h′), (3.1)

with the natural assumption that either q 6= q′ or h 6= h′. Let us denote by e

the identity function, i.e. e(x) ≡ x, and define a divided difference operator
D

hq

h′q′ by formula

D
hq
h′q′f(x) =

df(x)

de(x)
≡

f(qx+ h)− f(q′x+ h′)

(q − q′)x+ h− h′
. (3.2)

We shall refer to D
hq
h′q′ as the quantum derivative operator [5]. If the parame-

ters are known from context, the simplified notation d ≡ d
hq
h′q′ and D ≡ D

hq
h′q′

is used.
The following four cases of quantum calculus are the most common ones:

1. h-calculus when h 6= 0, h′ = 0 and q = q′ = 1 ,

2. q-calculus when q 6= 1, q′ = 1 and h = h′ = 0,

3. h-symmetric calculus when h = −h′ 6= 0 and q = q′ = 1,
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4. q-symmetric calculus when q = q′−1 6= 1 and h = h′ = 0.

The expressions qx+ h, q′x+ h′ can be replaced by more general ones τ(x),
σ(x) and formulae (3.1), (3.2) can be rewritten as

dτσf(x) = f(τ(x))− f(σ(x)) , (3.3)

and

Dτ
σf(x) =

dτσf(x)

dτσe(x)
≡

f(τ(x))− f(σ(x)

τ(x)− σ(x)
. (3.4)

If the mappings σ and τ are known from context, we shall use the simplified
notation d ≡ dτσ and D ≡ Dτ

σ.
To prevent the denominator of formula (3.4) from being zero, all functions

considered above are defined on the naturally restricted domain

M = {x ∈ R : σ(x) 6= τ(x)} . (3.5)

The fixed mappings σ, τ : M → M , together with the domainM ⊆ R, specify
the type of quantum calculus considered.

In this paper we study a generalization of the quantum calculus presented
in Ref. [5]. We assume M to be an arbitrary set and fix two mappings
σ, τ : M → M corresponding to those mentioned above.

However, σ and τ are not real-valued maps, in general. Therefore, to
adapt formula (3.4) we need a numeric expression that will play the role of
a corresponding denominator. For that purpose we endow M with a tension
structure, defined with the help of one or more tension functions [7].

Definition 3.1. A function θ : M ×M → R is said to be a tension function
if

θ(p1, p2) + θ(p2, p3) = θ(p1, p3), (3.6)

for any p1, p2, p3 ∈ M .

Directly from definition it follows that a linear combination of tension
functions defined on M × M is a tension function again. Thus, any family
of tension functions defined on M × M generates the corresponding linear
space.

Definition 3.2. Any linear space T of tension functions defined on M×M is
said to be a tension structure on M and the pair (M,T ) is called the tension
space of dimension dimT .
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Directly from the above definition, one can show that any tension function
θ ∈ T is skew symmetric, i.e.

θ(p1, p2) = − θ(p2, p1) , (3.7)

for any p1, p2 ∈ M . With any θ ∈ T we associate functions θq : M → R

defined by
θq(p) = θ(p, q), (3.8)

for any p, q ∈ M . Intuitively, θq plays the role of a potential function defined
on M , associating with any point p ∈ M the scalar potential θq(p) such that
θq(q) = 0.

Let (M,T ) be a one-dimensional tension space with a tension structure T
generated by a single tension function θ and assume that θ(τ(p), σ(p)) 6= 0,
for any p ∈ M . Then we define the (σ, τ)-quantum difference operator d ≡ dτσ

df(p) = f(τ(p))− f(σ(p)), (3.9)

and the (σ, τ)-quantum derivative operator D ≡ Dτ
σ

Df(p) =
df(p)

dθq(p)
≡

f(τ(p))− f(σ(p))

θ(τ(p), σ(p))
, (3.10)

for any p ∈ M (independently of q ∈ M). The following Leibniz rule can be
checked easily

D(f · g)(p) = f(τ(p)) ·D(g)(p) +D(f)(p) · g(σ(p)) , (3.11)

for any f, g : M → R.

4 D-polynomials

Definition 4.1. A mapping ρ : M → M is said to be rightward θ-directed if

θ(p, ρ(p)) < 0 , (4.1)

and it is said to be leftward θ-directed if

θ(p, ρ(p)) > 0 , (4.2)

for any p ∈ M . We say that ρ is a θ-directed mapping if one of the above
conditions holds.

11



Assume the notation: ρ0 = idM and ρn = ρ ◦ ρn−1, for any n ∈ N .

Proposition 4.2. For any θ-directed mapping ρ : M → M , n ∈ N, the
composition ρn has no fixed points, i.e.

ρn(p) 6= p , (4.3)

for p ∈ M .

Proof. Let ρ be a rightward θ-directed mapping. Then we have inequalities
θ(ρ(p), p) > 0, ... , θ(ρn(p), ρn−1(p)) > 0, for any n ∈ N and p ∈ M .
Consequently,

θ(ρn(p), p) = θ(ρn(p), ρn−1(p)) + . . .+ θ(ρ(p), p) > 0 .

Analogously, for a leftward θ-directed mapping we show that θ(ρn(p), p) < 0 ,
for any n ∈ N and p ∈ M .

Let us notice that condition (4.3) is not a consequence of the weaker
assumption that θ(ρ(p), p) 6= 0, for any p ∈ M . In that case there would be
ρ(p) 6= p but not necessarily ρn(p) 6= p , for any n ∈ N and p ∈ M .

Definition 4.3. We say that θ is homogeneous with respect to ρ (shortly,
ρ-homogeneous) if there exists r ∈ R, the so-called ρ-homogeneity coefficient,
such that

θ(ρ(p1), ρ(p2)) = r · θ(p1, p2), (4.4)

for any p1, p2 ∈ M .

Proposition 4.4. Let ρ : M → M be a θ-directed mapping and θ be a ρ-
homogeneous tension function. Then, for the ρ-homogeneity coefficient we
get r > 0 .

Proof. Directly from Definition (4.1) we get r 6= 0. Since r is a ρ-homogeneity
coefficient for θ and ρ is a θ-directed mapping, θ(ρ2(p), ρ(p)) and θ(ρ(p), p)
are of common sign and θ(ρ2(p), ρ(p)) = r · θ(ρ(p), p). Hence we conclude
that r > 0.

Let c ∈ R and define the constant function ĉ : M → R, ĉ(p) := c .
Evidently, ĉ ∈ ker D, for any c ∈ R, which means that dimkerD > 0.
Hence, by formula (2.13) we can write D ∈ R+(X), for X = R

M .
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Now, by using Definition 2.10, let us analyze the elements of Zm+1(D),
i.e. D-polynomials of degree m ∈ N ∪ {0}. Since D(1̂) = 0, the unitary
constant function 1̂ : M → R is a D-polynomial of degree deg 1̂ = 0, i.e.
1̂ ∈ Z1(D).

On the strength of Proposition 2.11, the explicit form of D-polynomials
can be obtained from formula (2.16), provided a right inverse R ∈ RD is
known explicitely. If σ and τ are two commuting bijections, a concrete ex-
ample of a right inverse of D is shown in [7].

Then, let us fix a point q ∈ M and define the following sequence of
functions θ

(m)
q : M → R, m ∈ N0,

θ(0)q = 1̂ and θ(m)
q =

m
∏

k=1

θτm−kσk−1(q) , (4.5)

e.g. for p ∈ M , θ
(1)
q (p) = θ(p, q) , θ

(2)
q (p) = θ(p, τ(q))θ(p, σ(q)) ,

θ
(3)
q (p) = θ(p, τ 2(q))θ(p, τσ(q))θ(p, σ2(q)) , etc.

Proposition 4.5. Let σ, τ : M → M be commuting maps and θ be a tension
function homogeneous with respect to σ and τ with the homogeneity coeffi-
cients s and t, respectively, such that θ(τ(p), σ(p)) 6= 0 for any p ∈ M . Then,
for any n ∈ N, the following formula is true

Dθ(n)q = [n]τσ · θ
(n−1)
q , (4.6)

where

[n]τσ =

n
∑

k=1

tn−ksk−1 . (4.7)

Proof.
dθ(n)q (p) = θ(n)q (τ(p))− θ(n)q (σ(p)) =

=
n
∏

k=1

θ(τ(p), τn−kσk−1(q))−
n
∏

k=1

θ(σ(p), τn−kσk−1(q)) =

= θ(τ(p), σn−1(q))

n−1
∏

k=1

θ(τ(p), τn−kσk−1(q))−

−θ(σ(p), τn−1(q))
n
∏

k=2

θ(σ(p), τn−kσk−1(q)) =
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=
(

tn−1θ(τ(p), σn−1(q))− sn−1θ(σ(p), τn−1(q))
)

n−1
∏

k=1

θ(p, τn−1−kσk−1(q))

=
(

tn−1θ(τ(p), σn−1(q))− sn−1θ(σ(p), τn−1(q))
)

θ(n−1)
q (p) .

In turn,

tn−1θ(τ(p), σn−1(q)) = tn−1θ(τ(p), σ(p)) + tn−1θ(σ(p), σn−1(q)) =

= tn−1θ(τ(p), σ(p)) + tn−2sθ(τ(p), σn−2τ(q)) =

= (tn−1 + tn−2s)θ(τ(p), σ(p)) + tn−3s2θ(τ(p), σn−3τ 2(q)) = . . .

. . . = (tn−1 + . . .+ tn−isi−1)θ(τ(p), σ(p)) + tn−isi−1θ(τ(p), σn−iτ i−1(q)) = . . .

. . . =

n
∑

i=1

tn−isi−1θ(τ(p), σ(p)) + sn−1θ(τ(p), τn−1(q)) .

Finally,

Dθ(n)q (p) =
dθ

(n)
q (p)

θ(τ(p), σ(p))
=

n
∑

i=1

tn−isi−1 · θ(n−1)
q (p) = [n]τσ · θ

(n−1)
q (p) .

Since there is Dθ
(0)
q = 0̂ (zero constant function), formula (4.6) can be

extended to the case n = 0, if we define [0]τσ = 0. Since σ and τ are fixed
mappings giving rise to a concrete type of a quantum calculus considered,
the indices σ and τ will be omitted, i.e. the notation [n] ≡ [n]τσ will be used
in the sequel. With the symbol [n] we associate the (σ, τ)-quantum factorial
defined as

[n]! =

{

1 if n = 0

[n] · [n− 1]! if n = 1, 2, . . . .
(4.8)

An immediate consequence of the last proposition is that each function
θ
(n)
q : M → R is a representative element of Zn+1(D), i.e. it is aD-polynomial

of degree deg θ
(n)
q = n, for n ∈ N0.

Proposition 4.6. For any function ζ ∈ Z(D) and any mapping χ : M → M

commuting with σ and τ , there is also ζ ◦ χ ∈ Z(D).
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Proof. Since ζ ∈ Z(D), there is ζ ◦τ = ζ ◦σ and therefore ζ ◦τ ◦χ = ζ ◦σ◦χ.
The commutativity of σ, τ with χ implies that ζ ◦ χ ◦ τ = ζ ◦ χ ◦ σ or
equivalently ζ ◦ χ ∈ Z(D).

With any basis {ζs : s ∈ S} of the linear space Z(D) one can always
associate a family {qs ∈ M : s ∈ S} of points such that ζs(qs) 6= 0 and
ζs1(qs2) = 0 whenever s1 6= s2, for s, s1, s2 ∈ S. Then, one can always assume
that functions ζs are normalized in such a way that

ζs(qt) =

{

1 if s = t

0 if s 6= t ,
(4.9)

for any s, t ∈ S.
Let us define functions

ζ (k)qss
=

1

[k]!
(ζs ◦ σ

−k) · θ(k)qs
, (4.10)

for s ∈ S, k ∈ N0. Then by formula (3.11) and Proposition 4.5 we obtain

Dζ (k)qss
=

1

[k]!
(ζs ◦ σ

−k ◦ σ) ·Dθ(k)qs
= ζ (k−1)

qss
. (4.11)

The consequence of the last formula is that ζ
(k)
qss ∈ Zk+1(D), i.e. ζ

(k)
qss is a

D-polynomial of degree deg ζ
(k)
qss = k, for any s ∈ S and k ∈ N0.

Proposition 4.7. The family {ζ
(k)
qss : s ∈ S, k ∈ N0} is a basis of the linear

space P (D) and {ζ
(k)
qss : s ∈ S, k = 0, . . . , n} is a basis of the linear space

Pn(D).

Proof. Assume that
k
∑

i=0

∑

s∈Si

aisζ
(i)
qss = 0̂, for some coefficients ais, Si ⊂ S - finite

subsets, i = 0, . . . , k. Then we calculate Dk
k
∑

i=0

∑

s∈Si

aisζ
(i)
qss =

∑

s∈Sk

aksζs = 0̂

which implies that aks = 0 for s ∈ Sk. Hence we can write
k−1
∑

i=0

∑

s∈Si

aisζ
(i)
qss = 0̂.

Similarly, we calculate Dk−1
k−1
∑

i=0

∑

s∈Si

aisζ
(i)
qss =

∑

s∈Sk−1

a(k−1)sζs = 0̂ and show

that a(k−1)s = 0 for s ∈ Sk−1. Analogously, step by step we prove that
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ams = 0 for s ∈ Sm and m = k − 2, ..., 1. Now, let u ∈ P (D) be of degree

deg u = k. We will show that u =
k
∑

i=0

∑

s∈Si

aisζ
(i)
qss. Let us calculate:

Dku =

k
∑

i=0

∑

s∈Si

aisD
kζ (i)qss

=
∑

s∈Sk

aksζs.

Then, using formula (4.9) we obtain

aks = Dku(qs) , (4.12)

for s ∈ Sk. Other coefficients ams, for 0 ≤ m < k, we can calculate from the
recursive formula

ams = Dmu(qs)−
k−m
∑

j=1

∑

t∈Sm+j

a(m+j)tζ
(j)
qtt
(qs) . (4.13)

One can select (not uniquely) a linear subspace Q(D) in X = R
M such

that
X = P (D)⊕Q(D) . (4.14)

According to formula (2.31), any right inverse R ∈ RD can be decomposed
as a direct sum

R = RP ⊕RQ (4.15)

of its restrictions RP = R|P (D) and RQ = R|Q(D). The component RP can be

defined on the basis {ζ
(k)
qss : s ∈ S, k ∈ N0} by formula

RP ζ
(k)
qss

= ζ (k+1)
qss

, (4.16)

for any s ∈ S, k ∈ N0. Concerning the component RQ, we can assume any
definition. Then, on the strength of formula (2.26), the linear space P (D)
is a direct sum of D- and R-invariant linear subspaces Vs(R), s ∈ S. The
initial operator F corresponding to the above R is also a direct sum

F = FP ⊕ FQ , (4.17)

with the components FP = F|P (D) and FQ = F|Q(D) given by formula (2.9).
For FP we obtain the explicit formula

FP ζ
(k)
qss

= (I − RPD
τ
σ)ζ

(k)
qss

=

{

ζs if k = 0

0̂ if k = 1, 2, . . . ,
(4.18)

where s ∈ S.
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5 Taylor formula in (τ, σ)-quantum calculus

Let R be a right inverse of D = Dτ
σ and F be the initial operator correspond-

ing to R. Then, according to formula (2.14), we have the Taylor formula

I =

n
∑

j=0

RjFDj +Rn+1Dn+1 , (5.1)

which holds on dom(D)n+1, for n ∈ N0. Now, suppose that W ∈ Zn+1(D),
i.e. W ∈ P (D) is a D-polynomial of degree degW = n. Then (D)n+1W = 0̂
and

W =

n
∑

k=0

RkFDkW . (5.2)

Since F (D)kW ∈ Z(D), there exists a finite subset Sk
W ⊂ S and coefficients

λks ∈ R, s ∈ Sk
W , such that

F (D)kW =
∑

s∈Sk
W

λksζs . (5.3)

Thus, we obtain the formula

W =
n

∑

k=0

∑

s∈Sk
W

λksR
kζs . (5.4)

The coefficients λks are given by

λks = (FDkW )(qs) , (5.5)

which allows us to write

W =
n

∑

k=0

∑

s∈Sk
W

(FDkW )(qs)R
kζs . (5.6)

Define functions Λ
(m)
qss : M → R recursively as Λ

(0)
qss = ζs and

Λ(m)
qss

= ζ (m)
qss

−
m−1
∑

i=0

ζ (m−i)
qss

(qs)Λ
(i)
qss

, (5.7)
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for qs ∈ M , s ∈ S and m ∈ N. One can easily check that

Λ(m)
qss

(qs) = 0̂ , (5.8)

DΛ(m)
qss

= Λ(m−1)
qss

, (5.9)

for any s ∈ S, m ∈ N. Hence, for any s ∈ S, the family {Λ
(m)
qss : m ∈ N0} is

linearly independent and forms a basis of the linear space of s-homogeneous
D-polynomials

Vs(D) = Lin{Λ(m)
qss

: m ∈ N0} . (5.10)

On the strength of formula (2.29) there is P (D) =
⊕

s∈S

Vs(D) and there exists

another subspace Q(D) such that X = P (D) ⊕ Q(D). Below we shall use
the projection mappings

πs : P (D) → Vs(D) , (5.11)

for s ∈ S.
Let us take a right inverse R ∈ RD defined on P (D) by

RΛ(m)
qss

= Λ(m+1)
qss

, (5.12)

for any s ∈ S, m ∈ N0, while its definition on Q(D) can be any. Then we
can write

Λ(m)
qss

= Rmζs , (5.13)

for any s ∈ S, m ∈ N0. Therefore formula (5.4) can be written as

W =
n

∑

k=0

∑

s∈Sk
W

λksΛ
(k)
qss

. (5.14)

By using projections (5.11), we obtain the components Ws of W defined as

Ws ≡ πs(W ) =

n
∑

k=0

λksΛ
(k)
qss

, (5.15)

for any s ∈ SW ≡
n
⋃

k=0

Sk
W . Naturally, there is

W =
∑

s∈SW

Ws . (5.16)
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The coefficients λks in formula (5.15) can be computed as

λks = DkWs(qs) , (5.17)

for any k ∈ N0 and s ∈ SW . Finally we obtain the Taylor formulae

Ws =
n

∑

k=0

DkWs(qs)Λ
(k)
qss

, (5.18)

for s ∈ SW , and

W =
∑

s∈SW

n
∑

k=0

DkWs(qs)Λ
(k)
qss

. (5.19)

Naturally, if W ∈ Vs(D), for some s ∈ S, there is

W =

n
∑

k=0

DkW (qs)Λ
(k)
qss

. (5.20)

In the particular case, for q-calculus or its symmetric version the correspond-
ing results one can find in Ref.[5].
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