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1 Introduction

We study the uniform Hölder continuity of the solutions of the following
problem.

F (x,∇v(x),∇2v(x))−
∫

RN

[v(x+ z)− v(x)

−1|z|<1〈∇v(x), z〉]c(z)dz − g(x) = 0 x ∈ RN, (1)

where c(z)dz is a positive Radon measure, called Lévy density, defined on
RN such that ∫

RN

min(|z|2, 1)c(z)dz<C1, (2)

C2

|z|N+γ
<|c(z)|< C3

|z|N+γ
∀z ∈ RN ∩ {|z|<1}, (3)

where γ ∈ (0, 2), Ci > 0 (1<i<3) are constants. We assume that there exists
a ”uniform” constant M > 1 such that for a constant θ0 ∈ [0, 1],

|g(x)− g(y)|<M |x− y|θ0 ∀x, y ∈ RN, (4)

and
sup
x∈RN

|v| < M. (5)

The second-order fully nonlinear partial differential operator F is continuous
in RN×RN×SN, and assumed to satisfy the following two conditions.
(Degenerate ellipticity) :

F (x, p,X) ≥ F (x, p, Y ) if X<Y,

∀x ∈ RN, ∀p ∈ RN, ∀X, Y ∈ SN. (6)

(Continuity I) : There are modulus of continuity functions w and η from
R+ ∪ {0} → R+ ∪ {0} such that limσ↓0 w(σ) = 0, limσ↓0 η(σ) = 0, and

|F (x, p,X)− F (y, p,X)|<w(|x− y|)|p|q + η(|x− y|)||X|| (7)

∀x, y ∈ RN, ∀p ∈ RN, ∀X ∈ SN,

where q ≥ 1.
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We study this problem in the framework of the viscosity solutions for the
integro-differential equations, the definition of which is introduced in Arisawa
[5] (see also [6] and [7]). The definition is the following. In order to get rid
of the singularity of the Lévy measure, we shall use the following superjet
(resp. subjet) and its residue. Let x̂ ∈ RN, and let (p,X) ∈ J

2,+
RNu(x̂) (resp.

(p,X) ∈ J
2,−
RNu(x̂)) be a second-order superjet (resp. subjet) of u at x̂. Then,

for any δ > 0 there exists ε > 0 such that

u(x̂+ z)<u(x̂) + 〈p, z〉 + 1

2
〈Xz, z〉 + δ|z|2 if |z|<ε (8)

(resp.

v(x̂+ z) ≥ v(x̂) + 〈p, z〉+ 1

2
〈Xz, z〉 − δ|z|2 if |z|<ε (9)

) holds. We use this pair of numbers (ε, δ) satisfying (8) (resp. (9)) for any
(p,X) ∈ J

2,+
RNu(x̂) (resp. (p,X) ∈ J

2,−
RNv(x̂)) in the following definition of

viscosity solutions.

Definition 1.1. Let u ∈ USC(RN) (resp. v ∈ LSC(RN)). We say that
u (resp. v) is a viscosity subsolution (resp. supersolution) of (1), if for any
x̂ ∈ RN, any (p,X) ∈ J

2,+
RNu(x̂) (resp. ∈ J

2,−
RNv(x̂)), and any pair of numbers

(ε, δ) satisfying (8) (resp.(9)), the following holds for any 0 < ε′<ε

F (x̂, p,X)−
∫

|z|<ε′

1

2
〈(X + 2δI)z, z〉c(z)dz

−
∫

|z|≥ε′
[u(x̂+ z)− u(x̂)− 1|z|<1〈z, p〉]c(z)dz<0.

(resp.

F (x̂, p,X)−
∫

|z|<ε′

1

2
〈(X − 2δI)z, z〉c(z)dz

−
∫

|z|≥ε′
[v(x̂+ z)− v(x̂)− 1|z|<1〈z, p〉]c(z)dz ≥ 0.

If u is both a viscosity subsolution and a viscosity supersolution , it is called
a viscosity solution.

In the framework of the viscosity solutions in Definition 1.1, we have the
existence and the comparison results in [5], [6] and [7]. For the convenience
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of the readres, we shall give typical comparison results and the proof in §2
in below.

Then, we claim the uniform Hölder continuity of u in the following two
cases.
(I) N = 1.
(II) N ≥ 2, and F satisfies the following uniform ellipticity.
(Uniform ellipticity) : There exists λ0 > 0 such that

F (x, p,X)− F (x, p, Y ) ≥ λ0(Y −X) if X<Y,

∀x ∈ RN, ∀p ∈ RN, ∀X, Y ∈ SN. (10)

In the case of (I), we claim that for any θ ∈ (0,min{1, θ0 + γ}) there exists
Cθ > 0 such that

|v(x)− v(y)|<Cθ|x− y|θ ∀x, y ∈ RN, (11)

where Cθ > 0 depends only on M and C1. (See Theorem 3.1 in below.) In
the case of (II), we claim that for any θ ∈ (0, 1), there exists Cθ > 0 such
that (11) holds. (See Theorem 3.2 in below.) (These results hold for more
general problem

F (x,∇v(x),∇2v(x)) + sup
α∈A

{−
∫

RN

[v(x+ z)− v(x)

−1|z|<1〈∇v(x), z〉]c(x, z, α)dz − g(x, α)} = 0 x ∈ RN,

which we do not treat here.)

As for the case other than (I) and (II), that is N ≥ 2 and F is not
necessarily uniformly elliptic (i.e. (10) is not satisfied), we study the following
two problems in the torus TN instead of (1). The first one is, for λ > 0,

λv(x) +H(∇v(x))−
∫

RN

[v(x+ z)− v(x)

−1|z|<1〈∇v(x), z〉]c(z)dz − g(x) = 0 x ∈ TN. (12)

And the second one is

λv(x) + F (x,∇v(x),∇2v(x))−
∫

RN

[v(x+ z)− v(x)
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−1|z|<1〈∇v(x), z〉]c(z)dz − g(x) = 0 x ∈ TN, (13)

where λ > 0. Here H is a first-order nonlinear operator, and F is a fully
nonlinear degenerate elliptic operator, satisfying the following conditions.
(Periodicity) :

H(·, p), F (·, p,X), and g(·) are periodic in x ∈ TN,

for ∀p ∈ RN, ∀X ∈ SN. (14)

(Partial uniform ellipticity) : There exists a constant λ1 > 0 such that

F (x, p,X) ≥ F (x, p, Y ) + λ1Tr(Y
′ −X ′) ∀x ∈ TN, ∀p ∈ RN ,

∀X, Y ∈ SN , X =

(

X ′ X12

X21 X22

)

, Y =

(

Y ′ Y12

Y21 Y22

)

, (15)

where X ′<Y ′(X ′, Y ′ ∈ SM), 0 < M<N.

(Continuity II) : There are modulus of continuity functions w′ and η′ from
R+ ∪ {0} → R+ ∪ {0} such that limσ↓0 w

′(σ) = 0, limσ↓0 η
′(σ) = 0, and

|F (x, p,X)− F (y, p,X)|<w′(|x− y|)|p′|q′ + η′(|x− y|)||X ′||

∀x, y ∈ TN, ∀p = (p′, p′′) ∈ RM ×Rm, ∀X =

(

X ′ X12

X21 X22

)

∈ SN ,

where X ′ ∈ SM , M +m = N, q′ ≥ 1. (16)

Roughly speaking, we claim that for any θ ∈ (0, θ0) (θ0 > 0), there exists
Cθ > 0 such that

|v(x)− v(y)|<Cθ

λ
|x− y|θ ∀x, y ∈ TN, (17)

where Cθ > 0 is independent on λ > 0. (See Theorems 4.1 and 4.2 in be-
low.) The method to derive the above uniform Hölder continuity (11) and
the Hölder continuity (17) is based on the argument used in the proof of the
comparison result. (See Ishii and Lions [20], for the similar argument in the
PDE case.)
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Next, we shall state the strong maximum principle for the Lévy operator.
In [18], for the second-order uniformly elliptic integro-differential operator

−
N
∑

i,j=1

aij
∂2v

∂xi∂xj

−
N
∑

i=1

bi
∂v

∂xi

−
∫

RN

[v(x+ z)− v(x)− 〈∇v(x), z〉]c(x, z)dz

x ∈ RN, (18)

the strong maximum principle was given, where λ0I<(aij)1<i,j<N<Λ0I (0 <

λ0<Λ0). See also, Cancelier [13] for another type of the maximum principle.
Here, we shall give the strong maximum principle in RN without assuming
the uniform ellipticity of the partial differential operator F in (1) (see The-
orem 5.1 in below, and M. Arisawa and P.-L. Lions [9]).

Finally, we shall apply these regularity results (11), (17) and the strong
maximum principle, to study the so-called ergodic problem. In the case of
the Hamilton-Jacobi-Bellman (HJB) operator

sup
α∈A

{−
N
∑

i,j=1

aij(x, α)
∂2u

∂xi∂xj

−
N
∑

i=1

bi(x, α)
∂u

∂xi

− f(x, α)},

the ergodicity of the corresponding controlled diffusion process, for example
in the torus TN = RN\ZN, can be studied by the existence of a unique
real number df such that the following problem admits a periodic viscosity
solution u :

df + sup
α∈A

{−
N
∑

i,j=1

aij(x, α)
∂2u

∂xi∂xj

−
N
∑

i=1

bi(x, α)
∂u

∂xi

− f(x, α)} = 0 x ∈ TN.

We refer the readers to M. Arisawa and P.-L. Lions [8], M. Arisawa [2], [3], for
more details. From the analogy of the diffusion case, here we shall formulate
the ergodic problem for the integro-differential equations as follows.

(Ergodic problem) Is there a unique number df depending only on f(x)
such that the following problem has a periodic viscosity solution u(x) defined
on TN ?

df + F (x,∇u,∇2u)−
∫

RN

[u(x+ z)

−u(x)− 1|z|<1〈∇u(x), z〉]c(z)dz − f(x) = 0 x ∈ TN.
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The results on the existence of the above number df is stated in Theorem
6.1 in below.

2 Comparison results

In this section, we give some typical comparison results for the integro-
differential equations in the framework of the solution in Definition 1.1. We
consider

λu+ F (x,∇u,∇2u)−
∫

RN

u(x+ z)− u(x)

−1|z|<1〈z,∇u(x)〉q(dz) = 0 in Ω, (19)

where λ > 0, and Ω is a bounded domain in RN, with either the Dirichlet
B.C.:

u(x) = g(x) ∀x ∈ Ωc, (20)

or the Periodic B.C.:

Ω = TN = RN\ZN, u(x) is periodic in TN, (21)

where g is a given continuous function in Ωc. The second-order partial def-
ferential operator F is degenerate elliptic, which satisfies

(Degenerate ellipticity) (cf. [16] (3.14)): There exists a function w(·):
[0,∞) → [0,∞), w(0+) = 0 such that

F (y, r, p, Y )− F (x, r, p,X)<w(α|x− y|2 + |x− y|(|p|+ 1)) (22)

for x, y ∈ Ω, r ∈ R, p ∈ RN

for any α > 0, and for any X, Y ∈ SN such that

−3α

(

I O

O I

)

<

(

X O

O −Y

)

<3α

(

I −I

−I I

)

. (23)

For the above, we have the following results.
Theorem 2.1
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Assume that Ω is bounded, and that (2), (22) hold. Let u ∈ USC(RN)
and v ∈ LSC(RN) be respectively a viscosity subsolution and a supersolution
of (19) in Ω, which satisfy u<v on Ωc. Then,

u<v in Ω.

Theorem 2.2

Let Ω = TN. Assume that (2), (22) hold and that F is periodic in
x ∈ TN. Let u ∈ USC(TN) and v ∈ LSC(TN) be respectively a viscosity
subsolution and a supersolution of (19) in Ω. Then,

u<v in Ω.

Remark 2.1 The above comparison results hold in more general situa-
tions. For example, Ω can be RN by assuming that u and v are bounded, or
the nonlocal operator can be in the form of

−
∫

{z∈RN|x+z∈Ω}
[u(x+ z)− u(x)− 1|z|<1〈z,∇u(x)〉]c(z)dz, x ∈ Ω,

with the Neumann type boundary condition on ∂Ω, etc... We refer the read-
ers to [5], [6] and [7].

In order to prove the above claims, we use the following two Lemmas.
(See [7].) The first Lemma is the approximation by the supconvolution and
the infconvolution.

Lemma 2.3

Let u and v be respectively a bounded viscosity subsolution and a bounded
supersolution of (19). Define for r > 0, the supconvolution ur and the inf-
convolution vr of u and v as follows.

ur(x) = sup
y∈RN

{u(y)− 1

2r2
|x− y|2} (supconvolution). (24)
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vr(x) = inf
y∈RN

{v(y) + 1

2r2
|x− y|2} (infconvolution). (25)

Then, for any ν > 0 there exists r > 0 such that ur and vr are respectively a
subsolution and a supersolution of the following problems.

λur + F (x,∇ur,∇2ur)−
∫

RN

ur(x+ z)− ur(x)

−1|z|<1〈z,∇ur(x)〉q(dz)}<ν in Ωr. (26)

λvr + F (x,∇vr,∇2vr)−
∫

RN

vr(x+ z)− vr(x)

−1|z|<1〈z,∇vr(x)〉q(dz)} ≥ −ν in Ωr, (27)

where Ωr = {x ∈ Ω| dist(x, ∂Ω) >
√
2Mr} for M = max{supΩ |u|, supΩ |v|}.

Remark that ur is semiconvex, vr is semiconcave, and both are Lipschitz
continuous in RN. The second lemma comes from the Jensen’s maximum
principle and the Alexandrov’s theorem (see [16] and [17]). The last claim of
this lemma is quite important in the limit procedure in the nonlocal term.

Lemma 2.4 Let U be semiconvex and V be semiconcave in Ω. For
φ(x, y) = α|x − y|2 (α > 0) consider Φ(x, y) = U(x) − V (y) − φ(x, y),
and assume that (x, y) is an interior maximum of Φ in Ω×Ω. Assume also
that there is an open precompact subset O of Ω × Ω containing (x, y), and
that µ = supO Φ(x, y)− sup∂O Φ(x, y) > 0. Then, the following holds.
(i) There exists a sequence of points (xm, ym) ∈ O (m ∈ N) such that
limm→∞(xm, ym) = (x, y), and (pm, Xm) ∈ J

2,+
Ω U(xm), (p

′
m, Ym) ∈ J

2,−
Ω V (ym)

such that limm→∞ pm= limm→∞ p′m= 2α(xm − ym) = p, and Xm<Ym ∀m.
(ii) For Pm = (pm − p,−(p′m − p)), Φm(x, y) = Φ(x, y)− 〈Pm, (x, y)〉 takes a
maximum at (xm, ym) in O.
(iii) The following holds for any z ∈ RN such that (xm + z, ym + z) ∈ O.

U(xm + z)− U(m)− 〈pm, z〉<V (ym + z)− V (ym)− 〈p′m, z〉. (28)

We admit the above claims here. (In fact, the proofs of Lemma 2.3 and
2.4 are not so difficult, see for example [16] and [17].)
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Proof of Theorem 2.1. We use the argument by contradiction, and
assume that maxΩ(u − v)= (u − v)(x0) = M0 > 0 for x0 ∈ Ω. Then, we
approximate u by ur (supconvolution) and v by vr (infconvolution), which
are a subsolution and a supersolution of (26) and (27), respectively. Clearly,
maxΩ(u

r − vr)≥ M0 > 0. Let x ∈ Ω be the maximizer of ur − vr. In the
following, we abbreviate the index and write u = ur, v = vr without any
confusion. As in the PDE theory, consider Φ(x, y) = u(x)− v(y)−α|x− y|2,
and let (x̂, ŷ) be the maximizer of Φ. Then, from Lemma 2.3 there exists
(xm, ym) ∈ Ω (m ∈ N) such that limm→∞(xm, ym) = (x̂, ŷ), and we can take
(εm, δm) a pair of positive numbers such that u(xm + z)<u(xm) + 〈pm, z〉 +
1
2
〈Xmz, z〉 + δm|z|2, v(ym + z) ≥ v(ym) + 〈p′m, z〉 + 1

2
〈Ymz, z〉 − δm|z|2, for

∀|z|<εm. From the definition of the viscosity solutions, we have

F (xm, u(xm), pm, Xm)−
∫

|z|<εm

1

2
〈(Xm + 2δmI)z, z〉dq(z)

−
∫

|z|≥εm

u(xm + z)− u(xm)− 1|z|<1〈z, pm〉q(dz)<ν,

F (ym, v(ym), p
′
m, Ym)−

∫

|z|<εm

1

2
〈(Ym − 2δmI)z, z〉dq(z)

−
∫

|z|≥εm

v(ym + z)− v(ym)− 1|z|<1〈z, p′m〉q(dz) ≥ −ν.

By taking the difference of the above two inequalities, by using (28), and by
passing m → ∞ (thanking to (28), it is available), we can obtain the desired
contradiction. The claim u<v is proved.

Remark 2.2 As for the usage of (28) in the limit procedure m → ∞
in the proof of Theorem 2.1, we refer the interested readers to the similar
argument in the proof of Theorem 3.2 in below.

3 Uniform Hölder continuities of viscosity so-

lutions

In this section, we study the uniform Hölder continuities of viscosity so-
lutions of (1) in the cases of (I) and (II).
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Theorem 3.1.

Let N = 1, and let v be a viscosity solution of (1) satisfying (5). Assume
that (2), (3) and (4) hold, where γ ∈ (0, 2). Assume also that F satisfies (6)
and (7), where there exist constants L > 0, ρi > 0 (i = 1, 2) such that

lim
s↓0

w(s)s−ρ1<L, lim
s↓0

η(s)s−ρ2<L, (29)

and ρ1+γ > q, ρ2+γ > 2. Then for any θ ∈ (0,min{1, θ0+γ}), there exists
a constant Cθ > 0 such that (11) holds. The constant Cθ depends only on
M > 0 and Ci (1<i<3).

Theorem 3.2.

Let N ≥ 2, and let v be a viscosity solution of (1) satisfying (5). Assume
that (2), (3) and (4) hold, where γ ∈ (0, 2).

If F satisfies (7) and (10), where there exist constants L > 0, ρ1 > 0 such
that

lim
s↓0

w(s)s−ρ1<L, (30)

and ρ1 + 2 > q, then for any θ ∈ (0, 1), there exists a constant Cθ > 0 such
that (11) holds. The constant Cθ depends only on M > 0 and Ci (1<i<3).

The following lemma gives the relationship between δ and ε in Definition
1.1, and is used in the proofs in below.

Lemma 3.3.

Let φ(z) = Cθ|z|θ (z ∈ RN), θ ∈ (0, 1), r > 0, and let ẑ ∈ {z ∈
RN| |z| < r, z 6= 0} be fixed. Then, there exists C > 0 such that for any

δ > 0, and for any z ∈ RN such that |z|< |ẑ|
2
, if z satisfies

|z|<δC|ẑ|3−θ, (31)

we have

|φ(ẑ + z)− φ(ẑ)− 〈∇φ(ẑ), z〉 − 1

2
〈∇2φ(ẑ)z, z〉|<δ|z|2. (32)

The constant C is independent on r, θ, and ẑ.
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Proof of Lemma 3.3. From the Taylor expansion of φ at ẑ

φ(ẑ+ z)−φ(ẑ)−〈∇φ(ẑ), z〉− 1

2
〈∇2φ(ẑ)z, z〉 = 1

3!

N
∑

i,j,k=1

∂3φ(ẑ + ρ(z)z)

∂zi∂zj∂zk
zizjzk

for z ∈ {z ∈ RN| |z| < |ẑ|
2
},

where ρ = ρ(z) ∈ (0, 1). By calculating ∂3φ
∂xi∂xj∂xk

, we see that there exists a

constant C > 0 independent on r, θ, δ such that

|φ(ẑ + z)− φ(ẑ)− 〈∇φ(ẑ), z〉 − 1

2
〈∇2φ(ẑ)z, z〉|<C|ẑ + ρz|θ−3|z|3

for z ∈ {z ∈ RN| |z| < |ẑ|
2
}.

Then, if |z|< δ
C
|ẑ + ρz|3−θ

C|z|3|ẑ + ρz|θ−3<δ|z|2. (33)

Since for |z|< |ẑ|
2
,

1

2
|ẑ|<|ẑ + ρz|<2|ẑ|,

there exists C > 0 independent on r, θ, δ, and ρ such that, if

|z|<δC|ẑ|3−θ<
δ

C
|ẑ + ρz|3−θ, (31)′

then (33) holds. Therefore, if z satisfies (31) with the above C > 0, and if

|z| < |ẑ|
2
, the inequality (32) holds.

Proof of Theorem 3.1. Fix an arbitrary number θ ∈ (0, 1). Let r0 > 0
be a small enough number which will be determined in the end of the proof.
For Cθ > 0 such that

Cθr
θ
0 = 2M, (34)

we shall prove (11), by the contradiction’s argument. For x, y ∈ RN such
that |x− y| ≥ r0, from (5) we have

|v(x)− v(y)|<2M<Cθ|x− y|θ.

12



Assume that there exist x′, y′ ∈ RN (|x′ − y′| < r0) such that

|v(x′)− v(y′)| > Cθ|x′ − y′|θ,

and we shall look for a contradiction. Consider for τ ∈ (0, 1)

Φ(x, y) = v(x)− v(y)− Cθ|x− y|θ − τ

2
|x|2,

and let (x̂, ŷ) be a maximum point of Φ. Let us write φ(x, y) = Cθ|x − y|θ,
and calculate

∇xφ(x, y) = Cθθ|x− y|θ−2(x− y) = −∇yφ(x, y)

∇2
xxφ(x, y) = Cθθ|x−y|θ−2I+Cθθ(θ−2)|x−y|θ−4(x−y)⊗(x−y) = ∇2

yyφ(x, y).

Put p = ∇xφ(x̂, ŷ) = −∇yφ(x̂, ŷ), and Q = ∇2
xxφ(x̂, ŷ) = ∇2

yyφ(x̂, ŷ). Since

Φ(x̂+ z, ŷ) = v(x̂+ z)− v(ŷ)− Cθ|x̂+ z − ŷ|θ − τ

2
(x̂+ z)2

<Φ(x̂, ŷ) = v(x̂)− v(ŷ)− Cθ|x̂− ŷ|θ − τ

2
x̂2,

for any δ > 0 there exists ε > 0 such that

v(x̂+ z)− v(x̂)<Cθ|x̂+ z − ŷ|θ − Cθ|x̂− ŷ|θ + τ

2
(x̂+ z)2 − τ

2
x̂2 (35)

<(p+ τ x̂)z +
1

2
(Q+ τ)z2 + δz2 for |z| < ε.

Samely, since

Φ(x̂, ŷ + z) = v(x̂)− v(ŷ + z)− Cθ|x̂− (ŷ + z)|θ − τ

2
x̂2

<Φ(x̂, ŷ) = v(x̂)− v(ŷ)− Cθ|x̂− ŷ|θ − τ

2
x̂2,

for any δ > 0 there exists ε > 0 such that

v(ŷ + z)− v(ŷ) ≥ −(Cθ|x̂− (ŷ + z)|θ − Cθ|x̂− ŷ|θ) (36)

≥ −(−pz +
1

2
Qz2)− δz2 = pz +

1

2
(−Q)z2 − δz2 for |z| < ε.

13



From the definition of viscosity solutions, by using the pair of numbers (ε, δ)
in (35) and (36), we have

F (x̂, p+ τ x̂, Q + τ)−
∫

|z|<ε

1

2
(Q+ τ + 2δ)z2c(z)dz

−
∫

|z|≥ε
[v(x̂+ z)− v(x̂)− 1|z|<1(p+ τ x̂)z]c(z)dz − g(x̂)<0,

and

F (ŷ, p,−Q)−
∫

|z|<ε

1

2
(−Q− 2δ)z2c(z)dz

−
∫

|z|≥ε
[v(ŷ + z)− v(ŷ)− 1|z|<1pz]c(z)dz − g(ŷ) ≥ 0.

By taking the difference of the above two inequalities, we have the following.

F (x̂, p+ τ x̂, Q+ τ)− F (ŷ, p,−Q)

−1

2

∫

|z|<ε
(Q+ τ + 2δ)z2c(z)dz − 1

2

∫

|z|<ε
(Q+ 2δ)z2c(z)dz

−
∫

|z|≥ε
[v(x̂+ z)− v(x̂)− 1|z|<1(p+ τ x̂)z]c(z)dz

+
∫

|z|≥ε
[v(ŷ + z)− v(ŷ)− 1|z|<1pz]c(z)dz<g(x̂)− g(ŷ) + ν. (37)

We need the estimates.

Lemma 3.4.

The inequalities (35) and (36) hold with

(ε, δ) = (
|x̂− ŷ|

4
,
C

−1

4
|x̂− ŷ|θ−2). (38)

With this pair of numbers, by taking τ > 0 small enough, there exists a
constant C > M such that the following inequalities hold.
(a)

F (x̂, p+ τ x̂, Q+ τ)− F (ŷ, p,−Q) ≥ −C(|x̂− ŷ|ρ1 |p|q + |x̂− ŷ|ρ2||Q||). (39)
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(b)

∫

|z|≥ε
[v(x̂+ z)− v(x̂)− 1|z|<1(p+ τ x̂)z]c(z)dz −

∫

|z|≥ε
[v(ŷ + z)− v(ŷ)

−1|z|<1pz]c(z)dz<Cτ
1

2 |x̂− ŷ|−γ. (40)

Proof of Lemma 3.4. By putting ẑ = x̂ − ŷ in Lemma 3.3, for δ =
C

−1

4
|x̂− ŷ|θ−2, we can take

ε = min{δC|x̂− ŷ|3−θ,
1

2
|x̂− ŷ|} =

1

4
|x̂− ŷ|,

so that (35), (36) hold.
(a) From the continuity of F , (6), and (7), since Q<O, for r0 > 0 (|x̂−ŷ| < r0)
small enough,

F (x̂, p+ τ x̂, Q+ τ)− F (ŷ, p,−Q)

= F (x̂, p, Q)−F (x̂, p,−Q) + F (x̂, p,−Q)− F (ŷ, p,−Q) + o(τ)

≥ −w(x̂−ŷ)|p|q−η(x̂−ŷ)||Q||+o(τ) ≥ −C(|x̂−ŷ|ρ1 |p|q+|x̂−ŷ|ρ2||Q||), (41)

where C > M is a constant.
(b) Since Φ(x̂, ŷ) = v(x̂)− v(ŷ)− Cθ|x̂− ŷ|θ − τ

2
x̂2 ≥ Φ(0, 0) = 0, from (5),

τ

2
x̂2<2M. (42)

Thus, for τ ∈ (0, 1)

v(x̂+ z)− v(ŷ + z)− (v(x̂)− v(ŷ))<
τ

2
(x̂+ z)2 − τ

2
x̂2<τ

1

2 (2M |z|+ |z|2),

and from this
∫

|z|≥ε
[v(x̂+ z)− v(x̂)− 1|z|<1(p+ τ x̂)z]c(z)dz −

∫

|z|≥ε
[v(ŷ + z)− v(ŷ)

−1|z|<1pz]c(z)dz<
∫

|z|≥ε
τ

1

2 (3M |z|+z2)c(z)dz

(43)
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From (3) and (38)

∫

|z|≥ε
τ

1

2 (3M |z|+ z2)c(z)dz<τ
1

2Cmax{1, |x̂− ŷ|1−γ}<Cτ
1

2 |x̂− ŷ|−γ, (44)

where C > M is the constant. By plugging (44) into (43), we get (40).

We put the estimates (39)-(40) in (37), and since ν > 0 can be taken
arbitrarily small,

C−1Cθ|x̂− ŷ|θ−γ<C(|x̂− ŷ|ρ1|p|q + |x̂− ŷ|ρ2||Q||

+2τ
1

2 |x̂− ŷ|−γ +M |x̂− ŷ|θ0). (45)

From (34), θ ∈ (0,min{1, θ0 + γ}), ρ1 + γ > q, ρ2 + γ > 2, and since we can
take τ ∈ (0, 1) arbitrarily small, for r0 > 0 (|x̂ − ŷ| < r0) small enough, we
get a contradiction. Thus, the claim in Theorem 3.1 is proved.

Proof of Theorem 3.2. We use the similar contradiction argument as in
the proof of Theorem 3.1. For an arbitrary fixed number θ ∈ (0, 1), and for
r0 > 0 small enough, let Cθ > 0 be such that (34):

Cθr
θ = 2M,

and we shall prove (11) by the contradiction’s argument. As before, assume
that there exist x′, y′ ∈ RN (|x′ − y′| < r0) such that

v(x′)− v(y′) > Cθ|x′ − y′|θ,

and we shall look for a contradiction. However, we must modify the preceding
argument, because for N ≥ 2 the matrix Q = ∇2

xxφ(x̂, ŷ) = ∇2
yyφ(x̂, ŷ) (φ is

the function in the proof of Theorem 3.1) is no longer negatively definite, and
we have to use Lemma 2.4. For this reason, let us consider the supconvolution
vr and the infconvolution vr of v defined by (24) and (25), respectively. From
Lemma 2.3, for any ν > 0 there exists r1 > 0 such that vr (∀r ∈ (0, r1)) is a
subsolution of

F (x,∇vr(x),∇2vr(x))−
∫

RN

[vr(x+ z)− vr(x)

−1|z|<1〈∇vr(x), z〉]c(z)dz − g(x)<ν x ∈ RN, (46)
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and vr (∀r ∈ (0, r1)) is a supersolution of

F (x,∇vr(x),∇2vr(x))−
∫

RN

[vr(x+ z)− vr(x)

−1|z|<1〈∇vr(x), z〉]c(z)dz − g(x) ≥ −ν x ∈ RN. (47)

Of course from the preceding assumption, for ∀r ∈ (0, r0)

vr(x′)− vr(y
′) > Cθ|x′ − y′|θ.

Now, consider for τ ∈ (0, 1)

Φ(x, y) = vr(x)− vr(y)− Cθ|x− y|θ − τ

2
|x|2,

and let (x̂, ŷ) be a maximum point of Φ. Put p = ∇xφ(x̂, ŷ) = −∇yφ(x̂, ŷ),
and Q = ∇2

xxφ(x̂, ŷ) = ∇2
yyφ(x̂, ŷ). We use Lemma 2.4 for U = vr − τ

2
|x|2,

and V = vr, and for O = {(x, y) ∈ R2N||x − y| < r0}, and we know that
there exists (xm, ym) ∈ R2N such that limm→∞(xm, ym) = (x̂, ŷ). There also
exist (pm + τxm, Xm + τI) ∈ J

2,+
RNv

r(xm), (p
′
m, Ym) ∈ J

2,−
RNvr(ym) such that

limm→∞ pm= limm→∞ p′m= 2α(xm − ym) = p, and Xm<Ym ∀m. Moreover,
the claim in Lemma 2.4 (iii) leads the following for any z ∈ RN such that
(xm + z, ym + z) ∈ O

vr(xm + z)− vr(xm)− 〈pm, z〉 − {vr(ym + z)− vr(ym)− 〈p′m, z〉} (48)

<
τ

2
|xm + z|2 − τ

2
|xm|2 =

τ

2
{2〈xm, z〉+ |z|2}.

Let (εm, δm) be a pair of positive numbers such that

vr(xm+z)<vr(xm)+〈(pm+τxm), z〉+
1

2
〈(Xm+τI)z, z〉+δm|z|2 if |z|<εm,

(49)
and

vr(ym+z) ≥ vr(ym)+〈p′m, z〉+
1

2
〈Ymz, z〉−δm|z|2 if |z|<εm.

(50)
Then, from the definition of viscosity solutions, we have

F (xm, pm + τxm, Xm + τI)−
∫

|z|<εm

1

2
〈(Xm + (τ + 2δm)I)z, z〉c(z)dz

17



−
∫

|z|≥εm

[vr(xm + z)− vr(xm)− 1|z|<1〈(pm + τxm), z〉]c(z)dz − g(xm)<ν,

and

F (ym, pm, Ym)−
∫

|z|<εm

1

2
〈(Ym − 2δmI)z, z〉c(z)dz

−
∫

|z|≥εm

[vr(ym + z)− vr(ym)− 1|z|<1〈p′m, z〉]c(z)dz − g(ym) ≥ −ν.

By taking the difference of the two inequalities,

F (xm, pm+τxm, Xm+τI)−F (ym, pm, Ym)

−1

2

∫

|z|<εm

〈(Xm − Ym + (τ + 4δm)I)z, z〉c(z)dz

<2ν+
∫

|z|≥εm

[vr(xm+z)−vr(xm)−1|z|<1〈pm+τxm, z〉]c(z)dz

−
∫

|z|≥εm

[vr(ym + z)− vr(ym)− 1|z|<1〈p′m, z〉]c(z)dz + g(xm)− g(ym)

<2ν +
∫

|z|≥εm∩Om(z)

τ

2
|z|2c(z)dz

∫

|z|≥εm∩Om(z)c
[{vr(xm + z)− vr(xm)

−1|z|<1〈pm + τxm, z〉} − {vr(ym + z)− vr(ym)− 1|z|<1〈p′m, z〉}],
where

Om(z) = {z ∈ RN| (xm + z, ym + z) ∈ Ω× Ω}.
Since limm→∞(xm, ym) = (x̂, ŷ) ∈ Ω × Ω, there exists a ball B(0) ⊂ RN,
centered at the origin, independent on m ∈ N, such that B(0) ⊂ O(z) =
limm→∞ Om(z), i.e.

(xm + z, ym + z) ∈ Ω× Ω ∀z ∈ B(0), ∀m ∈ N. (51)

Then, by pussing m → ∞ in the above inequality, we get

F (x̂, p+ τ x̂, X + τI)− F (ŷ, p, Y )

<2ν +
∫

O(z)

τ

2
|z|2c(z)dz +

∫

O(z)c
[{vr(x̂+ z)− vr(x̂)

−1|z|<1〈p+ τ x̂, z〉} − {vr(ŷ + z)− vr(ŷ)− 1|z|<1〈p, z〉}]c(z)dz.

<C(ν +M) +
∫

RN

τ

2
|z|2c(z)dz +

∫

{|z|<1}∩O(z)c
τ |x̂||z|c(z)dz,
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where C > 0 is a constant, and we have used the fact that (x̂, ŷ) is the
maximizer of Φ. From (2) and (34), and since O(z)c ⊂ B(0)c, for 0 < τ < 1,

F (x̂, p+ τ x̂, X + τI)− F (ŷ, p, Y )<C(ν +M + τ
1

2 ), (52)

where C > 0 is a constant. We shall give the estimate of the left-hand side
of the above.

Lemma 3.5.

There exists a constant C > M such that the following holds.

F (x̂, p+ τ x̂, X + τI)− F (ŷ, p,−Y ) ≥ Cθ

C
|x̂− ŷ|θ−2 + o(τ). (53)

Proof of Lemma 3.5. From the continuity of F , (7), (10), and (42)
(which is also true for N ≥ 2),

F (x̂, p+ τ x̂, X + τI)−F (ŷ, p,−Y ) = F (x̂, p,X)−F (ŷ, p,−Y ) + o(τ) + o(ν ′)

= F (x̂, p,X)− F (x̂, p,−Y ) + F (x̂, p,−Y )− F (ŷ, p,−Y ) + o(τ) + o(ν ′)

≥ −λ0Tr(X + Y )− w(|x̂− ŷ|)|p|q − η(|x̂− ŷ|)||Y ||+ o(τ) + o(ν ′). (54)

We need the following lemma, the proof of which is delayed in the end.
Lemma 3.6.

If A, B, and Q ∈ SN satisfy

(

A O

O B

)

<

(

Q −Q

−Q Q

)

, (55)

then there exists a constant L > 0 such that

||A||, ||B|| <L||Q|| 12 |Tr(A+B)| 12 .

The constant L depends only on N .

Remark that

−Tr(X − Y ) ≥ Cθθ(1− θ)|x̂− ŷ|θ−2 > 0, (56)
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because , X − Y <2Q, X − Y <O, and for O<P = (x̂−ŷ)⊗(x̂−ŷ)
|x̂−ŷ|2

<I,

Tr(X − Y )<Tr(P (X − Y ))<2Tr(PQ) = 2Cθθ(θ − 1)|x̂− ŷ|θ−2 < 0.

Therefore, by putting A = X and B = Y in Lemma 3.6, and by taking r0 > 0
(|x̂− ŷ| < r0) small enough, from (56)

η(|x̂− ŷ|)||Y ||<K ′Cθη(|x̂− ŷ|)|x̂− ŷ|θ−2<KCθ|x̂− ŷ|θ−2,

where K,K ′ > 0 are constants. For r0 > 0 (|x̂− ŷ| < r0) small enough, from
(29) and (34)

w(|x̂− ŷ|)|p|q = w(|x̂− ŷ|)Cq
θ |x̂− ŷ|q(θ−1)

<L(Cθ|x̂− ŷ|θ)q|x̂− ŷ|ρ1−q<
λ0

4
Cθ|x̂− ŷ|θ−2.

Therefore, from (54) and (56),

F (x̂, p+ τ x̂, X + τI)− F (ŷ, p, Y ) ≥ Cθ

C
|x̂− ŷ|θ−2 + o(τ),

where C > M is a constant. We showed (53).

By plugging (53) into (52), since ν > 0 can be taken arbitrarily small, for
any 0 < θ < 1, we get a contradiction for r0 > 0 (|x̂− ŷ| < r0) small enough.
We have proved (11).

Finally, we are to prove Lemma 3.6.

Proof of Lemma 3.6 By multiplying the matrix
(

I I

I −I

)

to the both hand sides of (55) first from right and then from left, we get
(

A+B A−B

A−B A +B

)

<

(

O O

O 4Q

)

.

Thus, for any t ∈ R and ξ ∈ RN

(

tξ ξ
)

(

A +B A− B

A− B A+B

)(

tξ

ξ

)

<
(

tξ ξ
)

(

O O

O 4Q

)(

tξ

ξ

)

,
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and

t2〈ξ, (A+B)ξ〉+ 2t〈ξ, (A− B)ξ〉+ 〈ξ, (A+B)ξ〉 − 4〈ξ, Qξ〉<0.

Hence, for any |ξ| = 1,

〈ξ, (A− B)ξ〉2<〈ξ, (A+B)ξ〉(4〈ξ, Qξ〉 − 〈ξ, (A+B)ξ〉).

This yields 〈ξ, (A+B)ξ〉2<4||A+B|| · ||Q||, and since ||A+ B||<C|Tr(A +
B)| · ||Q|| where C > 0 is a constant depending only on N > 0, we proved
the claim.

4 Other Hölder continuities of viscosity solu-

tions

In this section, we shall study (12):

λv(x) +H(∇v(x))−
∫

RN

[v(x+ z)− v(x)

−1|z|<1〈∇v(x), z〉]c(z)dz − g(x) = 0 x ∈ TN,

and (13):

λv(x) + F (x,∇v(x),∇2v(x))−
∫

RN

[v(x+ z)− v(x)

−1|z|<1〈∇v(x), z〉]c(z)dz − g(x) = 0 x ∈ TN,

where λ > 0. We consider the case other than (I) N = 1, and (II) F is
uniformly elliptic. So, we are interested in the case of N ≥ 2, and F (or H)
is degenerate elliptic. We assume the conditions (14)-(16).

Example 4.1. The following is an example of F satisfying the condi-
tions (14)-(16).

−
N−1
∑

i=1

ai(x)
∂2u

∂x2
i

(x)−
N−1
∑

i=1

bi(x)
∂u

∂xi

(x) + | ∂u
∂xN

(x)| x ∈ TN,
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where ai(x) > ∃λ1 > 0 and bi(x) (1<i<N − 1) are periodic in TN. Or, more
generally the following Hamilton-Jacobi-Bellman operator satisfies (14)-(16).

F (x, u,∇u,∇2u) = sup
α∈A

{−
N
∑

ij=1

aij(x, α)
∂2u

∂xi∂xj

−
N
∑

i=1

bi(x, α)
∂u

∂xi

+c(x, α)u− f(x, α)} x ∈ TN, (57)

whereA a given set (controls), (aij(x, α) ∈ SN (α ∈ A) non-negative matrices
periodic in TN such that there exist matrices σα (α ∈ A) of the size N × k,

Aα = (aij(x, α)) = σ(x, α)Tσ(x, α),

A′
α ≥ λ1IM , Aα =

(

A′
α Aα12

Aα21 Aα22

)

, A′
α ∈ SM (M < N),

where λ1 > 0, and b(x, α) =(bi(x, α)) ∈ RN , c(x, α) ∈ R are bounded, peri-
odic in TN, and regular enough.

We shall give the results.

Theorem 4.1.

Let v be a periodic viscosity solution of (12) satisfying (5). Assume that
(2), (3), (4), and (14) hold, where γ ∈ (0, 2), and λ > 0. Let H(p) = |p|q,
where q ≥ 1. Then, for any θ ∈ (0, θ0), there exists a constant Cθ > 0 such
that (17) holds. The constant Cθ does not depend on λ ∈ (0, 1).

Theorem 4.2.

Let v be a periodic viscosity solution of (13) satisfying (5). Assume that
(2), (3), (4), (14), (15) and (16) hold, where γ ∈ (0, 2), λ > 0, and that
there exist constants L > 0, ρi > 0 (i = 1, 2) such that

lim
s↓0

w(s)s−ρ1<L, lim
s↓0

η(s)s−ρ2<L, (58)

where ρ1+γ > q, ρ2+γ > 2. Then, for any θ ∈ (0, θ0) there exists a constant
Cθ > 0 such that (17) holds. The constant Cθ does not depend on λ ∈ (0, 1).
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Proof of Theorem 4.1. We use the contradiction argument similar to
that of Theorem 2.1. Fix θ ∈ (0, θ0), and let r0 > 0 be small enough. Let us
take Cθ > 0 such that

Cθr
θ = 2M, (59)

and we shall prove (17) (for Cθ

λ
= Cθ) by contradiction. For x, y ∈ TN such

that |x− y| ≥ r0, from (5) we have

|v(x)− v(y)|<2M<Cθ|x− y|θ.

Thus, assume that there exist x′, y′ ∈ TN (|x′ − y′| < r0) such that

v(x′)− v(y′) > Cθ|x′ − y′|θ,

and we shall look for a contradiction. As in the proof of Theorem 3.2, take
the supconvolution vr and the infconvolution vr of v, which are respectively
the subsolution and the supersolution of the following problems.

λvr(x) +H(∇vr(x))−
∫

RN

[vr(x+ z)− vr(x)

−1|z|<1〈∇vr(x), z〉]c(z)dz − g(x)<ν x ∈ TN,

λvr(x) +H(∇vr(x))−
∫

RN

[vr(x+ z)− vr(x)

−1|z|<1〈∇vr(x), z〉]c(z)dz − g(x) ≥ −ν x ∈ TN,

where ν > 0 is an arbitrary small constant. Remark that

vr(x′)− vr(y
′) > Cθ|x′ − y′|θ

holds for |x′ − y′| < r0. Consider

Φ(x, y) = vr(x)− vr(y)− Cθ|x− y|θ,

and let (x̂, ŷ) be a maximum point of Φ. Let us write φ(x, y) = Cθ|x − y|θ.
For

∇xφ(x, y) = Cθθ|x− y|θ−2(x− y) = −∇yφ(x, y),

∇2
xxφ(x, y) = Cθθ|x−y|θ−2I+Cθθ(θ−2)|x−y|θ−2(x−y)⊗(x−y) = ∇2

yyφ(x, y),

put p = ∇xφ(x̂, ŷ) = −∇yφ(x̂, ŷ), and Q = ∇2
xxφ(x̂, ŷ) = ∇2

yyφ(x̂, ŷ). As
in the proof of Theorem 3.2, by using Lemma 2.4 for U = vr, V = vr, and
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O = {(x, y) ∈ R2N||x− y| < r0}, we know that there exists (xm, ym) ∈ T2N

such that limm→∞(xm, ym) = (x̂, ŷ). There also exist (pm, Xm) ∈ J
2,+
TNv

r(xm),

(p′m, Ym) ∈ J
2,−
TNvr(ym) such that limm→∞ pm= limm→∞ p′m= 2α(xm−ym) = p,

and Xm<Ym ∀m. The claim in Lemma 2.4 (iii) leads for any z ∈ RN such
that (xm + z, ym + z) ∈ O,

vr(xm + z)− vr(xm)− 〈pm, z〉 − {vr(ym + z)− vr(ym)− 〈p′m, z〉}<0. (60)

Let (εm, δm) be a pair of positive numbers such that

vr(xm + z)<vr(xm) + 〈pm, z〉+
1

2
〈Xmz, z〉 + δm|z|2 if |z|<εm, (61)

and

vr(ym + z) ≥ vr(ym) + 〈p′m, z〉 +
1

2
〈Ymz, z〉 − δm|z|2 if |z|<εm. (62)

By using the similar argument as in Theorem 3.2, from the definition of
viscosity solutions, we have the following.

λ(vr(xm)−vr(ym))+H(pm)−H(p′m)

−1

2

∫

|z|<εm

〈(Xm + 2δmI)z, z〉c(z)dz −
1

2

∫

|z|<εm

〈(Ym − 2δmI)z, z〉c(z)dz

−
∫

|z|≥εm

[vr(xm+z)−vr(xm)−1|z|<1〈pm, z〉]c(z)dz

+
∫

|z|≥εm

[vr(ym + z)− vr(ym)− 1|z|<1〈p′m, z〉]c(z)dz<g(xm)− g(ym) + 2ν.

Remarking that Xm<Ym and (60) hold, and by using the similar argument
as in Theorem 3.2, we can pass m → ∞ in the above inequality to have

λ(vr(x̂)− vr(ŷ))<g(x̂)− g(ŷ) + 2ν,

and since ν > 0 is arbitrary, we have

λCθ|x̂− ŷ|θ<M |x̂− ŷ|θ0.

Since Cθ =
2M
rθ
0

, the above leads

2λ<rθ00 .
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However, if we take for an arbitrarily fixed c > 1
θ0
,

r0 = λc, Cθ =
2M

λcθ
, (63)

we get a contradiction for any λ ∈ (0, 1). Therefore, for 0 < θ < θ0, by taking
c = 1

θ
and thus Cθ =

2M
λ
, we proved our claim for Cθ = 2M

v(x)− v(y)<Cθ|x− y|θ = 2M

λ
|x̂− ŷ|θ ∀x, y ∈ TN.

P roof of Theorem 4.2. The argument is similar to that of Theorem 4.1,
and we omit the proof.

5 Strong maximum principle

In this section, we consider

F (x,∇u,∇2u)−
∫

RN

[u(x+z)−u(x)−〈∇u(x), z〉]c(z) = 0 ∀x ∈ RN, (64)

where F satisfies (6) and

F (x, 0, O) ≥ 0 ∀x ∈ RN. (65)

We assume the following condition.
(Almost everywhere positivity) : For any open set D ∈ RN,

∫

z∈D
1c(z)dz > 0. (66)

Our strong maximum principle is the following.
Theorem 5.1 ([9]).

Consider the integro-differential equation (64), and assume that (2), (3),
(65), and (66) hold. Let u be a viscosity subsolution of (64), and assume that
it takes a maximum at a point x0 ∈ RN, i.e.

u(x)<u(x0) ∀x ∈ RN. (67)
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Then, u is constant in RN almost everywhere.

Proof. From (67), for p = 0 and X = O,

u(x0 + z)<u(x0) + 〈0, z〉+ 1

2
〈Oz, z〉+ δ|z|2 if |z|<ε

holds for any δ > 0 and ε > 0. Hence, from the definition of viscosity
subsolution

F (x0, 0, O)−
∫

|z|<ε

1

2
〈(O + 2δI)z, z〉c(z)dz

−
∫

|z|≥ε
[u(x0 + z)− u(x0)− 〈0, z〉]c(z)}<0,

holds for any δ > 0 and ε > 0. So, from (65) we have

∫

|z|≥ε
[u(x0)− u(x0 + z)]c(z)<0

holds for any ε > 0. Therefore, from (3), (66), and (67),

u(x)<u(x0)<u(x) almost everywhere in x ∈ RN,

and the claim is proved.

Remark 5.1. We shall use the above strong maximum principle to solve
the ergodic problem in the next section.

6 Ergodic problem for integro-differential equa-

tions

In this section, we apply the results in preceding sections to solve the
ergodic problem in TN. We shall study the existence of a unique number df
such that the following problem has a periodic viscosity solution.

df + F (x,∇u,∇2u)−
∫

RN

[u(x+ z)− u(x)

−1|z|<1〈∇u(x), z〉]c(z)dz − f(x) = 0 x ∈ TN. (68)
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For this purpose, we consider the approximated problem:

λuλ+F (x,∇uλ,∇2uλ)−
∫

RN

[uλ(x+ z)−uλ(x) (69)

−1|z|<1〈∇uλ(x), z〉]c(z)dz − f(x) = 0 x ∈ TN,

where λ ∈ (0, 1), and we shall see whether there exists the following unique
limit number

lim
λ↓0

λuλ(x) = df uniformly in TN.

We assume that F satisfies (22), and that the following hold.

(Periodicity) :

F (·, p,X), f(·) are periodic in x ∈ TN, ∀(p,X) ∈ (RN × SN). (70)

(Homogeneity) : The partial differential operator F is positively homoge-
nious in degree one

F (x, ξp, ξX) = ξF (x, p,X)

∀ξ > 0, ∀x ∈ TN, ∀p ∈ RN, ∀X ∈ SN. (71)

As we have seen in Theorem 2.2, under (22) and (70), the comparison
result holds. From the Perron’s method (see [5] and [6]), it is known that
there exists a unique periodic viscosity solution uλ of (69) for any λ ∈ (0, 1).
Now, we state our main result.

Theorem 6.1.

Let uλ (λ ∈ (0, 1)) be the periodic viscosity solution of (69). Assume that
the conditions in Theorem 5.1, (22), (70), and (71) hold. Fix an arbitrary
point x0 ∈ TN. Then, the following hold.
(i) Assume that the conditions in Theorem 3.1, or those in Theorem 3.2 hold.
Then, there exist a unique number df and a periodic function u such that

lim
λ↓0

λuλ(x) = df , lim
λ↓0

(uλ(x)− uλ(x0)) = u(x) uniformly in TN, (72)

such that (68) holds in the sense of viscosity solutions.
(ii) Assume that the conditions in Theorem 4.1, or those in Theorem 4.2
hold. Then, there exists a unique number df such that

lim
λ↓0

λuλ(x) = df uniformly in TN,
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which is characterized by the following. For any ν > 0 there exist a periodic
viscosity subsolution u and a periodic viscosity supersolution u of

df + F (x,∇u,∇2u)−
∫

RN

[u(x+ z)

−u(x)− 1|z|<1〈∇u(x), z〉]c(z)dz − f(x)<ν x ∈ TN,

df + F (x,∇u,∇2u)−
∫

RN

[u(x+ z)

−u(x)− 1|z|<1〈∇u(x), z〉]c(z)dz − f(x) ≥ −ν x ∈ TN.

P roof of Theorem 6.1. (i) We shall prove the claim in the following three
steps.
(Step 1.) We prove the uniform boundedness of vλ(x) = uλ(x)− uλ(x0) :

|vλ(x)| = |uλ(x)− uλ(x0)|<∃M ′ ∀x ∈ TN, ∀λ ∈ (0, 1), (73)

by a contradiction argument. Assume that there exists a subsequence λ′ → 0
such that

lim
λ′→0

|vλ′ |L∞ = ∞, (74)

and we shall look for a contradiction. Put wλ(x) =
vλ(x)
|vλ|L∞

. By (71), remark
that wλ satisfies

λwλ + F (x,∇wλ,∇2wλ)−
∫

RN

[wλ(x+ z)− wλ(x)

−1|z|<1〈∇wλ(x), z〉]c(z)dz −
f(x)− λuλ(x0)

|vλ|L∞

= 0 x ∈ TN, (75)

and that
|wλ|L∞ = 1, wλ(x0) = 0 ∀λ ∈ (0, 1). (76)

From the comparison result for (69), there exists a constant C > 0 such
that |λuλ|L∞ < C (∀λ ∈ (0, 1)), and thus from (74) and (76) there exists a
constant M > 0 such that

|λ′wλ′ − f(x)− λ′uλ′(x0)

|vλ′|L∞

|<M, |wλ′|<M.
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Therefore, by applying Thorems 3.1 and 3.2 to (75) for g = −(λ′wλ′ −
f(x)−λ′uλ′(x0)

|vλ′ |L∞
) and θ0 = 0, we know that there exist θ ∈ (0, 1) and a con-

stant Cθ > 0 such that

|wλ′(x)− wλ′(y)|<Cθ|x− y|θ ∀x, y ∈ TN.

So, by the Ascoli-Alzera theorem, there exists an Hölder continuous function
w such that

lim
λ′→0

wλ′(x) = w(x) uniformly in TN,

and from (76)
|w|L∞ = 1, w(x0) = 0.

Moreover, by putting λ = λ′ in (75), and by passing λ′ → 0, since the limit
procedure of viscosity solutions, introduced by Barles and Perthame [11] (see
also [5] and [16]), is valid for the present nonlocal case, we see that w is a
viscosity solution of

F (x,∇w,∇2w)−
∫

RN

[w(x+ z)− w(x)

−1|z|<1〈∇w(x), z〉]c(z)dz = 0 ∀x ∈ TN. (77)

However, since F satisfies (65), by the strong maximum principle (Theorem
5.1), and by taking account that w is periodic in TN, we see that w is almost
everywhere constant in TN. This contradicts to the fact that w is an Hölder
continuous function such that |w|L∞ = 1 and w(x0) = 0. Therefore, the
assumption (74) is false, and we have proved (73).

(Step 2.) From Step 1, we see that vλ (λ ∈ (0, 1)) satisfies (73) and

F (x,∇vλ,∇2vλ)−
∫

RN

[vλ(x+ z)− vλ(x)

−1|z|<1〈∇vλ(x), z〉]c(z)dz − (f − λuλ(x0)− λvλ) = 0 in TN, (78)

and there exists M > 0 such that

|f(x)− λuλ(x0)− λvλ(x)| < M ∀x ∈ TN, ∀λ ∈ (0, 1).

We apply again the result in Theorems 3.1 and 3.2 to (78), and see that there
exist θ ∈ (0, 1) and a constant Cθ > 0 such that

|vλ(x)− vλ(y)|<Cθ|x− y|θ ∀x, y ∈ TN, ∀λ ∈ (0, 1).
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So, we can take a subsequence λ′ → 0 of λ → 0 such that

lim
λ′→0

vλ′(x) = lim
λ′→0

(uλ′(x)− uλ′(x0)) = ∃u(x) uniformly in TN,

lim
λ′→0

λ′uλ′(x) = lim
λ′→0

λ′uλ′(x0) = df uniformly in TN.

In the next step, we shall prove that the limit df is independent on the choise
of the subsequence λ′ → 0.

(Step 3.) We shall prove the uniqueness of the limit number df obtained
in Step 2. Let (df , u), and (d′f , u

′) (df 6= d′f) be two pairs of the limit numbers
and the limit functions. Thus,

df + F (x,∇u,∇2u)−
∫

RN

[u(x+ z)− u(x)

−1|z|<1〈∇u(x), z〉]c(z)dz − f(x) = 0 in TN,

and

d′f + F (x,∇u′,∇2u′)−
∫

RN

[u′(x+ z)− u′(x)

−1|z|<1〈∇u′(x), z〉]c(z)dz − f(x) = 0 in TN.

We may assume that d′f < df , and by adding a constant if necessary we may
also assume that u > u′. For any small ν > 0, by choosing λ > 0 small
enough we see that u and u′ are respectively a viscosity subsolution and a
viscosity supersolution of the following problems.

λu+ F (x,∇u,∇2u)−
∫

RN

[u(x+ z)− u(x)

−1|z|<1〈∇u(x), z〉]c(z)dz − f(x)<ν − df in TN.

λu′ + F (x,∇u′,∇2u′)−
∫

RN

[u′(x+ z)− u′(x)

−1|z|<1〈∇u′(x), z〉]c(z)dz − f(x) ≥ −ν − d′f in TN.

Then, from the comparison result

0 < λ(u− u′)(x)<d′f − df < 0,
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which is a contradiction. Thus, df is the unique number such that (68) has
a viscosity solution. We have proved the claim of (i).

(ii) We treat the case that the partial differential operator is F . (The
proof for the case of H is same, and we omit it.) Let vλ = uλ − uλ(x0), and
put |vλ|∞ = Cλ

λ
. We shall prove the claim in the following three steps.

(Step 1.) If for a subsequence λ′ → 0, limλ′→0Cλ′ = 0, then

|λ′uλ′(x)− λ′uλ′(x0)|∞ = λ′|vλ′|∞ = Cλ′ → 0,

which implies the existence of a constant

df = lim
λ′→0

λ′uλ′(x) = lim
λ′→0

λ′uλ′(x0) uniformly in TN.

(Step 2.) Now, assume that for any subsequence λ′ → 0, Cλ′ does
not converge to zero. That is, there exists a number C0 > 0 such that
lim infλ→0Cλ ≥ C0 > 0. From the comparison result for (69), |vλ|∞<2M

λ
,

and thus 0 < Cλ<2M (∀λ ∈ (0, 1)) holds. Hence, we can take a subsequence
λ′ → 0 such that limλ′→0Cλ′ = C (limλ′→0 λ

′|uλ′ − uλ′(x0)|∞ = C), where
C0<C<2M . For simplicity, we shall use λ in place of λ′. Then, for wλ = vλ

|vλ|∞
we have

λwλ + F (x,∇wλ,∇2wλ)−
∫

RN

[wλ(x+ z)− wλ(x)

−〈∇wλ(x), z〉]c(z)dz −
λ

Cλ

(f(x)− λuλ(x0)) = 0 in TN, (79)

where |wλ|∞ = 1, wλ(x0) = 0, limλ→0Cλ = C. Here, we claim that for a
constant θ ∈ (0, θ0), there exists Cθ > 0 independent on λ ∈ (0, 1) such that

|wλ(x)− wλ(y)|<Cθ|x− y|θ, (80)

which can be proved by the similar contradiction argument used in the proof
of Theorem 4.2, and which we omit here.

From (80), there exists a subsequence λ′ → 0 such that limλ′→0wλ′(x) =
∃w(x), where the limit w is also Hölder continuous, |w|∞ = 1, w(x0) = 0 and
is the viscosity solution of

F (x,∇w,∇2w)−
∫

RN

[w(x+ z)− w(x)− 〈∇w(x), z〉]c(z) = 0 in TN.
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However, the strong maximum principle (Theorem 5.1) asserts that w is al-
most everywhere constant, which is a contradiction. Therefore, lim infλ′→0Cλ′ =
C > 0 is false.
(Step 3) From Steps 1 and 2, we see that there exists a subsequence λ′ → 0
such that limλ′→0 λ

′uλ′(x) = df uniformly in TN. Therefore, for any ν > 0
there exists λ′ > 0 small enough such that

df + F (x,∇uλ′,∇2uλ′)−
∫

RN

[uλ′(x+ z)

−uλ′(x)− 1|z|<1〈∇uλ′(x), z〉]c(z)dz − f(x)<ν x ∈ TN,

(81)

df + F (x,∇uλ′,∇2uλ′)−
∫

RN

[uλ′(x+ z)

−uλ′(x)− 1|z|<1〈∇uλ′(x), z〉]c(z)dz − f(x) ≥ −ν x ∈ TN.

The uniqueness of df can be proved in a similar way to the proof for (i).
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