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A STRONG ABHYANKAR-MOH THEOREM

AND CRITERION OF EMBEDDED LINE

Yansong Xu

Abstract. The condition of plane polynomial curve to be a line in well-known
Abhyankar-Moh Theorem is replaced by weaker ones. A criterion of embedded line

is obtained from this strong theorem.

Introduction

Famous Abhyankar-Moh Theorem [1,2] states that for a field k of characteristic
zero, if f(z) and g(z) are polynomials and k[f(z), g(z)] = k[z], then either deg f(z)
divides deg g(z) or deg g(z) divides deg f(z). But the considered polynomial curve
has to be a line at beginning is too strong and it limits the applications of the
Theorem. In this paper, we replace the condition by weaker ones. Therefore we call
it Strong Abhyankar-Moh Theorem. Using this strong theorem, we get a criterion
for a polynomial plane curve to be an embedded line.

1. A Strong Abhyankar-Moh Theorem

and Criterion of Embedded Line

Theorem 1.1 (Strong Abhyankar-Moh Theorem). Let k be a field of charac-

teristic zero and F (f, g) be a plane curve which is defined by polynomials f(z) and
g(z), here z can be an unfaithful parameter. Let m and n be the degrees of f(z) and
g(z) respectively. Assume that there is an integer a > 0 such that a ≤ min(m,n)
and there are polynomials u(z) and v(z) in polynomial ring k[f(z), g(z)] such that

deg u(z) = m − a and deg v(z) = n − a, then we have that either deg f(z) divides

deg g(z) or deg g(z) divides deg f(z).

Proof. First we reduce to faithful parameter case. In fact, if z is not a faithful
parameter, from [3, Theorem 3.3.], there exits h = h(z) ∈ k[z] and f̃ , g̃ ∈ k[z]

such that f(z) = f̃(h(z)) , g(z) = g̃(h(z)) and h is a faithful parameter. We note

that u(z) ∈ k[f(z), g(z)] = k[f̃(h(z)), g̃(h(z))] if and only if there exists ũ(h) ∈

k[f̃(h), g̃(h)] such that u(z) = ũ(h(z)) . We also note that deg u(z) = m− a if and
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only if deghũ(h) = m
deg h(z) − a

deg h(z) . Therefore we only need to handle faithful
parameter case.

We follow terms and notations of [4]. We have approximate roots

Ti ∈ k[f, g], i = 2, · · · , h

For convenient, we denote T1 = f and T0 = g. Let

deg Ti = −µi,

di+1 = gcd(−µ0, · · · ,−µi), i = 1, · · · , h

Then we have
d2 > d3 > · · · > dh+1 = 1

By Abhyankar-Moh Semi-group Structure Theorem [2, 4], we have that

deg u(z) = α0(−µ0) + · · ·+ αh(−µh)

and
deg v(z) = β0(−µ0) + · · ·+ βh(−µh)

here for i = 0, · · · , h, αi and βi are nonegative integers, which satisfying

0 ≤ α2 <
d2
d3

, · · · , 0 ≤ αh <
dh

dh+1

0 ≤ β2 <
d2
d3

, · · · , 0 ≤ βh <
dh

dh+1

and α2, · · · , αh, β2, · · · , βh are unique. Hence we have

(1.1.1) deg u(z) − deg v(z) = (α0 − β0)(−µ0) + · · ·+ (αh − βh)(−µh)

As we have that

deg u(z) − deg v(z)− ((α0 − β0)(−µ0) + · · ·+ (αh − βh−1)(−µh−1)) ≡ 0 mod dh

(dh/dh+1,−µh/dh+1) = 1

and
|αh − βh| < dh/dh+1

Therefore we conclude that
αh = βh

Similarly we can prove that

αh−1 = βh−1, · · · , α2 = β2

If m = n, we have nothing to prove. Therefore we suppose that m > n. It is easy
to see that

α1 = 0, β0 = 0, β1 = 0

and equation (1.1.1) becomes
m− n = α0n

which proves that n divides m. �
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Example 1.2. Let f(z) = z3 and g(z) = z6+z2. The plane curve (f(z), g(z)) is not
an embedded line and we can not apply Abhyankar-Moh Theorem. Let u(z) = z2

and v(z) = z5. As u(z), v(z) ∈ k[f(z), g(z)], we can apply Theorem 1.1. Therefore
Theorem 1.1 is strictly stronger than Abhyankar-Moh Theorem.

Theorem 1.3 (Criterion of Embedded Line). Let k be a field of characteristic

zero and f(z) and g(z) be polynomials. Then k[f(z), g(z)] = k[z] if and only if

k[f(z), g(z)] 6= k and f ′(z) and g′(z) are in the polynomial ring k[f(z), g(z)].

Proof. =⇒ Trivial.

⇐= There are two cases.

Case 1: f(z) or g(z) is in the field k, say f(z) ∈ k and g(z) /∈ k. As g′(z) ∈
k[f(z), g(z)] = k[g(z)], g(z) is linear in z, therefore k[f(z), g(z)] = k[z].

Case 2: Both f(z) and g(z) are not in k. As deg f ′(z) = deg f(z) − 1 and
deg g′(z) = deg g(z) − 1 , we can apply Theorem 1.1 to get the conclusion that
either deg f(z) divides deg g(z) or deg g(z) divides deg f(z). We induct on the sum
of deg f(z) and deg g(z). Let us say deg f(z) ≥ deg g(z). From Theorem 1.1, we can
write deg f(z) = l deg g(z), here l is a positive integer. Let a and b be the leading
coefficients of f(z) and g(z) respectively. We define f1(z) = f(z)− a(b−1g(z))l and
g1(z) = g(z). It is obvious that either f1(z) = 0 or deg f1(z) < deg f(z). It is
easy to verify that we still have that f1(z) is in the polynomial ring k[f(z), g(z)] =
k[f1(z), g1(z)]. We can continue to apply Theorem 1.1. This process must finish in
finite steps, say n, and, say fn(z) ∈ k and gn(z) ∈ k[f(z), g(z)] = k[fn(z), gn(z)] =
k[gn(z)]. We reduce to case 1, which is proved. �

2. Applications

Using the Criterion of Embedded Line, we can give a new equivalence of plane
Jacobian Conjecture.

Proposition 2.1. Plane Jacobian Conjecture is equivalent to the following:

Let k be a field of characteristic zero and f(x, y) and g(x, y) be polynomials over

k. Assume that fxgy − fygx ∈ k∗, then fy(x, y) and gy(x, y) are in polynomial ring

k(x)[f(x, y), g(x, y)].

Proof. It is well known that Jacobian Conjecture is equivalent to deg f | deg g or
deg g| deg f if fxgy−fygx ∈ k∗ [4]. The proposition follows the Criteria of Embedded
Line immediately. �

With Criteria of Embedded Line, we can completely characterize one kind of
plane curves.

Proposition 2.2. Let k be a field of characteristic zero and f(z) and g(z) be monic

polynomials such that deg f = m , deg g = n and gcd(m,n) = d. Suppose that

(2.2.1) nf ′g −mfg′ = a ∈ k∗
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and

(2.2.2) fn/d − gm/d = b ∈ k

Then plane curve (f(z), g(z)) is an embedded line. Moreover, if m ≤ n then we

have

(2.2.3) f(z) = z + c, g(z) = (z + c)n − b,

here c ∈ k and b ∈ k∗.

Proof. From (2.2.1), we have that f and g are coprime. Hence we have b 6= 0. From
(2.2.2) we have

(2.2.4)
n

d
fn/d−1f ′ −

m

d
gm/d−1g′ = 0

Multiplying (2.2.4) by g and substituting (2.2.1), we have

(2.2.5) afn/d−1 +mg′(fn/d − gm/d) = 0

Therefore

(2.2.6) g′ = −m−1b−1afn/d−1

Similarly we have

(2.2.7) f ′ = −n−1b−1agm/d−1

By Criterion of Embedded Line, the plane curve (f(z), g(z)) is an embedded line.
Hence d = min(m,n) = m and therefore f ′ ∈ k∗. As we suppose that f is monic,
therefore f(z) = z+c for some c ∈ k . From (2.2.2), we have g(z) = (z+c)n−b. �
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