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RATE OF CONVERGENCE AND TRACTABILITY OF

THE RADIAL FUNCTION APPROXIMATION PROBLEM

GREGORY E. FASSHAUER, FRED J. HICKERNELL, AND HENRYK WOŹNIAKOWSKI

Abstract. This article studies the problem of approximating functions belonging
to a Hilbert space Hd with an isotropic or anisotropic Gaussian reproducing kernel,

Kd(x, t) = exp

(
−

d∑

ℓ=1

γ2

ℓ (xℓ − tℓ)
2

)
for all x, t ∈ R

d.

The isotropic case corresponds to using the same shape parameters for all coordi-
nates, namely γℓ = γ > 0 for all ℓ, whereas the anisotropic case corresponds to
varying shape parameters γℓ. We are especially interested in moderate to large d.
We consider two classes of algorithms:

(1) using finitely many arbitrary linear functionals,
(2) using only finitely many function values.

The pertinent error criterion is the worst case of such an algorithm over the unit
ball in Hd, with the error for a single function given by the L2 norm also with a
Gaussian weight.

Since the Gaussian kernel is analytic, the minimal worst case errors of algorithms
that use at most n linear functionals or n function values vanish like O(n−p) as
n goes to infinity. Here, p can be arbitrarily large, but the leading coefficient may
depend on d (Theorem 1). On the other hand, if d dependence is taken into account,
the convergence rate may be quite slow. If the goal is to make the error smaller
than Cn−p for some C independent of d or polynomially dependent on d, then this is
possible for any choice of shape parameters with the largest p equal to 1/2, provided
that arbitrary linear functional data is available (Theorem 2). If the sequence of
shape parameters γℓ decays to zero like ℓ−ω as ℓ (and therefore also d) tends to ∞,
then the largest p is roughly max(1/2, ω) (Theorem 3). If only function values are
available, dimension-independent convergence rates are somewhat worse (Theorems
4 and 5).

If the goal is to make the error smaller than Cn−p times the initial (n = 0)
error, then the corresponding p is roughly ω. Therefore it is the same as before
iff ω ≥ 1/2 (Theorem 7 and Corollary 2). In particular, for the isotropic case,
when ω = 0, the error does not even decay polynomially with n−1 (Theorem 6).
In summary, excellent dimension independent error decay rates are only possible
when the sequence of shape parameters decays rapidly.
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1. Introduction

Algorithms for function approximation based on symmetric, positive definite ker-
nels are important and fundamental tools for numerical computation [2, 5, 13, 23],
statistical learning [1, 4, 8, 12, 14, 16, 17, 20], and are often used in engineering appli-
cations [6]. These algorithms go by a variety of names, including radial basis function
methods [2], scattered data approximation [23], meshfree methods [5], (smoothing)
splines [20], kriging [16], Gaussian process models [12] and support vector machines
[17].

In a typical application we are given noisy or noiseless scalar or vector data. For
simplicity, this article treats only the noiseless scalar case in which the data is of the
form yi = f(xi) or yi = Li(f) for i = 1, . . . , n. That is, a function f is sampled at the
locations {x1, . . . ,xn}, usually referred to as the data sites or the design, or more
generally we know the values of n linear functionals Li on f . Here we assume that the
domain of f is a subset of Rd. One then chooses a symmetric, positive definite kernel
Kd (see (3) below for the specific requirements), ideally such that f ∈ H(Kd), where
H(Kd) is a reproducing kernel Hilbert space with the reproducing kernel Kd. Then
it is a good idea to construct an approximation Sn(f) to f which has the minimal
norm among all elements in H(Kd) that interpolate the data. This corresponds to
the spline algorithm and requires the solution of an n×n system of linear equations.
While the spline algorithm is optimal in the sense explained in Section 2 below, there
still remains the important questions of how fast Sn(f) converges to f as the number
of data n tends to infinity, and how to choose the data sites or linear functionals to
maximize the rate of convergence to f . Another question is to study how the error
bounds depend on d. The latter question is especially important when d is large.

The typical convergence rates (see, e.g., [5, 23]) are of the form O(n−p/d), where
p denotes the smoothness of the kernel Kd, and the design is chosen optimally. Un-
fortunately, for a finite p, this means that as the dimension increases, these known
convergence rates deteriorate dramatically. Furthermore, the dimension dependence
of the leading constant in the big O-term is usually not known in these estimates.

This article studies Hilbert spaces with reproducing kernels Kd : Rd × R
d → R.

The kernel is called translation invariant or stationary if K(x, t) = K̃(x − t). In
particular, the kernel is radially symmetric or isotropic if K(x, t) = κ(‖x − t‖2), in
which case the kernel is called a radial (basic) function.

A kernel commonly used in practice, and one which is studied here, is the isotropic
Gaussian kernel:

(1a) Kd(x, t) = e−γ
2‖x−t‖2 for all x, t ∈ R

d,

where a positive γ is called the shape parameter. This parameter functions as an
inverse length scale. Choosing γ very small has a beneficial effect on the rate of
decay of the eigenvalues of the Gaussian kernel, as is shown below. An anisotropic,
but stationary generalization of the Gaussian kernel is obtained by introducing a
different positive shape parameter γℓ for each variable,

(1b) Kd(x, t) = e−γ
2
1 (x1−t1)

2− ···−γ2
d
(xd−td)

2

for all x, t ∈ R
d.
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Table 1. Error decay rates as a function of sample size n

Error Criterion

Data Available Absolute Normalized

Arbitrary
Linear functionals

≍ n−max(r(γ),1/2)

Theorem 3
≍ n−r(γ)

if r(γ) > 0, Theorem 7

Function values � n−max(r(γ)/[1+1/(2r(γ))],1/4)

Theorem 4 and 5
� n−r(γ)/[1+1/(2r(γ))]

if r(γ) > 1/2, Corollary 2

As evidence of its popularity, we note that this latter kernel is used in the Gaussian
process modeling module of the JMP commercial statistical software [9]. In JMP, the
values of the γℓ are determined in a data-driven way1.

We stress that the Gaussian kernels are analytic, and the smoothness parameter
p = ∞. Therefore one can hope to obtain convergence rates of the form O(n−τ )
for an arbitrarily large τ . As we shall see, this is indeed the case. This is shown in
Theorem 1 and explained in Section 4. However, the dependence on d is a function
of τ and only for a relatively small τ is the dependence on d acceptable.

Given the growing number of applications with moderate to large dimension, d,
it is desirable to have dimension-independent polynomial convergence rates of the
form Cn−p for positive C and p, which corresponds to strong polynomial tractability,
or at worst, convergence rates that are polynomially dependent on dimension d and
are of the form Cd q n−p for positive C, q and p, which corresponds to polynomial
tractability.

This paper establishes convergence rates with polynomial or no dimension depen-
dence for the Gaussian kernel introduced in (1). The rates are summarized in Table 1.
As explained in Section 2, the absolute error is the L2 worst case approximation error
based on a Gaussian weight with mean zero and variance 1/2. The normalized error
is the absolute error divided by ‖Id‖, were Id denotes the embedding between the
radial function space Hd and the L2 space. Note that the norm ‖Id‖ is the initial
error that can be achieved by the zero algorithm without sampling the functions.
The dimension independent convergence rates depend to some extent on which error
criterion is used. They also depend on whether the data available consists only of
function values or, more generally, of arbitrary linear functionals. This latter, more
generous setting may allow for faster convergence.

The notation � n−p in Table 1 means that for all δ > 0 the error is bounded above
by Cn−p+δ for some constant C that is independent of the sample size, n, and the
dimension, d, but it may depend on δ. The notation � n−p is defined analogously,
and means that the error is bounded below by Cn−p−δ for all δ > 0. The notation
≍ n−p means that the error is both � n−p and � n−p.

As can be seen in Table 1, the convergence rates depend strongly on how fast the
sequence of shape parameters γ = {γℓ}ℓ∈N goes to zero. The term r(γ) appearing in

1In the tractability literature, the shape parameters γℓ are called product weights.
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Table 2. Number of data, n(ε,Hd), needed to obtain an error toler-
ance ε

Error Criterion

Data Available Absolute Normalized

Arbitrary
Linear functionals

≍ ε−min(1/r(γ),2)

Theorem 3
≍ ε−1/r(γ)

if r(γ) > 0, Theorem 7

Function values � ε−min(1/r(γ)+1/[2r2(γ)],4)

Theorem 4 and 5
� ε−1/r(γ)−1/[2r2(γ)]

if r(γ) > 1/2, Corollary 2

Table 1, is defined by

(2) r(γ) = sup

{
β > 0

∣∣∣∣
∞∑

ℓ=1

γ
1/β
ℓ <∞

}

with the convention that the supremum of the empty set is taken to be zero.
For instance, for the isotropic case with γℓ = γ > 0 we have r(γ) = 0, whereas

for γℓ = ℓ−α for a nonnegative α we have r(γ) = α. If the γℓ are ordered, that is,
γ1 ≥ γ2 ≥ · · · , then this definition is equivalent to

r(γ) = sup
{
β ≥ 0 | lim

ℓ→∞
γℓ ℓ

β = 0
}
.

For excellent dimension independent convergence one needs the sequence of shape
parameters to decay to zero quickly, as can be seen in Table 1. These results are
derived in Sections 5 and 6.

While writing the error as a function of the sample size is common in the numerical
analysis literature, the computational complexity literature looks at the number of
data required to obtain a given error tolerance. Let n(ε,Hd) denote the minimal
number of function values or linear functionals that are needed to compute an ε·CRId
approximation. Here, CRId = 1 for the absolute error criterion, and CRId = ‖Id‖ for
the normalized error criterion. Again, ‖Id‖ is the initial error that can be achieved by
the zero algorithm without sampling the functions. The tractability results presented
in this paper are summarized in Table 2.

For the absolute error and algorithms that use arbitrary linear functionals, we prove
strong polynomial tractability for all choices of shape parameters γℓ. Furthermore, the
exponent 2 of ε−1 is best possible for all γℓ’s that go to zero no faster that ℓ−2. For the
absolute error and algorithms that use function values, we still have strong polynomial
tractability with exponent at most 4.

For the normalized error, the situation is much worse. If the sequence of shape pa-
rameters tends to zero fast enough, we still have strong polynomial tractability. How-
ever, for the isotropic case it follows that n(ε,Hd) does not depend polynomially on
ε−1 and d. For algorithms using arbitrary linear functionals, we have quasi-polynomial
tractability, i.e., there are positive C and t such that

n(ε,Hd) ≤ C exp(t
(
1 + ln d) (1 + ln ε−1)

)
for all ε ∈ (0, 1) and d ∈ N.
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Furthermore, the smallest t is roughly2

t = 2/ln

(
1 + 2γ2 +

√
1 + 4γ2

2γ2

)
.

As a prelude to deriving these convergence and tractability results, the next section
reviews some principles of function approximation on Hilbert spaces. Section 3 applies
these principles to the Gaussian kernel.

2. Function Approximation

LetHd = H(Kd) denote a reproducing kernel Hilbert space of real functions defined
on a Lebesgue measurable set Dd ⊆ R

d. The goal is to accurately approximate any
function in Hd given a finite number of data about it. The reproducing kernel

Kd : Dd ×Dd → R

is symmetric, positive definite and reproduces function values. This means that for all
n ∈ N, x, t,x1,x2, . . . ,xn ∈ Dd, c = (c1, c2, . . . , cn) ∈ R

n and f ∈ Hd, the following
properties hold:

Kd(·,x) ∈ Hd,(3a)

Kd(x, t) = Kd(t,x),(3b)
n∑

i=1

Kd(xi,xj)cicj ≥ 0,(3c)

f(x) = 〈f,Kd(·,x)〉Hd
.(3d)

For an arbitrary x ∈ Dd consider the linear functional Lx(f) = f(x) for all f ∈ Hd.

Then Lx is continuous and ‖Lx‖H∗

d
= K

1/2
d (x,x). The reader may find these and

other properties in e.g., [1, 20]. Many reproducing kernels are used in practice. A
popular choice is the Gaussian kernel defined in (1) for which Dd = R

d.
It is assumed that Hd is continuously embedded in the space L2 = L2(Dd, ̺d) of

square Lebesgue integrable functions. Here, ̺d is a probability density function, i.e.,
̺d ≥ 0 and

∫
Dd
̺d(t) dt = 1. The norm in the space L2 is given by

‖f‖L2 =

(∫

Dd

f 2(t) ̺d(t) dt

)1/2

.

Continuous embedding means that the linear embedding operator Id : Hd → L2 given
by Idf = f is continuous,

‖Idf‖L2 ≤ ‖Id‖ ‖f‖Hd
for all f ∈ Hd.

2In this paper, by ln we mean the natural logarithm of base e.
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Observe that

‖Idf‖2L2
=

∫

Dd

f 2(t) ̺d(t) dt =

∫

Dd

〈f,Kd(·, t)〉2Hd
̺d(t) dt

≤ ‖f‖2Hd

∫

Dd

Kd(t, t) ̺d(t) dt.

Hence, it is enough to assume that

(4)

∫

Dd

Kd(t, t) ̺d(t) dt <∞

to guarantee that Id is continuous, and obviously

‖Id‖ ≤
[∫

Dd

Kd(t, t) ̺(t) dt

]1/2
.

Functions in Hd are approximated by linear algorithms3

(5) An(f) =

n∑

j=1

Lj(f)aj for all f ∈ Hd

for some continuous linear functionals Lj ∈ H∗
d , and functions aj ∈ L2. The worst

case error of the algorithm An is then defined as

ewor(An) = sup
‖f‖Hd

≤1

‖f − An(f)‖L2.

The linear algorithms An considered here are based on function data Lj(f), where
the continuous linear functionals Lj may belong to one of two classes. The first class,
denoted Λstd, is comprised only of function values and is called standard. That is,
Lj ∈ Λstd iff Lj(f) = f(tj) for all f ∈ Hd for some tj ∈ Dd. The second class,
denoted Λall, is comprised of arbitrary continuous functionals and is called linear.
That is, Lj ∈ Λall iff Lj ∈ H∗

d . Obviously, Λstd ⊆ Λall.
The aim is to determine how small the worst case error can be by choosing linear

algorithms with only n linear functionals either from Λstd or Λall. The nth minimal
worst case error is defined as

ewor−ϑ(n,Hd) = inf
An with Lj∈Λϑ

ewor(An), ϑ ∈ {std, all}.

Here and below, for notational simplicity ϑ denotes either the standard or linear
setting. Clearly, ewor−all(n,Hd) ≤ ewor−std(n,Hd) since the former uses a larger class
of function data.

3It is well known that adaption and nonlinear algorithms do not help for approximation of linear
problems. A linear problem is defined as a linear operator and we approximate its values over a
set that is convex and balanced. The typical example of such a set is the unit ball as taken in
this paper. Then among all algorithms that use linear adaptive functionals, the worst case error is
minimized by a linear algorithm that uses nonadaptive linear functionals. Adaptive choice of a linear
functional means that the choice of Lj in (5) may depend on the already computed values Li(f) for
i = 1, 2, . . . , j − 1. That is why in our case, the restriction to linear algorithms of the form (5) can
be done without loss of generality, for more detail see, e.g., [19].
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The case n = 0 means that no linear functionals of f are used to construct the
algorithm. It is easy to see that the best algorithm possible is A0 = 0, and then

ewor−ϑ(0, Hd) = ‖Id‖.
The minimal error for n = 0 is called the initial error and it only depends on the
formulation of the problem.

This article addresses two problems: convergence and tractability. The former con-
siders how fast the error vanishes as n increases, and the latter considers how the
error depends on the dimension, d, as well as the number of data, n.

Problem 1: Rate of Convergence

We would like to know how fast ewor−ϑ(n,Hd) goes to zero as n goes to infinity.
In particular, we study the rate of convergence (defined by (2)) of the sequence
{ewor−ϑ(n,Hd)}n∈N. Since the numbers ewor−ϑ(n,Hd) are ordered, we have

(6) rwor−ϑ(Hd) := r
(
{ewor−ϑ(n,Hd)}

)
= sup

{
β ≥ 0 | lim

n→∞
ewor−ϑ(n,Hd)n

β = 0
}
.

Roughly speaking, the rate of convergence is the largest β for which the nth min-
imal errors behave no worse than n−β. For example, if ewor−ϑ(n,Hd) = n−α for a
positive α then rwor−ϑ(Hd) = α. Under this definition, even sequences of the form
ewor−ϑ(n,Hd) = n−α lnp n for an arbitrary p still have rwor−ϑ(Hd) = α. On the other
hand, if ewor−ϑ(n,Hd) = qn for a number q ∈ (0, 1) then rwor−ϑ(Hd) = ∞.

Obviously, rwor−all(Hd) ≥ rwor−std(Hd). We would like to know both rates and
whether

rwor−all(Hd) > rwor−std(Hd),

i.e., whether Λall admits a better rate of convergence than Λstd.

Problem 2: Tractability

Assume that there is a sequence of spaces {Hd}d∈N and embedding operators
{Id}d∈N. In this case, we would like to know how the minimal errors ewor−ϑ(n,Hd)
depend not only on n but also on d.

More precisely, we consider the absolute and normalized error criteria. For a given
(small) positive ε ∈ (0, 1) we want to find an algorithm An with the smallest n for
which the error does not exceed ε for the absolute error criterion, and does not exceed
ε ‖Id‖ for the normalized error criterion. That is,

nwor−ψ−ϑ(ε,Hd) = min
{
n | ewor−ϑ(n,Hd) ≤ εCRIψd

}
, ψ ∈ {abs, norm},

where CRIabsd = 1 for the absolute error criterion and CRInord = ‖Id‖ for the normal-
ized error criterion.

Let I = {Id}d∈N denote the sequence of function approximation problems. We say
that I is polynomially tractable iff there exist numbers C, p and q such that

nwor−ψ−ϑ(ε,Hd) ≤ C d q ε−p for all d ∈ N and ε ∈ (0, 1).
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If q = 0 above then we say that I is strongly polynomially tractable and the infi-
mum of p satisfying the bound above is called the exponent of strong polynomial
tractability.

The essence of polynomial tractability is to guarantee that a polynomial number of
linear functionals is enough to satisfy the function approximation problem to within ε.
Obviously, polynomial tractability depends on which class, Λall or Λstd, is considered
and whether the absolute or normalized error is used. As shall be shown, the results
on polynomial tractability depend on the cases considered.

The property of strong polynomial tractability is especially challenging since then
the number of linear functionals needed for an ε-approximation is independent of d.
The reader may suspect that this property is too strong and cannot happen for
function approximation. Nevertheless, there are positive results to report on strong
polynomial tractability.

Besides polynomial tractability, there are the somewhat less demanding concepts
such as quasi-polynomial tractability and weak tractability. The problem I is quasi-
polynomially tractable iff there exist numbers C and t for which

nwor−ψ−ϑ(ε,Hd) ≤ C exp
(
t ln(1 + d) ln(1 + ε−1)

)

for all d ∈ N and ε > 0. The exponent of quasi-polynomial tractability is defined as
the infimum of t satisfying the bound above. Finally, I is weakly tractable iff

lim
ε−1+d→∞

ln nwor−ψ−ϑ(ε,Hd)

ε−1 + d
= 0.

Note that for a fixed d, quasi-polynomial tractability means that

nwor−ψ−ϑ(ε,Hd) = O
(
ε−t(1+ln d)

)
as ε→ 0.

Hence, the exponent of ε−1 may now weakly depend on d through ln d. On the other
hand, weak tractability only means that we do not have exponential dependence on
ε−1 and d.

We will report about quasi-polynomial and weak tractability in the case when poly-
nomial tractability does not hold. As before, quasi-polynomial and weak tractability
depend on which class Λall or Λstd is considered and on the error criterion.

Motivation of tractability study and more on tractability concepts can be found
in [11]. Quasi-polynomial tractability has been recently studied in [7].

We end this section by briefly reviewing some general results related to the prob-
lems of convergence and tractability mentioned above. For a given design, i.e., given
continuous linear functionals L1, . . . , Ln, it is known how to find functions a1, . . . , an
for which the worst case error of An is minimized. The optimal algorithm, Sn, should
be taken as the spline or the minimal norm interpolant, see e.g. Section 5.7 of [19].
The spline algorithm was briefly mentioned in the introduction. It is described in
more generality here.
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For given yj = Lj(f) for j = 1, 2, . . . , n, we take Sn(f) as an element of Hd that
satisfies the conditions

Lj(Sn(f)) = yj for j = 1, 2, . . . , n,

‖Sn(f)‖Hd
= inf

g∈Hd, Lj(g)=yj , j=1,2,...,n
‖g‖Hd

.

The construction of Sn(f) may be done by solving a linear equation Kc = y, where
y = (y1, y2, . . . , yn)

T and the n× n matrix is given by

K = (ki,j)
n
i,j=1 with ki,j = Li(gj) and gj(x) = LjKd(·,x).

Then

Sn(f)(x) = kT (x)K−1y with k(x) = (LiKd(·,x))ni=1

and

ewor(Sn) = sup
‖f‖Hd

≤1, Lj(f)=0, j=1,2,...,n

‖f‖L2.

Note that depending on the choice of linear functionals L1, . . . , Ln the matrix K may
not necessarily be invertible, however, the solution c = K

−1y is always well defined
as the vector of minimal Euclidean norm which satisfies Kc = y.

The spline enjoys more optimality properties. For instance, it minimizes the local
worst case error. Roughly speaking this means that for each x ∈ Dd, the worst pos-
sible pointwise error |f(x)−An(f)(x)| over the unit ball of functions f is minimized
over all possible An by choosing An = Sn. We do not elaborate more on this point.

It is non-trivial to find the linear functionals Lj from the class Λstd that minimize
the error of the spline algorithm Sn. For the class Λall, the optimal design is known,
at least theoretically, see again e.g., [19]. Namely, let Wd = I∗dId : Hd → Hd, where
I∗d : L2 → Hd denotes the adjoint of the imbedding operator, i.e., the operator
satisfying 〈f, I∗dh〉Hd

= 〈Idf, h〉L2
for all f ∈ Hd and h ∈ L2. As a consequence, Wd is

a self adjoint and positive definite linear operator given by

Wd(f) =

∫

Dd

f(t)Kd(·, t) ̺d(t) dt for all f ∈ Hd.

Clearly,

〈f, g〉L2
= 〈Idf, Idg〉L2

= 〈Wdf, g〉Hd
= 〈f,Wdg〉Hd

for all f, g ∈ Hd.

It is known that limn→∞ ewor−all(n,Hd) = 0 iff Wd is compact. In particular, (4)
implies that Wd is compact.

Assuming that Wd is compact, let us define its eigenpairs by (λd,j, ηd,j), where the
eigenvalues are ordered, λd,1 ≥ λd,2 ≥ · · · , and

Wd ηd,j = λd,j ηd,j with 〈ηd,j, ηd,i〉Hd
= δi,j for all i, j ∈ N.

Note also that for any f ∈ Hd we have

〈f, ηd,j〉L2
= 〈Idf, Idηd,j〉L2

= 〈f,Wdηd,j〉Hd
= λd,j 〈f, ηd,j〉Hd

.
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Taking f = ηd,i we see that {ηd,j} us a set of orthogonal functions in L2. For simplicity
and without loss of generality we assume that all λd,j are positive4. Letting

ϕd,j = λ
−1/2
d,j ηd,j for all j ∈ N

we obtain an orthonormal sequence {ϕd,j} in L2. Since {ηd,j} is a complete orthonor-
mal basis of Hd we have

(7) Kd(x, t) =
∞∑

j=1

ηd,j(x) ηd,j(t) =
∞∑

j=1

λd,j ϕd,j(x)ϕd,j(t) for all x, t ∈ Dd.

If (4) holds then

(8)
∞∑

j=1

λd,j =

∫

Dd

Kd(t, t) ̺d(t) dt <∞.

This means that (4) implies that Wd is also a finite trace operator.
It is known that the best choice of Lj for the class Λ

all is Lj = 〈·, ηd,j〉Hd
. Then the

spline algorithm Sn with the minimal worst case error is defined using the eigenfunc-
tions corresponding to the n largest eigenvalues:

Sn(f) =
n∑

j=1

〈f, ηd,j〉Hd
ηd,j for all f ∈ Hd,

and
ewor(Sn) = ewor−all(n,Hd) =

√
λd,n+1 for all n ∈ N.

The last formula for n = 0 yields that the initial error is ‖Id‖ =
√
λd,1.

The results for the class Λall are useful for finding rates of convergence as well
as necessary and sufficient conditions on polynomial, quasi-polynomial and weak
tractability in terms of the behavior of the eigenvalues λd,j. This has already been
done in a number of papers or books, and we will report these results later for spaces
studied in this paper. For the class Λstd, the situation is much harder although there
are papers that relate rates of convergence and tractability conditions between classes
Λall and Λstd. Again we report these results later.

3. Radial Function Spaces

The focus of this article is on reproducing kernels that are translation invariant or
stationary, i.e.,

Kd(x, t) = K̃d(x− t) for all x, t ∈ Dd = R
d.

An even more special case is for radially symmetric or isotropic kernels, i.e.,

Kd(x, t) = κ(‖x− t‖22) with ‖x− t‖22 =
d∑

ℓ=1

(xℓ − tℓ)
2.

Here, K̃d and κ are chosen such that Kd is a reproducing kernel.

4Otherwise, we should switch to a subspace of Hd spanned by eigenfunctions corresponding to k
positive eigenvalues, and replace N by {1, 2, . . . , k}.
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Isotropic kernels also go by the name radial basis functions, and the spaces H(Kd)
are referred to as radial function spaces. Stationary or isotropic kernels are common in
the literature on computational mathematics [2, 5, 23], statistics [1, 16, 20], statistical
learning [12, 17], and engineering applications [6].

A popular isotropic kernel is the Gaussian kernel, defined in (1), which has both
an isotropic version,

Kd(x, t) = e−γ
2‖x−t‖2 for all x, t ∈ R

d,

and a more general anisotropic version,

Kd(x, t) = e−γ
2
1 (x1−t1)

2− ···−γ2
d
(xd−td)

2

for all x, t ∈ R
d.

As alluded to in the introduction, the shape parameter, γ or γ = {γℓ}ℓ∈N, which
functions as an inverse length scale, plays an important role in the tractability of
function approximation. Choosing the γℓ to decay quickly has a beneficial effect on
the rate of decay of the eigenvalues of the Gaussian kernel, as we shall see below. On
the other hand, a small value of γ leads to a huge condition number of the matrix
K and may result in severe numerical instabilities. While this is an issue that is very
important for practical implementations, and has received some attention, we will
not discuss it any further here.

We now analyze the function approximation problem for the Hilbert space Hd =
H(Kd) with the isotropic Gaussian kernel Kd given by (1a) or, more generally, with
the anisotropic Gaussian kernel given by (1b). For the space L2(R

d, ̺d) we take the
Gaussian weight with zero mean and variance 1/2, i.e.,

̺d(t) =
1

πd/2
exp

(
−(t21 + t22 + · · ·+ t2d

)
) for all t ∈ R

d.

Note that Kd(t, t) = 1 for all t ∈ R
d, and therefore

∫

Rd

Kd(t, t) ̺d(t) dt = 1,

so that (4) holds. This means that the embedding Id is continuous, the operator Wd

is compact and a finite trace operator with

(9)
∞∑

j=1

λd,j = 1,

by (8).
Observe that (4) holds for all translation invariant kernels since

∫

Rd

Kd(t, t) ̺d(t) dt = K̃d(0),

but it can now depend on d. For radially symmetric kernels we have
∫

Rd

Kd(t, t) ̺d(t) dt = κ(0),

and it is independent of d.
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Since a Gaussian kernel Kd is of the product form, the space Hd is the tensor
product of the Hilbert spaces of univariate spaces with the kernels e−γ

2
ℓ
(x−t)2 for

x, t ∈ R. This also implies that the operator Wd is of the product form and its
eigenpairs are products of the corresponding eigenpairs for the univariate cases.

Consider now d = 1, and the space H(K1) with K1(x, t) = e−γ
2(x−t)2 . Then the

eigenpairs
(
λ̃γ,j, ηγ,j

)
of W1 are known, see [12]. Note that we have introduced the

notation λ̃γ,j to emphasize the dependence of the eigenvalues on γ in the following
discussion (while the dependence on d has temporarily dropped from the notation).
We have

λ̃γ,j =
1√

1
2
(1 +

√
1 + 4γ2) + γ2

(
γ2

1
2
(1 +

√
1 + 4γ2) + γ2

)j−1

= (1− ωγ)ω
j−1
γ ,

where

(10) ωγ =
γ2

1
2
(1 +

√
1 + 4γ2) + γ2

,

and ηγ,j =
√
λ̃γ,j ϕγ,j with

ϕγ,j(x) =

√
(1 + 4γ2)1/4

2j−1(j − 1)!
exp

(
− γ2x2

1
2
(1 +

√
1 + 4γ2)

)
Hj−1

(
(1 + 4γ2)1/4x

)
,

where Hj−1 is the Hermite polynomial of degree j − 1, given by

Hj−1(x) = (−1)j−1ex
2 dj−1

dxj−1
e−x

2

for all x ∈ R,

so that ∫

R

H2
j−1(x) e

−x2 dx =
√
π 2j−1(j − 1)! for j = 1, 2, . . . .

Obviously, we have

〈ηγ,i, ηγ,j〉H(K1)
= 〈ϕγ,i, ϕγ,j〉L2

= δij ,

and applying (7) we obtain

K1(x, t) = e−γ
2(x−t)2 =

∞∑

j=1

λ̃γ,jϕγ,j(x)ϕγ,j(y) for all x, t ∈ R.

Note that the eigenvalues λ̃γ,j are ordered. The largest eigenvalue is

λ̃γ,1 = 1− ωγ =

√
2

1 +
√
1 + 4γ2 + 2γ2

= 1− γ2 +O(γ4) as γ → 0.

Furthermore,

(11) λ̃γ,j =
(
1− γ2 +O(γ4)

)( γ2

1− γ2 +O(γ4)

)j−1

for j = 1, 2, . . . .
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The space H(K1) consists of analytic functions for which

‖f‖2H(K1)
=

∞∑

j=1

〈f, ηγ,j〉2H(K1)
=

∞∑

j=1

1

λ̃γ,j
〈f, ϕγ,j〉2L2

<∞.

This means that the coefficients of f in the space L2 decay exponentially fast. The
inner product is obviously given as

〈f, g〉H(K1)
=

∞∑

j=1

1

λ̃γ,j

∫

R

f(t)
ϕγ,j(t)√

π
e−t

2

dt

∫

R

g(t)
ϕγ,j(t)√

π
e−t

2

dt

for all f, g ∈ H(K1).

The reader may find more about the characterization of the space H(K1) in [18].

For d > 1, let γ = {γℓ}ℓ∈N and j = (j1, j2, . . . , jd) ∈ N
d. As already mentioned, the

eigenpairs
(
λ̃d,γ,j, ηd,γ,j

)
of Wd are given by the products

λ̃d,γ,j =

d∏

ℓ=1

λ̃γℓ,jℓ =

d∏

ℓ=1

1√
1
2
(1 +

√
1 + 4γ2ℓ ) + γ2ℓ

(
γ2ℓ

1
2
(1 +

√
1 + 4γ2ℓ ) + γ2ℓ

)jℓ−1

(12)

=
d∏

ℓ=1

(1− ωγℓ)ω
jℓ−1
γℓ

,

where ωγ is defined above in (10), and

ηd,γ,j =
d∏

ℓ=1

√
λ̃γℓ,jℓ ϕγℓ,jℓ

with

〈ηd,γ,i, ηd,γ,j〉Hd
= 〈ϕγ,i, ϕγ,j〉L2

= δij .

This section ends with a lemma describing the convergence of the sums of powers
of the eigenvalues for the multivariate problem, and how these sums depend on the
dimension, d. This lemma is used in several of the theorems on convergence and
tractability in the following sections.

In the next sections, it will be convenient to reorder the sequence of eigenvalues
{λ̃d,γ,j}j∈Nd as the sequence {λd,j}j∈N with λd,1 ≥ λd,2 ≥ · · · . Obviously, for the

univariate case, d = 1, we have λ1,j = λ̃1,γ1,j for all j ∈ N, but for the multivariate

case, d > 1, the correspondence between λd,j and λ̃d,γ,j is more complex. Obviously,

λd,1 =

d∏

ℓ=1

(1− ωγℓ) .

We now present a simple estimate of λd,n+1 that will be needed for our analysis.



14 GREGORY E. FASSHAUER, FRED J. HICKERNELL, AND HENRYK WOŹNIAKOWSKI

Lemma 1. Let τ > 0. Consider the Gaussian kernel with the sequence of shape
parameters γ = {γℓ}ℓ∈N. The sum of the τ th power of the eigenvalues for the d-variate
case, d ≥ 1, is

(13)
∞∑

j=1

λτd,j =
∑

j∈Nd

λ̃τd,γ,j =
d∏

ℓ=1

(
∞∑

j=1

λ̃τγℓ,j

)
=

d∏

ℓ=1

(1− ωγℓ)
τ

1− ωτγℓ

{
> 1, 0 < τ < 1,

= 1, τ = 1.

The (n+ 1)st largest eigenvalue satisfies

(14) λd,n+1 ≤
1

(n+ 1)1/τ

d∏

ℓ=1

1− ωγℓ
(1− ωτγℓ)

1/τ
.

Proof. Equation (13) follows directly from the formula for λ̃d,γ,j in (12). From the
definition of ωγ in (10) it follows that 0 < ωγ < 1 for all γ > 0. For τ ∈ (0, 1), consider
the function

f(ω) = (1− ω)τ − 1 + ωτ for all ω ∈ [0, 1].

Clearly, f is concave and vanishes at 0 and 1, and therefore f(ω) > 0 for all ω ∈ (0, 1).
This yields the lower bound on the sum of the power of the univariate eigenvalues.

The ordering of the eigenvalues λd,j implies that

λd,n+1 ≤
(

1

n + 1

n+1∑

j=1

λτd,j

)1/τ

≤
(

1

n+ 1

∞∑

j=1

λτd,j

)1/τ

=
1

(n+ 1)1/τ

( ∞∑

j=1

λτd,j

)1/τ

.

This yields the upper bound on the n+ 1st largest eigenvalue in (14), and completes
the proof. �

The main point of (14) is that this estimate holds for all positive τ . This means
that λd,n+1 goes to zero faster than any polynomial in (n+ 1)−1.

4. Rates of Convergence for Gaussian Kernels

In this section we consider the function approximation problem for the Hilbert
space Hd = H(Kd) with the anisotropic Gaussian kernel given by (1b). We stress
that the sequence γ = {γℓ}∞ℓ=1 of shape parameters can be arbitrary. In particular,
we may consider the isotropic case for which all γℓ = γ > 0.

We want to verify how fast the minimal errors ewor−all(n,Hd) and ewor−std(n,Hd)
go to zero, and what the rate of convergence of these sequences is, see (6).

Theorem 1.

rwor−all(Hd) = rwor−std(Hd) = ∞.

Proof. For the class Λall we know that ewor−all(n,Hd) =
√
λd,n+1, where λd,n+1 is the

(n+1)st largest eigenvalue of Wd. Lemma 1 demonstrates that λd,n+1 is proportional
to (n+1)−1/τ times a dimension dependent constant. This implies that rwor−all(Hd) ≥
1/(2τ) and since τ can be arbitrarily small, we conclude that

rwor−all(Hd) = ∞,

as claimed.
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Consider now the class Λstd. We use Theorem 5 from [10], which states that if there
exist numbers p > 1 and B such that

(15) λd,n ≤ B n−p for all n ∈ N

then for all δ ∈ (0, 1) and n ∈ N there exists a linear algorithm An that uses at
most n function values and its worst case error is bounded by

ewor(An) ≤ BCδ,p (n+ 1)−(1−δ) p2/(2p+2).

Here, Cδ,p is independent of n and d and depends only on δ and p.
Note that assumption (15) holds in our case for an arbitrarily large p with B

that can depend on d. Hence, rwor−std(Hd) ≥ (1 − δ) p2/(2p+ 2), and since δ can be
arbitrarily small and p can be arbitrarily large we conclude

rwor−std(Hd) = ∞,

as claimed. This completes the proof. �

We stress that the algorithm An that was used in the proof is non-constructive.
However, there are known algorithms that use only function values and whose worst
case error goes to zero like n−p for an arbitrary large p. In fact, given a design, it
is known that the spline algorithm is the best way to use the function data given
via that design. Thus, the search for an algorithm with optimal convergence rates
focuses on the choice of a good design. One such design was proposed by Smolyak
already in 1963, see [15], and today it is usually referred to as a sparse grid, see
[3] for a survey. An associated algorithm from which this design naturally arises is
Smolyak’s algorithm. The essence of this algorithm is to use a certain tensor product
of univariate algorithms. Then, if the univariate algorithm has the worst case error
of order n−p, the worst case error for the d-variate case is also of order n−p modulo
some powers of ln n, see e.g., [21].

Theorem 1 states that as long as only the rate of convergence is considered, the
function approximation problem for Hilbert spaces with Gaussian kernels is easy. In
fact, it is not surprising since functions of this class are very smooth. However, the
rate of convergence tells us nothing about the dependence on d. As long as d is small
the dependence on d is irrelevant. But if d is large we want to check the dependence
on d. We are especially afraid of an exponential dependence on d which is called after
Bellman the curse of dimensionality. It also may happen that we have a tradeoff
between the rate of convergence and dependence on d. Furthermore, the results may
now depend on the weights γℓ. This is the subject of our next sections.

5. Tractability for the Absolute Error Criterion

As in the previous section we consider the function approximation problem for
Hilbert spaces Hd = H(Kd) with a Gaussian kernel. We now consider the absolute
error criterion and we want to verify whether polynomial tractability holds. Let us
recall that we study the minimal number of functionals from the class Λall or Λstd

needed to guarantee a worst case error of at most ε,

nwor−abs−ϑ(ε,Hd) = min
{
n | ewor−ϑ(n,Hd) ≤ ε

}
, ϑ ∈ {std, all}.
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5.1. Arbitrary Linear Functionals.

We first analyze the class Λall and polynomial tractability.

Theorem 2. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic or anisotropic Gaussian kernels with arbitrary positive γℓ for
the class Λall and the absolute error criterion. Then

• I is strongly polynomially tractable with exponent of strong polynomial tractabil-
ity at most 2. For all d ∈ N and ε ∈ (0, 1) we have

ewor−all(n,Hd) ≤ (n + 1)−1/2,

nwor−abs−all(ε,Hd) ≤ ε−2.

• For the isotropic Gaussian kernel the exponent of strong tractability is 2, so
that the bound above is best possible in terms of the exponent of ε−1. Further-
more strong polynomial tractability is equivalent to polynomial tractability.

Proof. We use Theorem 5.1 from [11]. This theorem says that I is strongly polyno-
mially tractable iff there exist two positive numbers C1 and τ such that

C2 := sup
d∈N




∞∑

j=⌈C1⌉

λτd,j




1/τ

<∞.

If so, then

nwor−abs−all(ε,Hd) ≤ (C1 + Cτ
2 ) ε

−2τ for all d ∈ N and ε ∈ (0, 1).

Furthermore, the exponent of strong polynomial tractability is

pall = inf{2τ | τ for which C2 <∞}.

Let τ = 1. Then, by (9) it follows that no matter what the weights γℓ are, we can take
an arbitrarily small C1 so that ⌈C1⌉ = 1 and C2 = 1 as well as nwor−abs−all(ε,Hd) ≤
(C1 + 1) ε−2. For C1 tending to zero, we conclude the bound

nwor−abs−all(ε,Hd) ≤ ε−2.

Furthermore, by (14) in Lemma 1 it follows that

ewor−all(n,Hd) =
√
λd,n+1 ≤ (n+ 1)−1/2,

as claimed.
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Assume now the isotropic case, i.e., γℓ = γ for all j ∈ N. Then for any positive C1

and τ we use Lemma 1 and obtain
∞∑

j=⌈C1⌉

λτd,j =

∞∑

j=1

λτd,j −
⌈C1⌉−1∑

j=1

λτd,j

=

(
(1− ωγ)

τ

1− ωτγ

)d
−

⌈C1⌉−1∑

j=1

λτd,j

≥
(
(1− ωγ)

τ

1− ωτγ

)d
− (⌈C1⌉ − 1)λτd,1

=

(
(1− ωγ)

τ

1− ωτγ

)d
− (⌈C1⌉ − 1) (1− ωγ)

τ d.

For τ ∈ (0, 1), we know from Lemma 1 that (1− ωγ)
τ/(1− ωτγ) > 1, and therefore

the last expression goes exponentially fast to infinity with d. This proves that C2 = ∞
for all τ ∈ (0, 1). Hence, the exponent of strong tractability is two.

Finally, to prove that strong polynomial tractability is equivalent to polynomial
tractability, it is enough to show that polynomial tractability implies strong poly-
nomial tractability. From Theorem 5.1 of [11] we know that polynomial tractability
holds iff there exist numbers C1 > 0, q1 ≥ 0, q2 ≥ 0 and τ > 0 such that

C2 := sup
d∈N




d−q2




∞∑

j=⌈C1 d q1⌉

λτd,j




1/τ



<∞.

If so, then
nwor−abs−all(ε,Hd) ≤ (C1 + Cτ

2 ) d
max(q1,q2τ) ε−2τ

for all ε ∈ (0, 1) and d ∈ N. Note that for all d we have

d−q2τ
(
(1− ωγ)

τ

1− ωτγ

)d
− d−q2τ (⌈C1⌉ − 1) (1− ωγ)

τ d ≤ Cτ
2 <∞.

This implies that τ ≥ 1. On the other hand, for τ = 1 we can take q1 = q2 = 0 and
arbitrarily small C1, and obtain strong tractability. This completes the proof. �

We now compare Theorems 1 and 2. Theorem 1 says that for any p we have

ewor−all(n,Hd) = O(n−p)

but the factor in the big O notation may depend on d. In fact, from Theorem 2 we
conclude that, indeed, for the isotropic case it depends more than polynomially on d
for all p > 1/2. Hence, the good rate of convergence does not necessarily mean much
for large d.

The exponent of strong polynomial tractability is 2 for the isotropic case. We now
check how the exponent of strong polynomial tractability depends on the sequence
γ = {γℓ}ℓ∈N of shape parameters. The determining factor is the quantity r(γ) intro-
duced in (2), which measures the rate of decay of the shape parameter sequence.
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Theorem 3. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic or anisotropic Gaussian kernels for the class Λall and the absolute
error criterion. Let r(γ) be the rate of decay of shape parameters. Then

• I is strongly polynomially tractable with exponent

pall = min

(
2,

1

r(γ)

)
≤ 2.

• For all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor−all(n,Hd) = O
(
n−1/pall+δ

)
= O

(
n−max(r(γ),1/2)+δ

)
,

nwor−abs−all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notation do not depend on d and ε−1 but may
depend on δ.

• Furthermore, in the case of ordered shape parameters, i.e., γ1 ≥ γ2 ≥ · · · if

nwor−abs−all(ε,Hd) = O
(
ε−p d q

)
for all ε ∈ (0, 1) and d ∈ N,

then p ≥ pall, which means that strong polynomial tractability is equivalent to
polynomial tractability.

Proof. As in the proof of Theorem 2, I is strongly polynomially tractable iff there
exist two positive numbers C1 and τ such that

C2 := sup
d∈N




∞∑

j=⌈C1⌉

λτd,j




1/τ

<∞.

Furthermore, the exponent pall of strong polynomial tractability is the infimum of 2τ
for which this condition holds. Proceeding similarly as before, we have

∞∑

j=⌈C1⌉

λτd,j ≤
∞∑

j=1

λτd,j =

∞∏

ℓ=1

(1− ωγℓ)
τ

1− ωτγℓ

and since λd,j < 1
∞∑

j=⌈C1⌉

λτd,j ≥
∞∑

j=1

λτd,j − C1 =

∞∏

ℓ=1

(1− ωγℓ)
τ

1− ωτγℓ
− C1.

Therefore, I is strongly polynomially tractable iff there exists a positive τ such that

C3 :=
∞∏

ℓ=1

1− ωγℓ
(1− ωτγℓ)

1/τ
<∞,

and the exponent pall is the infimum of 2τ for which the last condition holds.
As we already know, this holds for τ = 1. Take now τ ∈ (0, 1). Since (1−ωγℓ)/(1−

ωτγℓ)
1/τ > 1 then C3 <∞ implies that

lim
ℓ→∞

1− ωγℓ
(1− ωτγℓ)

1/τ
= 1.
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Taking into account (10), it is easy to check that the last condition is equivalent to

lim
ℓ→∞

ωγℓ = lim
ℓ→∞

γ2ℓ = 0.

Furthermore, C3 <∞ implies that

∞∑

ℓ=1

γ2τℓ <∞,

and r(γ) ≥ 1/(2τ) > 1/2. Hence, pall < 2 only if r(γ) > 1/2. On the other hand,
2τ ≥ 1/r(γ) and therefore pall ≥ 1/r(γ). This establishes the formula for pall. The
estimates on ewor−all(n,Hd) and n

wor−abs−all(ε,Hd) follow from the definition of strong
tractability.

Assume now polynomial tractability with p < 2 and an arbitrary q. Then λd,n+1 ≤
ε2 for n = O(ε−pdq). Hence,

λd,n+1 = O(d 2q/p(n+ 1)−2/p).

This implies

d∏

j=1

(1− ωγℓ)
τ

1− ωτγℓ
=

∞∑

ℓ=1

λτd,ℓ = O(d 2qτ/p) for all 2τ > p.

For τ < 1, this yields

exp

(
d∑

ℓ=1

γ2τℓ

)
= O(d 2qτ/p).

Therefore

lim sup
ℓ→∞

∑d
ℓ=1 γ

2τ
ℓ

ln d
<∞.

Since the γℓ’s are ordered, we have

dγ2τd
ln d

≤
∑d

ℓ=1 γ
2τ
ℓ

ln d
= O(1),

and γd = O((ln(d)/d)1/(2τ)). Hence, r(γ) ≥ 1/(2τ) and r(γ) ≥ 1/p. This means that
2 > p ≥ 1/r(γ) = pall, as claimed. �

It is interesting to notice that the last part of Theorem 3 does not hold, in general,
for unordered shape parameters. Indeed, for s > 1/2, take

γak = 1 for all natural k with ak = 22
k

,

γℓ =
1

ℓs
for all natural ℓ not equal to ak.

Then strong polynomial tractability holds with the exponent 2 since C3 = ∞ in the
proof of Theorem 3 for all τ < 1. On the other hand, we have polynomial tractability
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with p = 1/s < 2 and q arbitrarily close to 1/(2s). Indeed, for τ = 1/(2s) and q1 = 0
and q2 > 1 we have

d−q2
∞∑

ℓ=1

λτd,ℓ = d−q2
d∏

ℓ

(1− ωγℓ)
τ

1− ωγℓ

= d−q2
(
1− ω1)

τ

1− ω1

)O(1)+ln ln d

O(d) <∞.

This implies that

nwor−abs−all(ε,Hd) = O
(
d q2/(2s) ε−1/s

)
.

Theorem 3 states that the exponent of strong polynomial tractability is 2 for all
shape parameters for which r(γ) ≤ 1/2. Only if r(γ) > 1/2 is the exponent smaller
than 2. Again, although the rate of convergence of ewor−all(n,Hd) is always excellent,
the dependence on d is eliminated only at the expense of the exponent which must
be roughly 1/pall. Of course, if we take an exponentially decaying sequence of shape
parameters, say, γℓ = q ℓ for some q ∈ (0, 1), then r(γ) = ∞ and pall = 0. In this case,
we have an excellent rate of convergence without any dependence on d.

Although Theorem 2 is for Gaussian kernels, it is easy to extend this theorem for
other positive definite translation invariant or radially symmetric kernels. Indeed, for
translation invariant kernels the only difference is that for τ = 1 the sum of the
eigenvalues is not necessarily one but

∞∑

j=1

λd,j = K̃d(0).

Hence, for all ε ∈ (0, 1) and d ∈ N we have

ewor−all(n,Hd) ≤
[
K̃d(0)

n + 1

]1/2
and nwor−abs−all(n,Hd) ≤ K̃d(0) ε

−2.

Tractability then depends on how K̃d(0) depends on d. In particular, it is easy to
check the following facts.

• If

sup
d∈N

K̃d(0) <∞

then we have strong polynomial tractability with exponent at most 2, i.e.,

nwor−all(n,Hd) = O
(
ε−2
)
.

• If there exists a nonnegative q such that

sup
d∈N

K̃d(0) d
−q <∞

then we have polynomial tractability and

nwor−all(n,Hd) = O
(
d q ε−2

)
.
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• If

lim
d→∞

ln max(K̃d(0), 1)

d
= 0

then we have weak tractability.

For radially symmetric kernels, the situation is even simpler since
∞∑

j=1

λd,j = κ(0),

and it does not depend on d. Hence,

ewor−all(n,Hd) ≤
[
κ(0)

n+ 1

]1/2
and nwor−abs−all(n,Hd) ≤ κ(0) ε−2,

and we have strong polynomial tractability with exponent at most 2.
Extending Theorem 3 to arbitrary stationary or isotropic kernels is not so straight-

forward. To achieve smaller strong tractability exponents than 2 one needs to know
the sum of the powers of eigenvalues, and their dependence on d. One would suspect,
as is the case for Gaussian kernels, that some sort of anisotropy is needed to obtain
better strong tractability exponents than 2.

5.2. Only Function Values.

We now turn to the class Λstd and prove the following theorem.

Theorem 4. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic or anisotropic Gaussian kernels for the class Λstd and the abso-
lute error criterion. Then

• I is strongly polynomially tractable with exponent of strong polynomial tractabil-
ity at most 4. For all d ∈ N and ε ∈ (0, 1) we have

ewor−std(n,Hd) ≤
√
2

n1/4

(
1 +

1

2
√
n

)1/2

,

nwor−abs−std(ε,Hd) ≤
⌈
(1 +

√
1 + ε2)2

ε4

⌉
.

• For the isotropic Gaussian kernel the exponent of strong tractability is at
least 2. Furthermore strong polynomial tractability is equivalent to polynomial
tractability.

Proof. We now use Theorem 1 from [22]. This theorem says that

(16) ewor−std(n,Hd) ≤ min
k=0,1,...

(
[ewor−all(k,Hd)]

2 +
k

n

)1/2

.

Taking k = ⌈n−1/2⌉ and remembering that ewor−all(k,Hd) ≤ k−1/2 we obtain

ewor−std(n,Hd) ≤
(

1√
n
+

1 +
√
n

n

)1/2

=

√
2

n1/4

(
1 +

1

2
√
n

)1/2

,

as claimed. Solving ewor−std(n,Hd) ≤ ε, we obtain the bound on nwor−abs−std(ε,Hd).
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For the isotropic case, we know from Theorem 2 that the exponent of strong
tractability for the class Λall is 2. For the class Λstd, the exponent cannot be smaller.

Finally, assume that we have polynomial tractability for the class Λstd. Then we also
have polynomial tractability for the class Λall. From Theorem 2 we know that then
strong tractability for the class Λall holds. Furthermore we know that the exponent
of strong tractability is 2 and nwor−abs−all(ε,Hd) ≤ ε−2. As above, we then get strong
tractability also for Λstd with the exponent at most 4. This completes the proof. �

We do not know if the error bound of order n−1/4 is sharp for the class Λstd. We
suspect that it is not sharp and that maybe even an error bound of order n−1/2 holds
for the class Λstd exactly as for the class Λall.

For fast decaying shape parameters it is possible to improve Theorem 4. This is
the subject of our next theorem.

Theorem 5. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic or anisotropic Gaussian kernels for the class Λstd and the abso-
lute error criterion. Let r(γ) > 1/2. Then

• I is strongly polynomially tractable with exponent at most

pstd =
1

r(γ)
+

1

2 r2(γ)
= pall + 1

2

[
pall
]2
< 4.

• For all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor−std(n,Hd) = O
(
n−1/pstd+δ

)
= O

(
n−r(γ)/[1+1/(2r(γ))]+δ

)
,

nwor−abs−std(ε,Hd) = O
(
ε−(pstd+δ)

)
,

where the factors in the big O notation do not depend on d and ε−1 but may
depend on δ.

Proof. For r(γ) > 1/2, Theorem 3 for the class Λall states that the exponent of strong
polynomial tractability is pall = 1/r(γ). This means that for all η ∈ (0, 1) we have

λd,n = O(n−2r(γ)+η),

with the factor in the big O notation independent of n and d but dependent on δ.
Since 2r(γ) > 1, it follows that for all positive η small enough, p = 2r(γ) − η > 1.
Applying Theorem 5 from [10] as in the proof of Theorem 1, it follows that for any
δ1 ∈ (0, 1) we have

ewor−std(n,Hd) = O
(
n−(1−δ1)p2/(2p+2)

)
= O

(
n−(1−δ1)(1+O(η))2w2(γ)/(2r(γ)+1)

)

= O
(
n−1/(pstd+δ)

)
,

again with the factor in the big O notation independent of n and d but dependent
on δ. This leads to the estimates of the theorem. �

Note that for large r(γ), the exponents of strong polynomial tractability are nearly
the same for both classes Λall and Λstd. For an exponentially decaying sequence of
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shape parameters, say, γℓ = q ℓ for some q ∈ (0, 1), we have pall = pstd = 0, and the
rates of convergence are excellent and independent of d.

6. Tractability for the Normalized Error Criterion

We now consider the function approximation problem for Hilbert spaces Hd(Kd)
with a Gaussian kernel for the normalized error criterion. That is, we want to find
the smallest n for which

ewor−ϑ(n,Hd) ≤ ε ‖Id‖, ϑ ∈ {std, all}.
Note that ‖Id‖ =

√
λd,1 ≤ 1 and it can be exponentially small in d. Therefore the

normalized error criterion may be much harder than the absolute error criterion and
this is the reason for a number of negative results for this error criterion. It turns out
that the isotropic and anisotropic cases are quite different and we will study them
in separate subsections. We begin with the case where the data are generated by
arbitrary linear functionals. The class Λstd is partially covered at the end.

6.1. Isotropic Case with Arbitrary Linear Functionals.

For the isotropic case, γℓ = γ > 0, we have

‖Id‖ = λ̃
d/2
γ,1 = (1− ωγ)

d/2,

and since λ̃γ,1 = 1 − ωγ < 1, the norm of Id is exponentially small. We are ready to
present the following theorem.

Theorem 6. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic Gaussian kernels for the class Λall and for the normalized error
criterion. Then

• I is not polynomially tractable,
• I is quasi-polynomially tractable with exponent

t all = t all(γ) =
2

ln
1+2γ2+

√
1+4γ2

2γ2

.

That is, for all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor−all(n,Hd) = O


‖Id‖

(
1

n

) 1

(tall+δ) (1+ln d)

(
1

1
2
(1 +

√
1 + 4γ2) + γ2

)d/4

 ,

nwor−nor−all(ε,Hd) = O
(
exp

(
(tall + δ)(1 + ln d)(1 + ln ε−1)

))
,

where the factors in the big O notations are independent of n, ε−1 and d but
may depend on δ.

Proof. The lack of polynomial tractability follows, in particular, from Theorem 5.6
of [11]. In fact, the lack of polynomial tractability for the class Λall holds for all tensor
product problems with two positive eigenvalues for the univariate case.
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For quasi-polynomial tractability we use Theorem 3.3 of [7], which states that
quasi-polynomial tractability for the class Λall holds for tensor product problems iff
the rate

r = sup
{
β ≥ 0 | lim

n→∞
λ̃γ,n n

β = 0
}

of the univariate eigenvalues is positive and the second largest univariate eigenvalue
λ̃γ,2 is strictly less than the largest univariate eigenvalue λ̃γ,1. If so, then the exponent
of quasi-polynomial tractability is

t all = max

(
2

r
,

2

ln λ̃γ,1/λ̃γ,2

)
.

In our case, r = ∞ and

tall =
2

ln λ̃γ,1/λ̃γ,2
=

2

− ln ωγ
=

2

ln
1+2γ2+

√
1+4γ2

2γ2

.

The estimates of ewor−all(n,Hd) and nwor−nor−all(ε,Hd) follow from the definition of
quasi-polynomial tractability. This completes the proof. �

For the isotropic case we lose polynomial tractability for the normalized error
criterion although even strong polynomial tractability is present for the absolute
error criterion. This shows qualitatively that the normalized error criterion is much
harder. In this case we only have quasi-polynomial tractability. Observe that the
exponent of quasi-polynomial tractability depends on γ and we have

lim
γ→0

tall(γ) = 0 and lim
γ→∞

tall(γ) = ∞.

For some specific values of γ we have

tall(2−1/2) = 1.5186 . . . ,

tall(1) = 2.0780 . . . ,

tall(21/2) = 2.8853 . . . .

6.2. Anisotropic Case with Arbitrary Linear Functionals.

We now consider the sequence {γℓ}ℓ∈N of shape parameters and ask when we can
guarantee strong polynomial tractability. As we shall see, this holds for the class Λall

if r(γ) > 0 although the exponent of strong polynomial tractability is large for small
r(γ). More precisely, we have the following theorem, which is similar to Theorem 3.

Theorem 7. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with anisotropic Gaussian kernels for the class Λall and for the normalized
error criterion. Then

• I is strongly polynomially tractable if r(γ) > 0. If so, then the exponent is

pall =
1

r(γ)
.
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• Let r(γ) > 0. Then for all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor−all(n,Hd) = O
(
‖Id‖n−1/pall+δ

)
= O

(
n−r(γ)+δ

)
,

nwor−nor−all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notations are independent of n, ε−1 and d but
may depend on δ.

• Furthermore, in the case of ordered shape parameters, i.e., γ1 ≥ γ2 ≥ · · · if

nwor−nor−all(ε,Hd) = O
(
ε−p d q

)
for all ε ∈ (0, 1) and d ∈ N,

then p ≥ pall = 1
r(γ)

, which means that strong polynomial tractability is equiv-

alent to polynomial tractability.

Proof. Theorem 5.2 of [11] states that strong polynomial tractability holds iff there
exits a positive number τ such that

C̃2 := sup
d

∞∑

j=1

(
λd,j
λd,1

)τ
=

∞∏

ℓ=1

1

1− ωτγℓ
<∞.

If so, then nwor−nor−all(ε,Hd) ≤ C̃2 ε
−2τ for all ε ∈ (0, 1) and d ∈ N, and the exponent

of strong polynomial tractability is the infimum of 2τ for which C̃2 <∞.
Clearly, C̃2 <∞ iff

∞∑

ℓ=1

ωτγℓ <∞ iff
∞∑

ℓ=1

γ2τℓ <∞.

This holds iff r(γ) ≥ 1/(2τ) > 0. This also proves that pall = 1/r(γ). The estimates on
ewor−all(n,Hd) and n

wor−nor−all(ε,Hd) follow from the definition of strong tractability.
The case of polynomial tractability for ordered shape parameters follows analo-

gously to the proof in Theorem 3. From Theorem 5.2 of [11], we know that the
problem is polynomially tractable with nwor−nor−all(ε,Hd) = O (ε−2τ d q2τ ) iff

C̃2 := sup
d∈N

d−q2
[ ∞∑

j=1

(
λd,j
λd,1

)τ ]1/τ
= d−q2

d∏

ℓ=1

1

(1− ωτℓ )
1/τ

<∞.

Proceeding as in the proof of Theorem 3, this can happen for ordered shape param-
eters only if τ ≥ 1/(2r(γ)). Therefore, p ≥ pall = 1/r(γ), as claimed. �

The essence of Theorem 7 is that under the normalized error criterion strong poly-
nomial and polynomial tractability for the class Λall requires that the shape parame-
ters tend to zero polynomially fast so that r(γ) > 0. This condition is stronger than
what is required for the absolute error criterion.

It is interesting to compare strong polynomial tractability for the absolute and
normalized error criteria for the class Λall, see Theorems 3 and 7. This is the subject
of the next corollary.
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Corollary 1. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with isotropic or anisotropic Gaussian kernels for the class Λall. Let r(γ) be
the rate of convergence of shape parameters.

• Absolute error criterion:
I is always strongly polynomially tractable with exponent

pall = min

(
2,

1

r(γ)

)
≤ 2.

• Normalized error criterion:
I is strongly polynomially tractable iff r(γ) > 0. If so, the exponent is

pall =
1

r(γ)
.

The strong tractability exponents under the two error criteria are the same provided
that r(γ) ≥ 1/2.

6.3. Only Function Values.

We now turn to the class Λstd. We do not know if quasi-polynomial tractability
holds for the class Λstd in the isotropic case. The theorems that we used for the
absolute error criterion are not enough for the normalized error criterion. Indeed, no
matter how a positive k is defined in (16) we must take n exponentially large in d if
we want to guarantee that the error is less than ε‖Id‖. Similarly, if we use (15) then
we must guarantee that p > 1 and this makes the number B exponentially large in
d. We leave as an open problem whether quasi-polynomial tractability holds for the
class Λstd.

We now discuss the initial error for limℓ→∞ γℓ = 0. We have

‖Id‖ =

d∏

ℓ=1

(1− ωγℓ)
1/2 = exp

(
O(1)− 1

2

d∑

ℓ=1

γ2ℓ

)
.

For r(γ) ∈ [0, 1/2), the initial error still goes exponentially fast to zero, whereas for
r(γ) = 1/2 it may go to zero or be uniformly bounded from below by a positive
number, and finally for r(γ) > 1/2 it is always uniformly bounded from below by a
positive number. For example, take γℓ = ℓ−α lnβ(1 + ℓ) for a positive α and real β.
Then r(γ) = α. For α = 1

2
, the initial error goes to zero for β > −1

2
, and is of order 1

if β ≤ −1
2
.

This discussion shows that for r(γ) > 1/2 there is really no difference between
the absolute and normalized error criteria. This means that for r(γ) > 1/2 we can
apply Theorem 5 for the class Λstd with ε replaced by ε‖Id‖ = Θ(ε). For r(γ) = 1/2,
Theorem 4 can be applied if we assume additionally that

∑∞
ℓ=1 γ

2
ℓ < ∞. The last

assumption implies that ‖Id‖ = Θ(1). We summarize this discussion in the following
corollary.

Corollary 2. Consider the function approximation problem I = {Id}d∈N for Hilbert
spaces with anisotropic Gaussian kernels for the class Λstd and for the normalized
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error criterion. Assume that

r(γ) > 1
2

or

(
r(γ) = 1

2
and

∞∑

ℓ=1

γ2ℓ <∞
)
.

Then

• I is strongly polynomially tractable with exponent at most

pstd =
1

r(γ)
+

1

2 r2(γ)
= pall + 1

2

[
pall
]2 ≤ 4.

• For all d ∈ N, ε ∈ (0, 1) and δ ∈ (0, 1) we have

ewor−all(n,Hd) = O
(
n−1/(pall+δ)

)
,

nwor−nor−all(ε,Hd) = O
(
ε−(pall+δ)

)
,

where the factors in the big O notations are independent of n, ε−1 and d but
may depend on δ.

The case r(γ) < 1/2 is open. We do not know if polynomial tractability holds for
the class Λstd in this case.
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