A STRONG ABHYANKAR-MOH THEOREM AND CRITERION OF EMBEDDED LINE

Yansong Xu

Abstract

The condition of plane polynomial curve to be a line in well-known Abhyankar-Moh Theorem is replaced by weaker ones. A criterion of embedded line is obtained from this strong theorem.

Introduction

Famous Abhyankar-Moh Theorem [1,2] states that for a field k of characteristic zero, if $f(z)$ and $g(z)$ are polynomials and $k[f(z), g(z)]=k[z]$, then either $\operatorname{deg} f(z)$ divides $\operatorname{deg} g(z)$ or $\operatorname{deg} g(z)$ divides $\operatorname{deg} f(z)$. But the considered polynomial curve has to be a line at beginning is too strong and it limits the applications of the Theorem. In this paper, we replace the condition by weaker ones. Therefore we call it Strong Abhyankar-Moh Theorem. Using this strong theorem, we get a criterion for a polynomial plane curve to be an embedded line.

1. A Strong Abhyankar-Moh Theorem and Criterion of Embedded Line

Theorem 1.1 (Strong Abhyankar-Moh Theorem). Let k be a field of characteristic zero and $F(f, g)$ be a plane curve which is defined by polynomials $f(z)$ and $g(z)$, here z can be an unfaithful parameter. Let m and n be the degrees of $f(z)$ and $g(z)$ respectively. Assume that there is an integer $a>0$ such that $a \leq \min (m, n)$ and there are polynomials $u(z)$ and $v(z)$ in polynomial ring $k[f(z), g(z)]$ such that $\operatorname{deg} u(z)=m-a$ and $\operatorname{deg} v(z)=n-a$, then we have that either $\operatorname{deg} f(z)$ divides $\operatorname{deg} g(z)$ or $\operatorname{deg} g(z)$ divides $\operatorname{deg} f(z)$.

Proof. First we reduce to faithful parameter case. In fact, if z is not a faithful parameter, from [3, Theorem 3.3.], there exits $h=h(z) \in k[z]$ and $\tilde{f}, \tilde{g} \in k[z]$ such that $f(z)=\tilde{f}(h(z)), g(z)=\tilde{g}(h(z))$ and h is a faithful parameter. We note that $u(z) \in k[f(z), g(z)]=k[\tilde{f}(h(z)), \tilde{g}(h(z))]$ if and only if there exists $\tilde{u}(h) \in$ $k[\tilde{f}(h), \tilde{g}(h)]$ such that $u(z)=\tilde{u}(h(z))$. We also note that $\operatorname{deg} u(z)=m-a$ if and

[^0]only if $\operatorname{deg}_{h} \tilde{u}(h)=\frac{m}{\operatorname{deg} h(z)}-\frac{a}{\operatorname{deg} h(z)}$. Therefore we only need to handle faithful parameter case.

We follow terms and notations of [4]. We have approximate roots

$$
T_{i} \in k[f, g], i=2, \cdots, h
$$

For convenient, we denote $T_{1}=f$ and $T_{0}=g$. Let

$$
\begin{gathered}
\operatorname{deg} T_{i}=-\mu_{i} \\
d_{i+1}=\operatorname{gcd}\left(-\mu_{0}, \cdots,-\mu_{i}\right), i=1, \cdots, h
\end{gathered}
$$

Then we have

$$
d_{2}>d_{3}>\cdots>d_{h+1}=1
$$

By Abhyankar-Moh Semi-group Structure Theorem [2, 4], we have that

$$
\operatorname{deg} u(z)=\alpha_{0}\left(-\mu_{0}\right)+\cdots+\alpha_{h}\left(-\mu_{h}\right)
$$

and

$$
\operatorname{deg} v(z)=\beta_{0}\left(-\mu_{0}\right)+\cdots+\beta_{h}\left(-\mu_{h}\right)
$$

here for $i=0, \cdots, h, \alpha_{i}$ and β_{i} are nonegative integers, which satisfying

$$
\begin{aligned}
& 0 \leq \alpha_{2}<\frac{d_{2}}{d_{3}}, \cdots, 0 \leq \alpha_{h}<\frac{d_{h}}{d_{h+1}} \\
& 0 \leq \beta_{2}<\frac{d_{2}}{d_{3}}, \cdots, 0 \leq \beta_{h}<\frac{d_{h}}{d_{h+1}}
\end{aligned}
$$

and $\alpha_{2}, \cdots, \alpha_{h}, \beta_{2}, \cdots, \beta_{h}$ are unique. Hence we have

$$
\begin{equation*}
\operatorname{deg} u(z)-\operatorname{deg} v(z)=\left(\alpha_{0}-\beta_{0}\right)\left(-\mu_{0}\right)+\cdots+\left(\alpha_{h}-\beta_{h}\right)\left(-\mu_{h}\right) \tag{1.1.1}
\end{equation*}
$$

As we have that

$$
\operatorname{deg} u(z)-\operatorname{deg} v(z)-\left(\left(\alpha_{0}-\beta_{0}\right)\left(-\mu_{0}\right)+\cdots+\left(\alpha_{h}-\beta_{h-1}\right)\left(-\mu_{h-1}\right)\right) \equiv 0 \quad \bmod d_{h}
$$

$$
\left(d_{h} / d_{h+1},-\mu_{h} / d_{h+1}\right)=1
$$

and

$$
\left|\alpha_{h}-\beta_{h}\right|<d_{h} / d_{h+1}
$$

Therefore we conclude that

$$
\alpha_{h}=\beta_{h}
$$

Similarly we can prove that

$$
\alpha_{h-1}=\beta_{h-1}, \cdots, \alpha_{2}=\beta_{2}
$$

If $m=n$, we have nothing to prove. Therefore we suppose that $m>n$. It is easy to see that

$$
\alpha_{1}=0, \beta_{0}=0, \beta_{1}=0
$$

and equation (1.1.1) becomes

$$
m-n=\alpha_{0} n
$$

which proves that n divides m.

Example 1.2. Let $f(z)=z^{3}$ and $g(z)=z^{6}+z^{2}$. The plane curve $(f(z), g(z))$ is not an embedded line and we can not apply Abhyankar-Moh Theorem. Let $u(z)=z^{2}$ and $v(z)=z^{5}$. As $u(z), v(z) \in k[f(z), g(z)]$, we can apply Theorem 1.1. Therefore Theorem 1.1 is strictly stronger than Abhyankar-Moh Theorem.

Theorem 1.3 (Criterion of Embedded Line). Let k be a field of characteristic zero and $f(z)$ and $g(z)$ be polynomials. Then $k[f(z), g(z)]=k[z]$ if and only if $k[f(z), g(z)] \neq k$ and $f^{\prime}(z)$ and $g^{\prime}(z)$ are in the polynomial ring $k[f(z), g(z)]$.

Proof. \Longrightarrow Trivial.
\Longleftarrow There are two cases.
Case 1: $f(z)$ or $g(z)$ is in the field k, say $f(z) \in k$ and $g(z) \notin k$. As $g^{\prime}(z) \in$ $k[f(z), g(z)]=k[g(z)], g(z)$ is linear in z, therefore $k[f(z), g(z)]=k[z]$.

Case 2: Both $f(z)$ and $g(z)$ are not in k. As $\operatorname{deg} f^{\prime}(z)=\operatorname{deg} f(z)-1$ and $\operatorname{deg} g^{\prime}(z)=\operatorname{deg} g(z)-1$, we can apply Theorem 1.1 to get the conclusion that either $\operatorname{deg} f(z)$ divides $\operatorname{deg} g(z)$ or $\operatorname{deg} g(z)$ divides $\operatorname{deg} f(z)$. We induct on the sum of $\operatorname{deg} f(z)$ and $\operatorname{deg} g(z)$. Let us say $\operatorname{deg} f(z) \geq \operatorname{deg} g(z)$. From Theorem 1.1, we can write $\operatorname{deg} f(z)=l \operatorname{deg} g(z)$, here l is a positive integer. Let a and b be the leading coefficients of $f(z)$ and $g(z)$ respectively. We define $f_{1}(z)=f(z)-a\left(b^{-1} g(z)\right)^{l}$ and $g_{1}(z)=g(z)$. It is obvious that either $f_{1}(z)=0$ or $\operatorname{deg} f_{1}(z)<\operatorname{deg} f(z)$. It is easy to verify that we still have that $f_{1}(z)$ is in the polynomial ring $k[f(z), g(z)]=$ $k\left[f_{1}(z), g_{1}(z)\right]$. We can continue to apply Theorem 1.1. This process must finish in finite steps, say n, and, say $f_{n}(z) \in k$ and $g_{n}(z) \in k[f(z), g(z)]=k\left[f_{n}(z), g_{n}(z)\right]=$ $k\left[g_{n}(z)\right]$. We reduce to case 1 , which is proved.

2. Applications

Using the Criterion of Embedded Line, we can give a new equivalence of plane Jacobian Conjecture.

Proposition 2.1. Plane Jacobian Conjecture is equivalent to the following:
Let k be a field of characteristic zero and $f(x, y)$ and $g(x, y)$ be polynomials over k. Assume that $f_{x} g_{y}-f_{y} g_{x} \in k^{*}$, then $f_{y}(x, y)$ and $g_{y}(x, y)$ are in polynomial ring $k(x)[f(x, y), g(x, y)]$.

Proof. It is well known that Jacobian Conjecture is equivalent to $\operatorname{deg} f \mid \operatorname{deg} g$ or $\operatorname{deg} g \mid \operatorname{deg} f$ if $f_{x} g_{y}-f_{y} g_{x} \in k^{*}$ [4]. The proposition follows the Criteria of Embedded Line immediately.

With Criteria of Embedded Line, we can completely characterize one kind of plane curves.

Proposition 2.2. Let k be a field of characteristic zero and $f(z)$ and $g(z)$ be monic polynomials such that $\operatorname{deg} f=m, \operatorname{deg} g=n$ and $\operatorname{gcd}(m, n)=d$. Suppose that

$$
\begin{equation*}
n f^{\prime} g-m f g^{\prime}=a \in k^{*} \tag{2.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{n / d}-g^{m / d}=b \in k \tag{2.2.2}
\end{equation*}
$$

Then plane curve $(f(z), g(z))$ is an embedded line. Moreover, if $m \leq n$ then we have

$$
\begin{equation*}
f(z)=z+c, g(z)=(z+c)^{n}-b \tag{2.2.3}
\end{equation*}
$$

here $c \in k$ and $b \in k^{*}$.
Proof. From (2.2.1), we have that f and g are coprime. Hence we have $b \neq 0$. From (2.2.2) we have

$$
\begin{equation*}
\frac{n}{d} f^{n / d-1} f^{\prime}-\frac{m}{d} g^{m / d-1} g^{\prime}=0 \tag{2.2.4}
\end{equation*}
$$

Multiplying (2.2.4) by g and substituting (2.2.1), we have

$$
\begin{equation*}
a f^{n / d-1}+m g^{\prime}\left(f^{n / d}-g^{m / d}\right)=0 \tag{2.2.5}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
g^{\prime}=-m^{-1} b^{-1} a f^{n / d-1} \tag{2.2.6}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
f^{\prime}=-n^{-1} b^{-1} a g^{m / d-1} \tag{2.2.7}
\end{equation*}
$$

By Criterion of Embedded Line, the plane curve $(f(z), g(z))$ is an embedded line. Hence $d=\min (m, n)=m$ and therefore $f^{\prime} \in k^{*}$. As we suppose that f is monic, therefore $f(z)=z+c$ for some $c \in k$. From (2.2.2), we have $g(z)=(z+c)^{n}-b$.

References

1. S.S. Abhyankar, On the Semiproup of a Meromorphic Curve (1977), Intl. Sysmp. on Algebraic Geometry, Kyoto, 249-414.
2. S.S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
3. M.El Kahoui, D-Resultant and Subresultants, Proc. Amer. Math. Soc. 133(8) (2005), 21932199.
4. T.T. Moh, On the Jacobian Conjecture and the Configurations of Roots, J. Reine Angew. Math. 340 (1983), 140-212.

[^0]: 1991 Mathematics Subject Classification. Primary 13F20, 14H45, 14H50.
 Key words and phrases. Abhyankar-Moh Theorem, plane polynomial curve, embedded line, criterion of embedded line.

