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EXISTENCE OF HERMITIAN-YANG-MILLS METRICS UNDER
CONIFOLD TRANSITIONS

MING-TAO CHUAN

ABSTRACT. We first study the degeneration of a sequence of Hermitian-Yang-
Mills metrics with respect to a sequence of balanced metrics on a Calabi-Yau
threefold X that degenerates to the balanced metric constructed by Fu, Li and
Yau [14] on the complement of finitely many (-1,-1)-curves in X. Then under some
assumptions we show the existence of Hermitian-Yang-Mills metrics on bundles
over a family of threefolds X with trivial canonical bundles obtained by perform-
ing conifold transitions on X.

1. INTRODUCTION

This paper is about the existence problem for Hermitian-Yang-Mills metrics on
holomorphic vector bundles with respect to balanced metrics, when conifold transi-
tions are performed on the base Calabi-Yau threefolds.

The construction of canonical geometric structures on manifolds and vector bun-
dles has always been a very important problem in differential geometry, especially
in Kéahler geometry. A class of manifolds which are the main focus in this direction
is the Kéhler Calabi-Yau manifoldsﬂ, i.e., Kéhler manifolds with trivial canonical
bundles. The Calabi conjecture which was solved by Yau [44] in 1976 states that in
every Kéhler class of a Kdhler Calabi-Yau manifold there is a unique representative
which is Ricci-flat.

After the solution of the Calabi conjecture, Kéhler Calabi-Yau manifolds have un-
dergone rapid developments, and the moduli spaces of Kahler Calabi-Yau threefolds
gradually became one of the most important area of study. In the work of Todorov
[38] and Tian [36] the smoothness of the moduli spaces of Kéhler Calabi-Yau man-
ifolds in general dimensions was proved. In the complex two dimensional case, the
moduli space of K3 surfaces is known to be a 20-dimensional complex smooth irre-
ducible analytic space, with the algebraic K3 surfaces occupying a 19-dimensional
reducible analytic subvariety with countable irreducible components [23] [39] [28].
The global properties of the moduli spaces of Kahler Calabi-Yau threefolds remain
much less understood.

However, there was the proposal by Miles Reid [32] which states that the mod-
uli spaces of all Calabi-Yau threefolds can be connected by means of taking bira-
tional transformations and smoothings on the Calabi-Yau threefolds. This idea,

Hn this paper, by a Calabi-Yau manifold we mean a complex manifold with trivial canonical bundle
which may or may not be Kéhler, and what is usually called a Calabi-Yau manifold will now be a
Kahler Calabi-Yau manifold.
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later dubbed as “Reid’s Fantasy”, was checked for a huge number of examples in
[][7]. The processes just mentioned are called geometric transitions in general,
and the main focus in this paper is the most studied example, namely the conifold
transition, which was first considered by Clemens [§] in 1982 and later caught the
attention of the physicists starting the late 1980’s. It is described as follows. Let
X be a smooth Calabi-Yau threefold containing a collection of mutually disjoint
(-1,-1)-curves C4, ..., Cy, i.e., rational curves C; = P! with normal bundles in X iso-
morphic to Opi(—1) & Opi1(—1). One can contract the C;’s to obtain a space X
with ordinary double points, and then under certain conditions given by Friedman,
X can be smoothed and one obtains a family of threefolds X; with trivial canonical
bundles.

Even when X is Kahler, the manifolds X; may be non-Ké&hler, and it was proved
in [14] that they nevertheless admit balanced metrics, which we denote by @;. In
general, a Hermitian metric w on a complex n-dimensional manifold is balanced if
d(w™ 1) = 0. Kéhler metrics are obviously balanced metrics, but, unlike the Kéhler
case, the existence of balanced metrics is preserved under birational transformations
[[]. Moreover, if the manifold satisfies the d0-lemma, then the aforementioned
existence is also preserved under small deformations [42]. What [14] shows is that
it is also preserved under conifold transitions provided X is Kéhler Calabi-Yau.

In this paper we would like to push further the above result on the preservation of
geometric structures after conifold transitions. Consider a pair (X' , &) where Xisa
Kahler Calabi-Yau threefold with a Kahler metric w, and £ is a holomorphic vector
bundle endowed with a Hermitian-Yang-Mills metric with respect to w. Denote the
contraction of exceptional rational curves mentioned above by 7 : X — X,. From
the point of view of metric geometry, such a contraction can be seen as a degeneration
of Hermitian metrics on X to a metric which is singular along the exceptional curves.
In fact, following the methods in [I4], one can construct a family of smooth balanced
metrics {@q Yas0 on X such that &2 and w? differ by dd-exact forms and, as a — 0,
w, converges to a metric wy which is singular along the exceptional curves. The
metric wy can also be viewed as a smooth metric on X ¢, the smooth part of Xj.

We have the following result which is the first main theorem.

Theorem 1.1. Let £ be an irreducible holomorphic vector bundle over a Kahler
Calabi- Yau threefold (X,w) such that ¢1(E) = 0 and & is trivial on a neighborhood
of the exceptional rational curves C;. Suppose & is endowed with a HYM metric
w.r.t. w.

Then there exists a HYM metric Hy on £|x, ,, with respect to &g, and there is a
decreasing sequence {a;}5°, converging to 0, such that there is a sequence {Hg, }52,
of Hermitian metrics on £ converging weakly in the Lb-sense, for all p, to Hy on
each compactly embedded open subset of Xo ¢m, where each H,, is HYM with respect
to Wy, -

Suppose that one can smooth the singular space X to X;, and that the bundle
& fits in a family of holomorphic bundles & over Xy, i.e., the pair (Xo, 7€) can
be smoothed to (X, &). We ask the question of whether a Hermitian-Yang-Mills
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metric with respect to the balanced metric &; exists on the bundle &. Note that
the condition that £ is trivial in a neighborhood of the exceptional rational curves
C; implies that the bundles & would be trivial in a neighborhood of the vanishing
cycles. Also note that ¢1 (&) = 0 for any ¢ # 0.

We now state the second main theorem of this paper.

Theorem 1.2. Let (X,w) be a smooth Kihler Calabi-Yau threefold and m : X —
Xo be a contraction of mutually disjoint (-1,-1)-curves. Let € be an irreducible
holomorphic vector bundle over X with ¢; (€) = 0 that is trivial in a neighborhood of
the exceptional curves of w, and admits a Hermitian- Yang-Mills metric with respect
to w. Suppose that the pair (Xo, 7€) can be smoothed to a family of pairs (X, &)
where X; is a smooth Calabi- Yau threefold and & is a holomorphic vector bundle on
X
Then fort # 0 sufficiently small, & admits a smooth Hermitian- Yang-Mills metric
with respect to the balanced metric & constructed in [14].

For irreducible holomorphic vector bundles over a Kéhler manifold, the existence
of Hermitian-Yang-Mills metrics corresponds to the slope stability of the bundles.
For proofs of this correspondence, see [9][10][40]. On a complex manifold endowed
with a balanced metric, or more generally a Gauduchon metric, i.e., a Hermitian
metric w satisfying d0(w”!) = 0, one can still define the slopes of bundles and
hence the notion of slope stability. Under this setting, Li and Yau [24] proved the
same correspondence.

Another motivation for considering stable vector bundles over non-Kéhler mani-
folds comes from physics. Kahler Calabi-Yau manifolds have always played a central
role in the study of Supersymmetric String Theory, a theory that holds the highest
promise so far concerning the unification of the fundamental forces of the physical
world. Among the many models in Supersymmetric String Theory, the Heterotic
String models [20][41] require not only a manifold with trivial canonical bundle but
a stable holomorphic vector bundle over it as well. Besides using the Kéhler Calabi-
Yau threefolds as the internal spaces, Strominger also suggested to use a model
allowing nontrivial torsions in the metric. In [35], he proposed the following system
of equations for a pair (w, H) consisting of a Hermitian metric w on a Calabi-Yau
threefold X and a Hermitian metric H on a vector bundle & — X with ¢;(€) = 0:

(1.1) FyAw?=0; Fy*=F3" =0,
(1.2) V108w = %(tr(Rw ARy) — tr(F A Fir));
(1.3) d*w = V/—=1(0 — 9) In ||| w;

where R, is the full curvature of w and Fy is the Hermitian curvature of H. The
equations (L)) is simply the Hermitian-Yang-Mills equations for H. Equation (2]
is named the Anomaly Cancellation equation derived from physics. In [25] it was
shown that equation (3] is equivalent to another equation showing that w is con-
formally balanced:

d([[Qlww?) = 0.
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It is mentioned in [I4] that this system should be viewed as a generalization of
Calabi Conjecture for the case of non-Kéahler Calabi-Yau manifolds.

The system, though written down in 1986, was first shown to have non-Kéahler
solutions only in 2004 by Li and Yau [25] using perturbation from a Ké&hler solution.
The first solutions to exist on manifolds which are never Kéhler are constructed
by Fu and Yau [16]. The class of threefolds they consider are the T2-bundles over
K3 surfaces constructed by Goldstein and Prokushkin [I9]. Some non-compact
examples have also been constructed by Fu, Tseng and Yau [I5] on T2-bundles over
the Eguchi-Hanson space. More solutions are found in a recent preprint [2] using
the perturbation method developed in [25].

The present paper can also be viewed as a step following [14] in the investigation
of the relation between the solutions to Strominger’s system on X and those on Xy
and X;.

This paper is organized as follows:

Section 2 sets up the conventions and contains more background information of
conifold transitions and Hermitian-Yang-Mills metrics over vector bundles. More-
over, the construction of balanced metrics in [I4] is described in more details neces-
sary for later discussions.

In Section 3 the uniform coordinate systems on X, and on X; are introduced,
which are needed to show a uniform control of the constants in the Sobolev inequal-
ities and elliptic regularity theorems.

In Section 4 Theorem [LT]is proved, and several boundedness results of the HYM
metric Hy in that theorem are discussed.

In Section 5 a family of approximate Hermitian metrics H; on & are constructed,
and some estimates on their mean curvatures are established.

Section 6 describes the contraction mapping setup for the HYM equation on the
bundle &. Theorem is proved here.

Section 7 deals with a proposition left to be proved from Section 6.

Acknowledgements The author would like to thank his thesis advisor Professor
S.-T. Yau for constant supports and valuable comments. The author is also grateful
to Professor C. Taubes and Professor J. Li for helpful discussions, and to Professor
J.-X. Fu for useful comments during the preparation of this work.

2. BACKGROUNDS

2.1. Conifold transitions. Let X be a Kihler Calabi-Yau threefold with a Kéhler
metric denoted by w. Let |JC; be a collection of (—1,—1)-curves in X, and let
Xo be the threefold obtained by contracting |JC;, so X is a small resolution of
Xo. Xo has ordinary double points, which are the images of the curves C; under the
contraction. There is a condition given by Friedman which relates the smoothability
of the singular space X to the classes [C;] of the exceptional curves in X:



Theorem 2.1. [12][13] If there are nonzero numbers \; such that the class

(2.1) ZM[C@'] =0

mn H2(X, Qi) then a smoothing of X exists, i.e., there is a 4-dimensional complex
manifold X and a holomorphic projection X — A to the disk A in C such that the
general fibers are smooth and the central fiber is Xg.

The above theorem is also considered in [37] from a more differential geometric
point of view, and in [6] the condition (2] is discussed in the obstructed case of
the desingularization of Kéhler Calabi-Yau 3-folds with conical singularities.

The local geometry of the total space X near an ODP of X is described in the
following. For some € > 0 and for

U={(z,t) e C*x A|||z]| <2, 22+ 22+ 22+ 23 =t}

there is a holomorphic map = : U — X respecting the projections to A and A, so
that U is biholomorphic to its image. We will denote

Qui=1{+25+25+25 =t} cChL

From the above description, a neighborhood of 0 in Qg models a neighborhood of
an ODP in Xg. For t # 0, Q; is called a deformed conifold. Throughout this paper
we will denote by r; the restriction of ||z|| to @ C C*, and use the same notation
for their pullbacks under =71,

For each ODP p; of X, we have the biholomorphism =; : U; — X as above.
Without loss of generality we may assume that the images of the Z;’s are disjoint.
For a given t € A, define V; ;(c) to be the image under Z; of {(2,t) € Ctx A r(2) <
¢, 22 + 25 4+ 22 + 27 = t}, and define Vi(c) = |, Vii(c). Define V;;(R1, Ry) =
Vm(RQ)\Vm(Rl) for any 0 < Ry < Ry and Vt(Rl,RQ) = Uz Vm'(Rl,RQ). Define
Ui(c) == 7 (Voi(c)) € X where 7 is the small resolution 7 : X — Xp, and
U(c) =,; Ui(c). Finally, define X;[c] = X;\Vi(c).

For each t # 0, it can be easily checked that r; > ]t]% on Q¢ and the subset

{r; = ]t]%} C @y is isomorphic to a copy of S3, which is usually called the vanish-
ing sphere. Each subset V;(c) is thus an open neighborhood of the vanishing spheres.

Remark In the rest of the paper we will always regard V;;(c) not only as a subset
of X, but also as a subset of @); via the map =Z; and the projection map from the
set {(2,t) € C* x Afri(2) < ¢, 22+ 23 + 22 + 23 =t} to CL

We also use the same notation r; to denote a fixed smooth extension of r; from
Vi(1) to X; so that ry < 3.
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The following description of ()¢ and @) will be useful in our discussion. Denote
¥ =50(4)/SO(2). Then there are diffeomorphisms

(22) ¢y % x (0,00) = Qoem such that ¢o(A-SO(2),10) = A \/L%‘fo ,
0

and

(2.3)

cosh(3 cosh™1(r?))
isinh(3 cosh™(r?))
0
0

¢1:Xx(1,00) = Q1\{r1 =1} such that ¢(A-SO(2),r;)=A

Here Qo,sm is the smooth part of (Jg, and the variables ro and r; are indeed the
distances of the image points to the origin.

We can see in particular from (22]) that ¢y describes Qg as a cone over X. It is
not hard to see that ¥ = S? x S3. However, the radial variable for the Ricci-flat

2
Kahler cone metric ge,,0 on Qo is not rg, but pg = rj. In fact, geo0 can be expressed
as

2 4
(24) 9co,0 = (drO3 )2 + I‘g [

where gy, is an SO(4)-invariant Sasaki-Einstein metric on ¥. The Kéahler form of
Geo0 18 given by wee o = v/ —199fo(r3) where fo(s) = %s§ In this paper we will not
use the variable pg.

In this paper, given a Hermitian metric g, the notation V, will always refer to
the Chern connection of g.

2.2. The Candelas-de la Ossa metrics. Candelas and de la Ossa [5] constructed
a l-parameter family of Ricci-flat Kéhler metrics {geoqla > 0} on the small reso-
lution Q of Q. The space Q is named the resolved conifold, and the parameter a
measures the size of the exceptional curve C in Q. Identifying Qo sm with Q\C bi-
holomorphically via the resolution map, the family {geoq|a > 0} converges smoothly,
as a goes to 0, to the cone metric g., o on each compactly embedded open subset
of Qo,sm, i.e., each open subset of Qg s, Whose closure in @ is contained in Qo sm-
The Kéhler forms of the metrics ge,, Will be denoted by weo q-

They also construct a Ricci-flat Kéhler metric g.,; on @ for each 0 # t € A.
Explicitly, the Kihler form of ge.; is given by weot = /=109 fi(r?) where

1 o Coshfl(“"T‘) .
(2.5) fi(s) =273]t[3 / (sinh(27) — 27)3dr,
0



and it satisfies

(2.6) Wi, = \/—_%Qt Ay

where €, is the holomorphic (3,0)-form on @; such that, on {z; # 0},
Q= %dzg A dzs3 A dzs g, -

In this paper, the metrics g, o with subscripts a will always denote the Candelas-

de la Ossa metrics on the resolved conifold Q, and the metrics g.,; with subscripts
t will always denote the Candelas-de la Ossa metrics on the deformed conifolds Q.

In the following we discuss the asymptotic behavior of the CO-metrics g, . Con-
sider the smooth map

P : ¥ x (1,00) = 3 x (0,00)

defined by
®(A-50(2),r1) = (A-50(2),ro(r1))
where
ro(ry) = (%(Sinh(Q cosh™(r?)) — 2 cosh_l(r%))> !
Note that
(2.7) ry = (cosh (£ (2r8)))?

where f(s) = sinh(2s) — 2s.

Define 1 = ¢go P o ¢1_17 which is a diffeomorphism from Q1\{r; =1} to Qo sm.-
Then ro(z1(z)) = ro(ri(x)) for € Q1\{r; = 1}. Define T1 = x*. Tt is shown in
[6] that the following hold for some constants D j, Dy, and Dsj as ro — oo:

(2.8) Ttwco,l = Wco,05

. 2(—3-k
(2.9) V5o (P10 — Q0)lg.,o < Drarg 7,

. 2(—3-k

(2.10) IVh o (Tigc01 = 90,0 geno < Dyrg ",
and

. 2(—3—k
(2.11) V5 (05T = To)lgey < Dagerg "

where J; is the complex structure on Q.
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Let ¢y : Q1 — Q¢ be a map such that ¢} (z;) = t%zi. Here 3 can be either of the
two square roots of t. We then have
1 1
Yire = [t]2r1, Pirg = [t|21g
Y = Q1 1y Qo = 0o,

(2.12) ) R ) .
wt Weo,t = ‘t‘3wco,17 1/& Weo,0 = ’t’3wco,07
2 2
Vi geot = |t|3 geo,1, and V5 geo0 = [t]3 geo,0-
The equality 9fweot = |t|%wco,1 follows from the explicit formulas of the Kahler

potentials (2.5) and the fact that the map v, is biholomorphic. With this un-

derstood, ¥} gecot = |t|% geo then follows easily. The rest are trivial. Note that
vw;gco,O = V = Vgco,O and Vwrgco,t = v = Vgco,l fOT t ;é 0

2
|t‘§gco,1

Let 2; = tpyoxi0th; !, which is understood as a diffeomorphism from Q;\ {r; = |¢| %}

2
‘t|§gco,0

to Qo,sm- Note that z; is independent of the choice of t%, and so {z;}; form a smooth

family. Define T; = z;'.

Lemma 2.2. We have

*
Ty Weo,0 = Weo,ts

and for the same constants D1, Doy and Dsy, as in (2.9), (210) and (211), we
have, as rg — 00,

2(—3-k
V5 (01— Q0)lguy < Drltleg ™7,
2
2(—3-k)
|vlg€co’0(T;€kgco,t - gco,O)|gco,0 < D27k|t|r8 , and

* 2(-3-k
VK (05T = Jo)guns < Dagltled Y.

PROOF. The first equation follows easily. From the rescaling properties (2.12]) we
have, for w € X,

Voo o (Y52 = Q0)lge00(w) = [V, o (07 ) LT — Q0)lgeq (w)
=V o CW7 ) TI0 = Q0)lge0 (W) = [V, o ETT0 — 07 Q0) 7 o0 0 (87 (w))

=|V5e0 o (ETT = 8Q0)] 5 (U7 (w)) = [V, o (TI% = Qo)l 5 (47 (w)
_1 % _
=[tl[t 73O (Y1 = Q0) gy o (477 (w)

éltl|75|_%(3+’“)D1,kr0(¢{1(w))%(_?"’“) - |t|—§kD17k|t|%(S—i—k)ro(w)%(—i’,—k)
=Dy i tro(w) 33,
The other two estimates can be carried out in a similar manner. J

Using the explicit formula (2.7]), the following lemma is elementary, and the proof
is omitted:
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Lemma 2.3. Asx € Q\{r; = 1} goes to infinity, ri(x)ro(zi(z))~" goes to 1. In
particular, there is a constant A > 0 such that
1
1< ri(z)ro(z ()™t < A
for any x € Q1 such that 1 < ri(z). As a result, by the rescaling relation (2.12),
for the same constant A we have

1

1 <ry(2)r(z(2) L < A

for any z € Q¢ such that |t|% L r(z).
Lemma [Z.2] and Lemma 23] imply

Corollary 2.4. There exists a constant Do > 0 such that for any z € @Qy with
1
[t]2 < re(2),

IVE  (TEde = Jo) s gene (26(2)) < Dolt|re(2) 535
for k=0,1.

2.3. The balanced metrics constructed by Fu-Li-Yau. Using Mayer-Vietoris
sequence, the change in the second Betti numbers before and after a conifold tran-
sition is given in the following proposition:

Proposition 2.5. [32] Let k be the maximal number of homologically independent
exceptional rational curves in X. Then the second Betti numbers of X and X; satisfy
the equations

bo(Xy) = bo(X) — k.

From this proposition one sees that the second Betti number drops after each
transition, and when it becomes 0, the resulting threefold is never Kahler. Because
of this, when considering Reid’s conjecture, a class of threefolds strictly containing
the Kéahler Calabi-Yau ones have to be taken into account. A particular question
of interest would be finding out suitable geometric structures that are possessed by
every member in this class of threefolds. One achievement in this direction is the
work of [14] in which the following theorem is proved:

Theorem 2.6. Let X be a Kahler Calabi-Yau threefold. Then after a conifold
transition, for sufficiently small t, X; admits a balanced metric.

In the following we review the results in [I4] in more detail.

First, a balanced metric wg on Xo s, is constructed by replacing the original
metric w near the ODPs with the CO-cone metric we, 0. One of the main feature
of this construction is that w? and (IJS differ by a d9-exact form. It is not hard to
see that their construction can be used the construct a family of balanced metrics
{@coala > 0} on X converging smoothly, as a goes to 0, to the metric @y on com-
pactly embedded open subsets of X \UCi = Xo,sm, such that w? and all @2 _ differ

v co,a
by 00-exact forms.
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The main achievement in [14] is the construction of balanced metrics @w; on X;. Fix
a smooth family of diffeomorphisms z; : X;[3] — Xo[3] that such zy = id. Let o(s)
be a decreasing cut-off function such that o(s) = 1 when s < 2 and o(s) = 0 when
s> %. Define a cut off function gg on X such that ool x,1) = 0, Q0|VO(%) =1, and
Q0|VO(%’1) = o(rg). Also define a cut off function g; on X; such that Qt|Xt[%} = T} 00

and Qt’vt(%) = 1. Denote )y = W3 = i00(fy00fy), and let

;= ;' (Q0 — 1000 - fo(r3)00 fo(xD))) + 108 e - fo(x})0Dfi(x?)).
We can decompose the 4-form ®; = &P + &> + &, It is proved in [14] that for
t # 0 sufficiently small the (2,2) part ®>% is positive and over Vi(3) it coincides
with w2, ;. Let w; be the positive (1,1)-form on X; such that wf = @22, Neither w;
nor w? is closed in general. The balanced metric &; constructed in [I4] satisfies the
condition @? = <I>f 2 1 0, + 0, where 0, is a (2,2)-form satisfying the condition that,
for any k > —%,

: K 2\
(2.13) fin(11 sup 64f3) = 0

where g; is the Hermitian metric associated to w;. The proof of this limit makes use
of the expression

(2.14) 0; = 9" 0",

for a unique (2,3)-form ~, satisfying the equation Ey(y;) = —0®;” and 4, L ker E,
where

Ey = 000*0* + 0*00*0 + 0*0
and the s-operators are with respect to the metric g;. It was proved in [14] that
0yt = 0. Moreover, the (2, 3)-form 8@% 3 s supported on X;[1], so there is a constant
C > 0 independent of t such that

(2.15) 09, < CJt].

We will denote |- |¢ the norm w.r.t. g, |- |co+ the norm w.r.t. geoy, and | - | the
norm w.r.t. g;. We will denote dV; the volume w.r.t. g;, dV,,; the volume w.r.t.
Jeo,t, and dV the volume w.r.t. g;.

Because of ([2.I3]) we have the following lemma concerning a uniformity property
between the metrics g; and geo.-

Lemma 2.7. There exists a constant C > 1 such that for any small ¢ £ 0, over the
region Vi(1) we have
Clg < Jeot < Cir.

Consequently, we have constants C > 1 and Ca > 1 such that for any t # 0 small
enough,

CrldVi < dVeoy < CrdV;
and

Ci ' 10 < [+ leon < Col - |i.
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Now we introduce our conventions on (negative) Laplacians. Let w be a Hermitian
metric on X and n = dim¢ X. For any (1,1)-form ¢ on X, define A,p := %.
For a smooth function f on X, define A, f = v/—1A,00f. In local coordinates, if
w = T_lgijdz,- Ndz; and ¢ = @;5dz; A\ dzj, then V=1A,p = 2gi5cpi3. We denote
At = A@t and Aa = Awa.

2.4. Hermitian-Yang-Mills equation. Let H be a Hermitian metric on a holo-
morphic vector bundle £ over a complex manifold X endowed with a balanced metric
g. Let V4 = 94 + 04 be an H-unitary connection on €. We denote by (-, )4 the
pointwise pairing induced by H and g between the £-valued forms or the End(&)-
valued forms. The following proposition is will be used in later calculations.

Proposition 2.8. [27] For hi, hy € T'(End(€)), we have

/ (Oah, Daha) g AV, = V=1 / (Ay@adahy, ho) b1y AV,
X X

and

/ (Bah, Daho)ig AV, = —/=T / (Ay@adahy, ha) sy AV,
X X

In a local holomorphic frame of £, the curvature of a connection V 4 is given by
Fy:=dA—ANA,
which is an End(€)-valued 2-form. Given a Hermitian metric H over a bundle &,
the curvature for the Chern connection can then be locally computed to be
Fy =0(00HH™).

Taking the trace of the curvature 2-form with respect to a Hermitian metric w, we
obtain the mean curvature v/—1A,Fy of H. It is not hard to see that V—1A, Fy
is H-symmetric.

Definition 2.9. A Hermitian metric H on £ satisfies the Hermitian- Yang-Mills
equation with respect to w if

V1A, Fg =\

for some constant A. Here I denotes the identity endomorphism of €.

Next we introduce slope stability. For a given Hermitian metric H on &, the first
Chern form of £ with respect to H is defined to be
v—1

Cl(gvH): -

trFy.

It is independent of H up to a 00-exact form, and is a representative of the topo-
logical first Chern class ¢;(E) € H*(X,C).
The w-degree of £ with respect to a Hermitian metric w is defined to be

deg,, (&) ::/Xcl(f,',];[)/\w”_1
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where n = dimc X. This is not well-defined for a general w. It is, however, well-
defined for a Gauduchon metric w since 99(w" 1) = 0 and ¢1 (&, H) is independent of
H up to d0-exact forms. In particular, the degree with respect to a balanced metric
is well-defined. Note that the w-degree is a topological invariant, i.e., depends only
on ¢1(&), if w is balanced. We restrict ourselves from now on to the case when w is
Gauduchon.

For an arbitrary coherent sheaves F of Ox-modules of rank s > 0, we define
deg,, (F) := deg,(det F) where det F := (A*F)** is the determinant line bundle of

F. We define the w-slope of F to be p,(F) := deg%(]:).

Definition 2.10. A holomorphic vector bundle & is said to be w-(semi)stable if
o (F) < (L)pw(E) for every coherent subsheaf F — € with 0 < rank F < rank&.

A holomorphic vector bundle £ is said to be w-polystable if € is a direct sum of
w-stable bundles all of which have the same w-slope.

The following theorem generalizing [40] was proved by Li and Yau [24]:

Theorem 2.11. On a complex manifold X endowed with a Gauduchon metric w,
a holomorphic vector bundle £ is w-polystable if and only if it admits a Hermitian-
Yang-Mills metric with respect to w.

2.5. Controls of constants. Let £ be a holomorphic vector bundle over a compact
Hermitian manifold (X,g), H a Hermitian metric on £, and V4 the connection
on £ ® (Q')®* induced from the Chern connections of H and g. Let r be a smooth
positive function on X.

We can define the following weighted norms on the usual Sobolev spaces Li(é’ )
over X: for each o € L7 (€),

1
p

k
_2 2,1 _
ol o= (3 [ 8899 ol ot a,

We denote by L 5(€) the same space as LY (€) but endowed with the above norm.
Here dV is the volume form of g.
There are also the weighted C*-norms:
k
_2p42:
lollos =3 sup e840V, ol
j=0
We denote by C’Ig (€) the same space as C*(&) but endowed with the above norm.

Now let {¢, : B, — U, C X }.ex be a system of complex coordinate charts where
each ¢, maps the Euclidean ball of radius p in C? centered at 0 homeomorphically
to U, an open neighborhood of z, such that ¢,(0) = z. Over each U, define g to
be r(z)_%g. Let g. denote the standard Euclidean metric on B, C C?, and V. the
Euclidean derivatives.



13

For m >0, let R,, > 0 be constants such that for any z € X and y € U,,

1
(2.16) —1(2) < r(y) < Ror(2)
Ry
and
(2.17) Ve'r|g. (y) < Rinr(y).
For k > 0, let Cx > 0 be constants such that for any z € X,
1 .
(218) Fge < ¢zg < C(]ge
0
over B, where g, is the Euclidean metric, and
(2.19) ¢2allcr (B, ,g.) < Chk-

We may deduce the following version of Sobolev Embedding Theorem.

Theorem 2.12. For each I, p,q,r there exists a constant C > 0 depending only on
the constants R,, and C), above such that

lollz;, < Cliollze

—l—‘%l and

= =
3 =

whenever = < = <

D=

lolle, < Cllollzz

whenever = < qT_l.

S L

The proof of the above result is standard. Simply put, we integrate over z € X
the Sobolev inequalities on each chart U, and use the bounds (2.16])-(2.19]) to help
control the constants of the global inequalities.

In fact, the method of this proof is useful in controlling not only the Sobolev con-
stants, but the constants in elliptic estimates as well. Consider a linear differential
operator P : C*°(€) — C*(&) of order m on the space of smooth sections of £.
Assume also that P is strongly elliptic, i.e., its principal symbol o(P) satisfies the
condition that there is a constant A > 0 such that (o¢(P)(v),v) > A|jv||* for any
v € R” (r = rank€) and ¢ € RS with norm ||¢[| = 1.

Proposition 2.13. Assume there are constants A > 0, k > 0, such that for any
z € X there is a trivialization of €|y, under which the operator P above takes the
form

olal

P=S Agru
2 DwlT 0w

lor|<m
in the coordinates (w1, ws,w3) € B, C C3, and the matriz-valued coefficient func-
tions A satisfy

‘Vl;Aa’ge < Ag
for all a and k. Here a = (ai,...,06), a; > 0, are the multi-indices and |a| =
al + ...+ ag.
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Assume also that there is a Hermitian metric H on € and constants Cj, > 0 for
k > 0, such that when H is viewed as a matriz-valued function on U, under the
above frames, we have C,™'1 < H < CyI and \VEH|, < Cj on U, for any k and
ze X.
Then there exists a constant C' > 0 depending only on p, I, m, 8, A\, Ay, Ry, Ck,
and Cj. such that for any o € C*(E), we have
lole,, , <€ (1P@lp, +liolzz ) -

I+m,8 —

3. UNIFORM COORDINATE SYSTEMS

In this section we will construct coordinate systems with special properties over
Xo,sm and over each X; for small ¢ # 0. Later we will mainly be using the wieghted
Sobolev spaces and the discussions in Section 2 show that these coordinate systems
help providing uniform controls of constants appearing in the weighted versions of
Sobolev inequalities and elliptic estimates. The use of weighted Sobolev spaces is
now standard in the gluing constructions or desingularization of spaces with conical
singularities. See [26] and [31] for more details.

The main goal of this section is to prove the following theorem.

Theorem 3.1. There is a constant p > 0 such that, for any t (t can be zero), at
each point z € X; (or z € Xo sm whent =0), there is an open neighborhood U, C X,
(or U, C Xo,sm whent =0) of z and a diffeomorphic map ¢ . : B, — U, from the
Euclidean ball of radius p in C* centered at 0 to U, mapping 0 to z so that one has
the following properties:

(i) There are constants Ry, > 0, m > 0, such that for any t, z € X; (or
z € Xosm whent=0) andy € U,

(3.1) —r(2) <ri(y) < Rory(2)

and

(3.2) IVe'rilg. (y) < Rmre(y).

(ii) Over each U, define g; to be rt(z)_%}. Then for each k > 0, there is a
constant Cy, independent of t and z € Xy (or z € Xo sm when t = 0) such
that

1 .-
(33) Foge S ¢t,z.gt § C(]ge

over B,, and
(3.4) 167 .9t (5. g.) < Ch-
We first consider the following version of this theorem:

Theorem 3.2. Theorem [3.1] holds with B, understood as a Euclidean ball of radius
p in RS centered at 0 and g. as the standard Euclidean metric on B, C RS.
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The proof of Theorem [3.2] begins with a version where X; are replaced by @Q; and
g+ by Yeo,t-

Proposition 3.3. There is a constant p > 0 such that, for any t (t can be zero), at
each point z € Q¢ (2 € Qosm when t = 0), there is an open neighborhood U, C Q;
(or U, C Qo sm when t =0) of z and a diffeomorphic map ¢; . : B, — U, from the
Euclidean ball of radius p in R® centered at 0 to U, mapping 0 to z so that one has
the following properties:

(i) There are constants Ry, > 0, m > 0, such that for any t, z € Q; (or

2 € Qo,sm whent=0) and y € U,
1

(3.5) 7)< 1ily) < Ruri(2)

and
(3.6) IVe'rilg. () < Rimre(y).

(ii) Over each U, define Geot to be rt(z)_%gco,t. Then for each k > 1, there is
a constant Cy, independent of t and z € Q¢ (or z € Qo sm when t =0) such
that

1 .
(37) Foge < ¢t,zgco,t < COge

over B, and
(38) H(b;,k,zgco7tHCk(Bz7ge) S Ck

PRrROOF. While constructing the coordinate charts, we prove (3.0)), (8.7), and (3.8)
first, leaving (3.6) to be discussed at the end.

We begin with the ¢ = 0 case. Choose p < 1 to be significantly smaller then the
injectivity radius of the metric gs, from (2.4]). Then at each point p € ¥ one has the
coordinates ®,, : Bp — ¥ from the Euclidean ball of radius p in R® centered at 0
to ¥ mapping 0 to p and satisfying the properties that there are constants Cj > 0,
k > 0, independent of p such that

1 . N ~
(39) =Ye < CI)ng < Coge
Co

over Bp, and
(3.10) @595l cx (5, 5.) < Ck-

Here g is the standard Euclidean metric on Bp. More explicitly, we can simply
choose a coordinate chart around one point in X and then define the coordinates
around the other points of ¥ by using the transitive action of SO(4) on X. Since
the metric gs is SO(4)-invariant, the above constants are easily seen to exist.

For © € Qo sm with ¢ (2) = (p,ro(x)) € X x (0,00), define

Jz : By x (=p, p) = = x (0,00)
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which maps (y,s) € B, x (—p, p) to jz(y,5) = (,(y), ro(:n)e%s). Denote the restric-
tion of j, to B, C B, x (—p, p) by the same notation. Then define ¢o . : ¢ © jz
B, — Qo,sm- Condition (3.5) is manifest.

We have

2 4 4
(3.11)  @fabeo0 = (d(ro(z)3e”))? +ro(2)3e* Phgs = ro(x)3e*((ds)” + Ppgx).

By choosing p small so that 3 < e

5 < 2 for s € (—p,p). Using the identity
ge = (ds)? + Ge, one sees that the bound (B.7) for the t = 0 case follows from (3.9).
Moreover, using the fact that the derivatives of €2* and (ds)? + ®, 9. are bounded

in the Euclidean norm on B,, the bound (B.8]) for this case follows.

2s

Next we deal with the ¢ = 1 case. We will use the asymptotically conical be-
havior of the deformed conifold metrics discussed in Section 2. Recall the explicit
diffeomorphism z; : Q1\{r1 = 1} = Qo sm with inverse Ty, and also the estimate

¥ —2(3+k
(3.12) Vh o (Tige01 = 9c0.0)geon < Da2Tg S+

for rg € (R,00) where R > 0 is a large number. Let Vi(R) be the compact subset
of @1 where ry < R. We will specify the choice of R later. It is easy to see that
the desired neighborhood U,, exists for w inside Vi(R). In fact, for w € Vi(R) we
can even choose B,, to be a Euclidean ball of fixed small radius in C3 with the real
coordinates taken from the real and imaginary parts of the complex coordinates.
Therefore we focus on Q1\V1(R).

For w € Q1\V1(R), define
¢1,w = T1 o (bO,xl(w) : Bw — Ql\‘/l (R)

for each w € @1\V1(R). Here we identify B,, with B, (). What we do is defining

the chart around w € Q1\Vi1(R) by pushing forward the chart around z;(w) via Y;.
Property (3.0) is clear in view of Lemma 23]

From the k& = 0 case of (3.12) and (B.7) for the t = 0 case, (8.7 holds for t = 1

for a constant independent of w € Q1\Vi(R) when R is large enough.
We have

(3.13)
* _4 - * -
¢1,w <I‘1 (w) 3gco,l) = rl(w) 3¢0,m1(w) (Tlgco,l - gco,O) + <r1(w) 3¢07m1(w)gco,0)

The second term in the RHS of (3I3)) is dealt with in a way similar to the ¢ =0
case as follows. By ([B.II]) we can write

4 4 4
£1(10) 4 65 0, (gm0 =11(10) (1 ()32 ((ds)? + D)
Lemma [2.3] implies that for R large enough we have

1 (w) " 5ro(2 (w)) 3] < 4,
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where A is independent of w € @Q1\Vi(R), and from this we obtain, as in the t = 0
case,

4,
(3.14) I1(0)=4 60, oy eopll i g < Co
Next we deal with the first term in the RHS of (313]). Note that by ([3.I2]) and

the bound (37) for t = 0, we have, for any w € Q1\Vi(R) when R is large enough,
(3.15)

H (W) 7590y ) <VZCO,0(TTQCO,1 - gco,o)) ‘

< D} sup (ri(w ~5r
OB ge) = D2k y@l(Uw)( 1(w) " 310(y)
Here U, is the image of By, in ;. Note that from (3.5]) (for the t = 1 case) and
Lemma 23] one can deduce that

Wl

)

r1(w) " 5ro(y)

for w € Q1\Vi(R) and for any y € x1(U,) if R is large enough.

i

<1

Lemma 3.4. For each k > 0 there is a constant Cyj > 0 independent of w €

Q1\Vi(R) such that

k
H ¢87$1(w) (TTgco,l - gco,O) H C*(Bu g0 < Cl,k Z |’¢87I1(w) (V;CO’O(TTQCOJ - gco,O)) ”C’O(Bu“ge)'
wHJe ‘7:0

PROOF. Recall the expression (B.I1]) for the pullback of geo o to B,. Using (3.9)

and (BI0), an explicit calculation shows that the Christoffel symbols of the cone
metric ge,0 and their derivatives are bounded in B,, w.r.t. the Euclidean norm by

constants independent of w € @Q1\Vi(R). The lemma now follows easily. =

From this lemma we have for £ > 1

4 *
(3.16) Ie1(0) 7565, 11y (Ti8e01 — Geo0) e (B ge) < Clok

The required bound (B.8]) for the ¢ = 1 case then follow from (B.I3]), (B.I4]) and
B.16).

We proceed to consider the case for general t # 0. For each point z = ¢ (w) in Qy,
denote U, = ¢(Uy), B, = By, and define ¢; , = ¢y 0 ¢1 4. Then {(U;, ¢1.)|z € Q+}
is a coordinate system on (); and one can check that

(3.17) < ¢} . Geot < Coge

goge >~

over B,, and

(3.18) 19, 29cotllcn(B.,90) < Cr-

for the same constants C} appearing in the ¢t = 1 case.
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25

Finally, we prove ([B3.6). In the ¢t = 0 case, for y € U, we have ryg = ro(x)es®,
s € (—p, p), for values of ro, and (B.6]) follows immediately.

For the ¢t = 1 case, recall the expression (2.7]) of ry as a function of ry. If a point
y € Uy C Q1 has coordinates (p,s) € By, then ri(y) =ri(s) =r; <r0(a;1(w))e%8>.
From straight forward computation we can see that there exist constants R}, m > 1,
independent of w € Qy such that |21 (s)| < Rl,ri(s). This implies (38) for the
t = 1 case. The general case follows easily from a rescaling argument.

The proof of Proposition B.3] is now complete. i

It’s not hard to deduce the following:
Corollary 3.5. For any fized 5 € R\{0}, there are constants R}, >0, m > 1, such

m B y B=3m
that [Vl ) lg... < Rpry on Q¢ for any t.

The above proposition and the uniform geometry of | J, X;[1] together imply
Proposition 3.6. Theorem is true if gy is replaced by g;.

What we have now are charts B, endowed with some Euclidean coordinates
(y1, ---,Y6). Inthe following we introduce holomorphic coordinates (wi, wy, ws) on B,
(with possibly a smaller common radius) so each B, can be regarded as a copy of the

ball B in Section 2. From the construction above for z € X;\V;(R|¢| 3 3) we can sim-
ply take w; = y; +/—1y;43 for i = 1,2,3. For z € V}(R]t]%, %), by our construction
it is actually enough to consider z € @1 where ri(z) > R. Moreover, by the homo-

2_ 2
geneity property of Q)1 it is enough to consider z = (v/—14/ %, 0,0,/ r12+1) € Q.

The coordinates of each point (z1,...,24) € Q1 near z satisfy

Z = M1Zy M3
where
g (AtVla —zmtv-lu
z3+vV—lz 21— v-lz )’
ri(s)2—1 r1(s)241
Zo=+v—1 \/; + \/; 0
0 \/r1<8>2—1 N \/n(s>2+1 ’
2 2
M. — cos(61 + %)eﬁ(w+¢1) — sin(6; + %)e—\/jl(1ﬁ—¢1)
P \sin(@y + T)eV 7T cos(fy + T)em VT IWH0D)
and

—sin(6 + %)e‘m@ cos(f2 + %)e\ﬁ‘i’2
for (61,02, ¢1, ¢2,1,5) € B,, viewed as the ball of radius 0 < p < 1 in R® centered
at 0. Here ri(s) =r; (ro(azl(z))e%5> as before, and (61,02, ¢1, ¢2,v) form a local

coordinate system on Y. Explicitly, we have (y1,...,y6) = (01,02, 1, P2, 1, s).

M, = ( cos(f2 + Tle™ 1% sin(fy + %)em¢2>
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Near the point z = (z1,...,24) = (\/—_1\/‘“%2—‘1,0,0,\/‘"?%1) € Q1 we can let
(21, 22, 23) be local holomorphic coordinates. Using the above explicit expressions,
we can show that, for some p > 0 small enough independent of z, on the ball
B, the rescaled holomorphic coordinates (wy,ws,ws) = r1(2)71 (21, 20, 23) satisfy
the following property that there exist constants Ay > 0 and Ag; > 0 for & > 1
and [ > 0 independent of z such that as functions in coordinates (z1,...,z¢) on

8kyj

B, where w; = x; +v/—1lwiy3, i = 1,2,3, the partial derivatives 5—5—
11

o and

) ( ok, > .
satisf
8%1...8% 8yj1...8yjk y

ok oz
<A - <A
=k and ‘ax“(‘)x,k <8yj1...8yjl > ‘ = k!

akyj

for Kk > 1 and [ > 0. Moreover, there is a constant Ag > 0 independent of z such
that

< oW1, -, Y6)

1
— <A
Ao — 8(3;1,...,966) =0

on B,.

These properties are not affected if we make a shift in the coordinates (z1, ..., z¢),
and we do so to have B, centered at the origin of RS = C3. We can easily see from
the above properties that for some possibly smaller choice of p > 0, the version
of Theorem [B] with g replaced by g; holds on each B, endowed with the coordi-
nates (wi,wsg,ws) and with V. now understood as the Euclidean derivative w.r.t.
(w1, we,ws). This is what we’ll always have in mind from now on when we work in
the charts B, and in all our later calculations on B, the coordinates (wy,ws,ws)
will always be understood as the choice of holomorphic coordinates introduced here
unless stated otherwise.

Remark For simplicity, in the following we will identify B, with its image U, under
¢t.. In particular, B, can also be regarded as a subset of X; if z € X;, and the
pullback sign ¢f ., will be omitted without causing confusion.

We proceed to prove the original version of Theorem 3.1l Recall that the Her-
mitian form @; of the balanced metric §; on X; satisfies (IJ? = wf + 0; + 0; where
0; = 00*0*y; for some (2,3)-form 7; satisfying the equations Ej(y;) = —8<I>t1 3 and
0v; = 0, where

Ey = 000 0" + 0*00*0 + 0*0

and the x-operators are with respect to the metric g;. Moreover, 8<I>t1 3 s supported
on X[1] and there is a constant C' > 0 such that

(3.19) 00, < CJt].
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For an arbitrary Hermitian metric g with Hermitian form w, in a complex coor-
dinate system (wq,ws,ws) we have

-1
T

1<i,5<3

9ij dw; N d’LZ)j .

Write

1 —_— —_—
w? = -3 Z Gidwy Adwy A ... Adw; A ... Adw; A ... Adws A dis,

1<i,j<3

then each g;; is a polynomial in the G;;’s and det(Gﬁ)_%. With this elementary
fact in mind Theorem [B.1] follows from its version for g; and

Proposition 3.7. For given k > 0, there is a constant C' > 0 which may depend
on k such that
_8 1
[re(2) 730kl onpr gy < ClE[3

for any z € Xy when t # 0 sufficiently small. Here B., C B, is the ball centered at
0 with radius .

Proor. It is enough to prove for z € Vt(%) Let Ay = 99* + 0*9 be the 0-
Laplacian w.r.t. g;. Over the region V;(1) where g; is just the CO-metric geo+, we
have Az6; = 0 since

and
(3.20) 80, = D00 0%y, = —Ey(y1) = 0> = 0.

The second equality of the second line follows because 0y, = 0.
The operator

4
rf Ay T(X, 0%%) — T(Xy, 0*?)
(

is elliptic. In general, given a (p, ¢)-form ¢ = > qpal___quwal A ... Ndwpg,, Kodaira’s

Bochner formula says

(Aéw)m--ﬂ_q - Zgﬁavavﬁ_wal--ﬂ_q
a7/6
P q B
_p _ _
+ Z Z Z Raaiﬁk wal~~~ai—1aai+1~~ﬂk715ﬁk+1~ﬂq
i=1 k=1 a,8
q

=S R Y B s

k=1 B
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Applying this to ¢ = 0, = >0, 1,5,5,dWa; N dWay N dibg, A divg, and using ([3.20),
we have

(3.21)

é —
rf Y 9" VaV50a,05,5
a,B

5 B _B _B __
- Z rt <Ra B2 aazﬁlﬁ + R B2 90!10!515 + R B eaazﬁﬁz + Ra B 90!10!552>

+Zrt <RB1 Oas0238: +R62 9a1a261 ) 0.
B

The first term above can be written as

Z T gﬁav Vﬁeala25132

(3.22) ’/3
L 5a 00

9 G 9w, 04,005, T Temaining terms,

where the remaining terms involve derivatives of 6, ,,3 3, of order 1 or less, with
coefficients bounded as in Proposition 2.13] for constants Aj independent of z and
4

t # 0. Note that the products of r} and the curvature terms in ([3.2I)) are bounded

4
similarly. Therefore, 6; is the zero of the elliptic operator r} As whose coefficients
are bounded as in Proposition 213l for constants A independent of z and ¢ # 0. We
use the Hermitian metric on Q%2 induced by g¢.. Then there are constants Cpr >0
such that

10ellz , ,(B..g) < Cokllbtll2(s. go)

for z € Vy(3) (so B, C Vi(3) for p small enough, which we assume is the case). Each
Cp i is independent of z and ¢ since we use the Euclidean metric in each chart. By
the usual Sobolev Theorem over the Euclidean ball (B, g.), for p large enough one
can get

10ell (57,90 <CpillOillr2(s. ,60)
1

2 1
—op ([ )’ < cpvon () sup i,

z

for some constants C’;L i > 0 independent of z and ¢. Therefore,

(3.23) Ie0(2) "3 0ullen (. o) < Cl i VOle(B2)? sup [ry(2) 56y,

z

From (213)) one sees easily that

2
0[5, < It3
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for ¢ # 0 sufficiently small, and by Proposition [3.3] this implies
(3.24) It (2)"36,2, < CJt]3
for t # 0 sufficiently small. Now ([B.23]) and (3:24]) complete the proof. B

In later section we will need the following result on the sup norm of 6;:
Proposition 3.8. There is a constant C' > 0 independent of t such that
1]y, < Cry .
Consequently, there is a constant C' > 0 such that
27t = Y < Or

PROOF. Again, it is enough to consider over B, for z € Vt(%) A similar discussion

as in Proposition [3.7 shows that for each z € Vt(%) we have
1

2 B 3
suplef Oy, <C100l oy < Cl0Misio.an = ' ( [ w260 av,)

1 1

i % 2 ..—4 2 " 2 _g ’

=C rf Oy, "dVy | < C |0¢]g,x, dVe |
B V()

It is proved in Lemma 17 of [14] that

_8
o Pin v [ o+ oo gat
V() Xi(3]

(3.25)

for some constant C' > 0 independent of ¢. In view of (8.19]), to prove the proposition
it is enough to show

/rwWngW
Xt

for some constant C' > 0 independent of ¢. Suppose that there is a sequence {t;}
converging to 0 such that

|ti|_2/ v, [2dVi, = a2 — 0o when i — o0.
X,
where a; > 0. Define 44, = |75i|_104¢_1%¢ then
[ BuPavi =1 and B, (o) = ~fel o 00}
2

Thus there exists a smooth (2,3)-form 4 on X s, such that Ey(J9) = 0 and 3, — Yo
pointwise. Then one can prove that

/ [Fo[?dVp = 1 but 4o = 0.
XO,sm

as in [I4] in exactly the same way, only noticing that in several places we use the
fact that \ti]_2a;2]8<1>ii’3]2 — 0 as ¢ — oo. This completes the proof. &
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4. HYM METRICS ON THE VECTOR BUNDLE OVER X

Let £ be an irreducible holomorphic vector bundle over the Kahler Calabi-Yau
threefold (X ,w) as before. Our assumption on & is that it is trivial over a neigh-
borhood of the exceptional curves C;’s. By a rescaling of the metric &g, we may
assume that & is trivial over U(1) C X. As mentioned in Section 2, over X there
is a 1-parameter family of balanced metrics w,, 0 < a < 1, constructed as in [14].
Since for each a # 0 the (2,2)-forms &2 and w? differ by smooth d9-exact forms, the
bundle £ is stable with respect to all @, if it is so with respect to w. Assume that
this is the case. Then by the result of [24], there exists a HYM metric H, on £ with
respect to w,.

In this section, H will be a metric such that H = I with respect to some a
constant frame over U(1) where £ is trivial. By a constant frame we mean the
following: under an isomorphism & ]U(l) = 06(1), a holomorphic section of &£ over
U(1) can be viewed as a holomorphic vector-valued function on U(1). Then a
constant frame {s1,...,s,} is a set of such functions which are (pointwise) linearly
independent and each member s; is a constant (vector-valued) function. A constant
frame is in particular a holomorphic frame.

The metric H will serve as the reference metric. The constants appearing in
this section may depend on H. We will also often use implicitly the identification
X\ U CZ = XO,sm-

4.1. Proof of the first main theorem. The goal of this subsection is to prove
the following theorem on the existence of a HYM metric with respect to wy over
E|Xo.sm- The techniques we use are largely based on [9] [10] [TT] [34] [40].

Theorem 4.1. There is a smooth Hermitian metric Hy on E|x, ,,, which is HYM
with respect to &y such that there is a decreasing sequence {a;}5°, converging to 0 for
which a sequence {Hy,} of HYM metrics (w.r.t. @,,, respectively) converge weakly
to Hy in the Lg—sense for all p on each compactly embedded open subset of Xo sm.

PrROOF. We begin with a boundedness result on the determinants of h, := H, a]fl ey

Lemma 4.2. After a rescaling H, by positive constants we can assume that det hy
are bounded from above and below by positive constants independent of 0 < a < 1.

PROOF. Let ¢, be the unique smooth function on X satisfying

" v—1
Agpg = — . trAcDaF]f[

and f % PadVy = 0 where dV, is the volume form of g,.

Claim The sup norm of ¢, is bounded by a constant independent of 0 < a < 1.

PROOF. First note that since Ay, Fy; = 0 on U(1), ¢, is harmonic over U(1) and
so we have by the maximum principle supy ) [¢a| < sup Xo[2] |pal-
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Since w, is a balanced metric the Laplacian A, coincides (up to a constant mul-
tiple) with the negative of the Laplace-Beltrami operator its associated Riemann-
ian metric (see for example [I7]). We thus have the Greens formula [3]: for each
T € Xo[%], 0<a<xl, % <0< %, and smooth function f on X,

(4.1) f@»=4xwf@xmwf@w&mn+/’ Gs (@ y) A f (y) dVa(y)

y€Xo[d]

where G4 5(z,y) < 0 is the Green’s function for A, over the region X[d], and I'y 5
is the boundary normal derivative of G, s(x,y) with respect to y. Moreover, dS, is
the volume form on 0X[d] with respect to the metric induced from §,.

We apply the above formula to f = ¢,. Since the family of metrics {@,]|0 < a <
1} are uniform over Xo[3] there is a constant K such that for any 0 < a < 1,
1 <6< 3 yedXo[d) and x € Xo[2],

‘Pa’(;(x, y)’ < KO’

For the same reason there is a constant K; > 0 such that
[ Gusw v < K
y€Xo[d]

forannyXo[%],%Ség%,and0<a<<1.

Because Ay, Fi; = 0 over U(1), |+tr Ag, Fj| is bounded by a constant Ky > 0
independent of a. Therefore we have

~

1
|Gas5(z,y)Aaal < —Ga,a(x,y)|;trAwaFg| < —Ky - Gap(z,y).
We can conclude from the above bounds that

9a(2)] <Ko / |0aldSa — / Ko - Gasla,y)dVa (y)
(4 2) 8Xol[d] yEXo[d]

§K0/ |pal dSq + K1 Ko.
dXol0]

Integrate (£.2]) with respect to ¢ from % to % and use once again the uniformity
in the metrics over Xo[] we obtain

|pa ()| <Ky </ \goa\dva> + 4K, Ko
Xo[2)\Xo[}]

1

1 2
<K K2 < / |¢a|2dva> + 4K, Ko
X

(4.3)

for each = € Xo[%]. Here K3 is a comment upper bound for the volumes of X
w.r.t. go. Now, to prove the claim, we have to show that [y |0a|?dV, is bounded
by a constant independent of 0 < a < 1. For this we use the estimates on the
first eigenvalue of Laplacians due to Yau [43] which implies that for a compact
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Riemannian manifold (X, g) of dimension n, if (i) diag,(X) < Dy, (ii) Voly(X) > Do
and (iii) Ric(g) > (n — 1)K hold, then the number

e Lesaltray

A =
! 0#£feC>(X), [y fdVy=0 fX f? dVy

is bounded below by a constant depending only on D¢, Dy and K. Here AgB denotes
the Laplace-Beltrami operator of g.

For the family of metrics {g,} on X, it is easy to see that the diameters and
volumes are bounded as in (i) and (ii) by the same constants D7 and D,. Note that
in a neighborhood of the exceptional curves each member §, is Ricci-flat, and so by
the uniformity outside that neighborhood, condition (iii) holds for a common value
of K.

Therefore, there is a constant Kg > 0 such that

N 1
[ Veudve < K [ lgaliBagalaVe = Ko [ loalos Ao, FylaVe
X X X r

1
1 2
< KoK / CaldVi < KoKo K2 < / |<,oa|2dva>
X X

and hence

1
2 1
(/ Isoa|2dVa> < KoK K2,
X

This completes the proof of the claim. §

Define H, := e®*H. Then it follows from the claim that to prove the lemma, it
is enough to show that the determinants of h, := H,H; ' have common positive
upper and lower bounds.

To do so first note that we have tr A, F 7, = 0. Then the proof of Proposition
2.1 in [40] shows that this and the fact that A, Fpy, = 0 imply det h, is constant for

each a. After a rescaling of H, by a positive constant, we can assume det he = 1,
and the proof of Lemma is complete. I

From now on we assume that the rescaling in the above lemma is done. We next
show a result on the C°-bound for tr h,.

Proposition 4.3. Assume that the integrals fX |log trha|? dV, have a common up-
per bound for 0 < a <« 1. Then there is a constant Cy > 0 such that for any
O<axkl,

—Cy < logtrhy < Cy.

PrOOF. First of all, we have the following inequality whose proof can be found in
[34):

Lemma 4.4. Let Hy and Hy be two Hermitian metrics on a holomorphic vector
bundle £ over a Hermitian manifold (X,w), and define h = HyHy'. Then

(4.4) Ay logtrh > —(|AuFrylmy + | AwFry | Hy)-
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By Lemma 4] we have the inequality
(4.5) Aglogtr(ha) = —([Ae. Frul g + [Ma. Flg) = —1Aa Filg
where the equality follows since H, is HYM with respect to w,.
Over U(%) we have Aglogtrhg > —|Ay, F 71 = 0 and so by Maximum Principle
we have
sup logtr h, < sup logtrh, < sup logtrh,.

U(g) oU(§) Xol3]
Using the Green’s formula (£.2]), we can show as in Lemma [£.2] that
(4.6) sup logtrh, < K’
Xo[2]

for some K’ > 0 independent of 0 < a < 1 assuming that the integrals [ < [log tr ha|? dV,

have a common upper bound. We thus have a commen upper bound for sup ¢ log tr .
Together with the fact that the determinants of h, are bounded from above and

below by positive constants independent of 0 < a < 1, this upper bound also implies

a common lower bound for log tr h, over X. The proof is completed. &

Therefore, to get C%-estimate we prove

Proposition 4.5. There is a constant C}, > 0 such that

/X |log trhq|?dV, < C}

forany 0 < a < 1.

PROOF. The idea is basically the same as in the proof of Proposition 4.1 in [40].
Assume the contrary. Then there is a sequence {a;}7°, converging to 0 such that
limy oo fX | log tr hg, |* dV,, = co. Denote h(k) = hq, , and define pj, = e Mk where
My, is the largest eigenvalue of log h(k). Then prph(k) < I.

The following inequality is proved in Lemma 4.1 of [40]:

Lemma 4.6. Suppose

Ao Fg + A0((0h)h™) =0
holds for a Hermitian metric H on a vector bundle £ over a Hermitian manifold
(X,w) and h € T'(End(E)). Then for 0 < o < 1, we have the inequality

-2 o 1 o o
|h 26]{]1 |%{,g — ;Aw|h |H < —<AwFH,h >H-
In our case, because Ag, Fy 4+ A, 0((0ha)hy ') = Ay, Fri, = 0, apply the above
lemma to o = 1, we see immediately that
(4.7) — Aulhaly < 1Mo, Fylglhalg < Krlhalg
where K7 is a common upper bound for [Ag, Fyl -

Note that |hy|j is subharmonic in U(Z) because of the first inequality in (Z7)
and the fact that A, Fly; = 0 there. Maximum Principle then implies that



27

From this observation and an iteration argument over Xo[2] on (@T), we can

deduce that
1
2
sup |hal g < Ks / |hal%dVa |
X Xo[§]

This implies

(4.8) 1< Ky </X[ |pih(k )\?q‘”@) :

for any k£ > 0.
As in page S275 of [40], one can show that

/X |VH(pkh(k))|§}7g%dVak < 4In)§(iX|A@, 'l g - Volg, (X () < 4K, K5

where K5 is as in the proof of Lemma

Thus we see that the L-norms of pph(k) with respect to &, are bounded by a
constant independent of k. Because the sequence of metrics {w,, } are uniformly
bounded only on each compactly embedded open subset in Xg ¢, a subsequence of
the sequence {pih(k)} converges strongly on each subset of this kind. After taking
a sequence {U; CC X } of exhausting increasing subsets and use the diagonal argu-
ment, we obtain a subsequence {py.h(k;)}i>1 of {prh(k)}x>1 and an H-symmetric
endomorphism he of € which is the limit of {p, h, |0, }i>1 in L2(U;, End(€)) for all
[. From (4.8]) one immediately sees that hs, is nontrivial.

Define h; = pg,h(k;). The same argument shows that hY converges weakly in the
L? sense on each U; to some hZ,. The uniform bound on the L?-norm of h¢ gives the
same bound on hZ, for all o. It follows that I — hZ, has a weak limit in L? sense on
each U for some subsequence o — 0. We call the limit 7. Similar to [40] except that
we consider integrals over each U, we can show that 7w gives a weakly holomorphic
subbundle of £. More precisely [27], there is a coherent subsheaf F of £ and an ana-
lytic subset S € X (containing the exceptional curves) such that S has codimension
greater than 1 in X, the restriction of 7 to X\S is smooth and satisfies 7%7 = 1 = 72
and (I — 7)0n = 0, and finally, the restriction F’ := ‘7:|X\S = 7T|X\s(5|)2\s) — & is
a holomorphic subbundle. The rank of F satisfies 0 < rankF < ranké&.

Following the argument in [22] p. 181-182 (see also Proposition 3.4.9 of [27]), we
have

po = lim c1(det F,u) A3 = lim e (F Hy) A G2

im
6—0 rankF J x1s] §—0 rankF J/ x (5]
Here u is some smooth Hermitian metric on the holomorphic line bundle det F over
X, and H; is the Hermitian metric on the bundle F' induced by the metric H on
£. Using the above construction of 7 by convergence on the U;’s one can show by a
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slight modification of the arguments in [40] that

1

li F' Hy) Aeg > 0.
61—I>r(l)rank.7: XO[(;}CI( ) Ny >

Claim For 0 < a < 1, pg, (F) > 0.

PRrROOF. It is enough to show pg, (F) = po. From the construction of @y in [14],
we have

O =T 4 @
where ¥ is a (2,2)-form supported outside U(1) and ®( is a dd-exact (2,2)-form
which is defined only on X \ U C}, is supported in U(%)\ U C;, and equals wgo’o =
%\/—_1851'% A \/—_1851‘% on U(1)\ U C;. The same construction gives w, such that

=0+,

where ®, is a smooth dd-exact (2,2)-form supported in U (%) which equals w?, , on

co,a
U(1).

Denote the smooth (1,1)-form ¢y (det F,u) on X by ¢ and rankF by s. From the
above descriptions we have

1 1
~(F) = un = lim = A (% = 02) = lim - AN(P, — P
:uwa( ) Ko 61—H>%) s Jxo 1 (wa WO) 61_1)% s Jxots C1 ( a 0)
1 1 o1
=— cg NP, — lim — cqg NPy =—lim - c NPy
S JxX d—0 S Xo[8] 0—0 s Xo[6]

where the last equality follows from the fact that, as smooth forms on X, ¢ is closed
and @, is exact. One can write ¢; A ®g = d(c; Ag) where ¢ is a 3-form supported on
U(2)\ U C; which equals %(81'% - 51'%) A 0drs on U(1)\ UC;. By Stokes’ Theorem,
we have

4
3

4 4
3 3

1 1 = =

(4.9) — lim — cl/\(IJO:—limg—/ c1 A (Ors — Ors) A QOrs.
6—0 S Xo[0) 5—08 s Xo[0)

An explicit calculation on coordinate charts can then show that the last limit is

zero. N

Since pg, (£) = 0, we get from this claim a contradiction to the assumption that
£ is stable with respect to @, and complete the proof of Proposition [ |

We continue with the proof of Theorem EIl Using H and §, one can define
L%—norms for h,. The next step is to give an L%—boundedness.

Proposition 4.7. The L3-norm of h, over X is bounded by some constant Co
independent of 0 < a < 1.

PROOI:i The C%boundedness obtained above and the common upper bound in
Vol, (X) imply that the L? norm of h, is bounded above by a constant independent
of a.
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Choose a finite number of Hermitian metrics H®) for 1 < v < k on &€ which
are constant in some holomorphic frame &|y;(1) = O" over U(1), such that for any
smooth Hermitian metric K on & the entries of the Hermitian matrix representing
K are linear functions of tr(K(H®))~1), 1 < v < k, whose coefficients are constants

depending only on H®). Denote h((l'/) = H,(H (v ))_1. It is therefore enough to bound

the integrals
/ dtr B2 dV,
X

forl1 <v<k.
From Lemma .4 and the fact that H, is HYM w.r.t. @,, we have
(410)  Aglogtr A > — (|As, Fyron | e + Moo Friy | ir60) > — 10y Frron | o,

from which we have the inequality
(4.11) — Agtr B < Ay, Fryon | o tr BY) < Kotr AY)

for some constant K9 > 0. Here the last inequality follows from the fact that Fiy)
is supported on X\U(1), where the @, are uniform.

Multiplying tr hgj) on both sides of the inequality (£11]) and using integration by
parts, we get

/ |dtrh("|2 dV, < Ko / trh) 2dV,.
X

Finally, write hY) = ho H(H®)~1 and we see that the result follows from the
uniform C° bound of h,. B

Using the diagonal argument, the uniform boundedness of the L3-norm of h, over
X implies that there is a sequence {a;};>1 converging to 0 and an H -symmetric
endomorphism hg of & which is the limit of {hq,|v, }i>1 in L2(U;, End(€)) for all L.

As in [9] and [34], we can then prove that the sequence {hq, }i>1 converges in the
CO-sense to hg on each U;. Next we argue that there is a uniform C'-bound for
{ha, }i>1 over X. We need the following lemma, whose proof will be given later.

Lemma 4.8. Let V be a Kahler manifold endowed with a Ricci-flat Kahler metric
g, and let H be a HYM metric on a trivial holomorphic F bundle over V w.r.t. g.
Fized a trivialization of F and view H as a matriz-valued function on V. Then

—Ag|OHH '3, <0

We apply this lemma to the the restriction of € to U(1) under a trivialization
in which H = I. Also let H = H,, and g the restriction of g,, to U(1), where it
coincides with the CO-metric on resolved conifold. Then we have

~ B |OHo H i, 5., <0

and hence, by the Maximum Principle,

sup [0Ho, Hy, |4, 5, < sup [0Ha Ho 'y, g,
U(1) aU (1)
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Using the uniform C°-boundedness of H, and the fact that H = I, the above
inequality implies

sup |8ﬁhfli|1:[,ga_ S K10 sup |8Hh“i|1:1,ga.‘
U(1) i oU(1) i

Therefore, it ia enough to bound the maximum of [0y, |z, —over Xo[3]. Let

z; € Xo[3] be a sequence of points such that
m; = Sup ‘8Hhai ’ﬁ,ﬁm = ‘8Hhai ‘ﬁ,ﬁm (a;,)
XO[%] 7 7
Assume m; is unbounded. If {z;} has a converging subsequence with limit in
the interior of Xo[3], then one can argue as in [9] and [34] and get a contradiction.

Thus it is enough to get a uniform bound near OXO[%]. For this we use Lemma
L8 and an iteration argument to conclude that supyy, 1 |0gha;| g 5, 1s bounded

by the L% integral of |aﬁhai|ﬁ,§ai in a neighborhood of OXO[%], say VO(%, %) This
last integral is uniformly bounded by Proposition 4.7l Thus if {x;} has a limit on
OXO[%], m; is bounded, which contradicts to the assumption. We therefore prove
uniform C'-boundedness for {h,, bis1.

One can then obtain from this uniform C*-bound a uniform Lg—bound for {hq, }i>1
over each U as in [9] and [34]. Then after taking a subsequence, we may assume
that h,; converges to hg weakly in the L sense for all p over each U;. This implies
Aoy FHy = 0 where Hy = hoﬁ . By standard elliptic regularity Hy is smooth.

The proof of Theorem [4.1]is now complete. R

Remark From Lemma and Proposition 3] it is easy to see that the largest
eigenvalue of hg is bounded from above over X g,, and lower eigenvalues of hg is

bounded from below over X s, In particular, the CP%norm of hg is bounded over
XO,sm-

PROOF OF LEMMA [4.§]
The HYM equation takes the form

V1A, 0(OHH ™) = 0.

In local coordinates this is just

= 0 (O0H
___ H 1) =
g 85]' (Z?zz > 0

In the following we denote 9; = (% and J; = (%j. Taking partial derivatives on

both sides of the above equation, we get
(4.12)  —gPgpa97 05 (S HH ™) + g7 05 (Op0;H)H ™' — ;HH 'O, HH ™) = 0.
One can compute that
(OO HYH™ — 0; HH ‘o, HH "
=0; (O,HH ') + Oy HH 'O,HH ' — 0;HH "0, HH ' = (0p); (O,HH ') .
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Note also that ¢’ %g—g is the Christoffel symbol F};q of g. Therefore (AI2]) becomes

(4.13) ~ T8990, (HH™) + g90;(0); (O HH™) = 0.
Now, in local charts,
(4.14)

— NgOHH '3, = —V—=1A,00/0HH '3,
< — (VEIAV L AV (OHH ™), 0HH " g — (OHH ™ V/=T1AVYy AV (OHH ")) pr .

Here A, : I'(V,End(F) ® Q' ® Q?) — T'(V,End(F) ® Q') is the contraction of
the 2-form part with the Kéhler form w, of g. The operator V}fg A V%g is the
composition

vO,l
['(V,End(F) ® Q') —% I(V, End(F) @ Q' @ Q%)
1,0

v
—29% I(V, End(F) © Q' @ Q%' @ Q%) & T(V, End(F) @ Q' @ QL)

where the last map is the natural anti-symmetrization. The operator V%g A V}L}?g
is analogously defined.
Write A = OHH ' = Apdzi, so Vg = Vag Explicitly, we have

(4.15)
V=AY AV (OHH )
= — 2(g"7(94)i0; Ax)dzr, + 297 (A1) dzy, = 2(—g" 95(04)i Ap + 9% (95 Ai) Ty ) dzi
where we use the fact that
99(00)i05 Ak = g7 0;(00)i Ak + 197 (Fa)i5, Ax] = 97 0;(00)i A
because d + A is a HYM connection. Now (4.13]) and (4.I5]) together implies that

(4.16) VEIAVE AV (OHHTY) = 0.
Next we compute \/—1Agv(};{7lg A V}L}?g(ﬁHH_l). We have
(4.17)

VEIANYY AV (OHH ) =2 (gﬁ (05(04)iAr)dzy, — (954:)9% T d2y, — Aigfﬁa;r;;qdzk) :
Note that
~ 05T}y = —05(9POgpe) = —9"7050k9pq + 997939510k 9pq
is the full curvature tensor Rf;kj of g. From the Bianchi identity and the fact that g
is Ricci flat, we have

(4.18) _ gqiajpaq — gquf]kj - gquqﬁkjgiﬁ — gquqjkﬁgiﬁ = Rypg'? = 0.
From (4.13) and ([d.I8) we then have
(4.19) VEIANVYE AV (OHH ™) = 0.

The result now follows from (4.14]), (4I16) and (419). B
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4.2. Boundedness results for Hy. We will now establish some boundedness re-
sults for Hy. The following C'-boundedness for hg follows easily from the uniform
C'-bound of the sequence {hq, }i>1 which converges to hy.

Proposition 4.9. There is a constant C1 > 0 such that [V gholg 5 < C1 on Xosm.

Higher order bounds for Hy will be described in the uniform coordinate system
{(B,¢0,2)|# € Xo,sm} from Section 3.

Proposition 4.10. There are constants C;, > 0 for k > 0 such that in the above
coordinate system,

1hollex p..a.6.) < Ci
for each z € Xg sm.

PRrROOF. It is enough to focus on V{ s (1), where € is the trivial bundle. Moreover,
by gauge invariance of the norm, it is enough to work under a holomorphic frame
in which H = I. With this understood, hq is just Hy.
The result for the k = 0 cases is Proposition [£.3l For the k = 1 case, note that
by Proposition we have locally
~ij OHo OHg 1\2
r (.90 8’[02 awj> < (Ol) .

Here x is w.r.t. I, and in this case Hj = Hy. Therefore, because the norm

ro(z)_%ﬁo < Cpge where g, is the Euclidean metric in (wy, wy, ws), we have
(4.20)
~0Hy 0H,
tr <g? awg a—@f) < Cptr <r0(z)%(§0) ) < (C))?Coroy(2)

for some constant K71 independent of z. This is the desired result for £ = 1.

For the k£ > 2 case, note that the metric Hy is HYM, so in each coordinate chart
B, it satisfies the equation

7 82H0 4 .57 8H0 OHO

4.21 394 = 300 —Ho ' —.
By the £ = 0,1 cases and Proposition 9] the right hand side of ({#21]) is bounded
by some constant independent of z € Vj 4, (1). Moreover, there is a constant A > 0
independent of z € V{ ¢, (1) such that

4 . \ije =
(4.22) ro(2)3 (90) 7 &:&5 > AlE[®
over any B,. Therefore, by p.15 of [21], the bounds in (£20) and ([£22) together
with the estimates on the higher derivatives of ro(z)_%go from (B.4]) imply that

| Hol|

ij 0o 0Ho
ow; aZT)j

Wk

<K117

Wl

1 <K
cti(Br gy S 12

where B, C B, is the ball of radius g and K15 is a constant independent of z. It is
not hard to improve this to

| Hol < Ki3

1
01'2- (Bz 796)
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by considering the estimates over B, for y € B,\B,. What is important is that this
C’l’%(BZ, ge) bound of Hy implies that the right hand side of (£2I]) is bounded in
the C%3 sense, and so by elliptic regularity we get

‘|H0||Cz,%(327ge) < Kia,

which can be improved to B, as before. Using bootstrap arguments, we can obtain,
for any k > 1, a constant C}, independent of z € V} 4, (1) such that
| Hollc (s, ,g.) < Ch-

Here the derivatives is w.r.t. the Euclidean derivatives. However, these are also the
derivatives w.r.t. g. and H since H = I here. 1

Let a be a number such that 0 < a < % We will specify the choice of « later. If
we restrict ourselves to the region Vo (3 R|t|*, 3R[t|*), where the bundle £ is trivial,
we have the following result which we will need in the next section.

Proposition 4.11. For every small t and w; € Vo(3R[t|*,3R[t|*), we have
2
”H()H()(wt)_l — [”C,Z’Q(Bhﬁ’ge) < D’tha

where D > 0 is a constant independent of t and z € Vo( RIt|*,3R|t|*). Here Ho(w;)
is viewed as a constant metric on E\V (LR|t|o 3R|t]) = (’)”.

PROOF. We work in a holomorphic frame over Vy(3R[t|%, 3R[t|*) under which

H =1, so Hy(w) is constant a matrix. Because of the bound in the remark before
the proof of Lemma [4.8] it is enough to show that

| Ho — Ho(w) ¢z (3. 4.) < DIl
for some constant D.

Since IVHHOIH,gO < (O for some constant C] and there is a constant K5 > 0
such that distg, (2, wy) < K15|t|%°‘ for any small t and z € Vy(3R[t|%, 3R|t|*), by the
mean value theorem we have |Hy — Ho(wy)| < Klﬁ‘t‘%a on Vo(3R[t|*,3R[t|*). For
each z € Vo(3 R[t|*,3R|t|*) in each coordinate chart B. we have

i 0%(Ho — H 1, =0Hy | OH,
()7 2D o)) _ 8 gy 220 gy 1 20

Notice that equation (£20) actually implies that the right hand side of equation

(#23)) is bounded by (C{)2C0r0(z)%, which is less than Ky7|t|3® for some constant
Ky7 > 0. Therefore, in view of (34, by elliptic regularity there is a constant Kig
independent of ¢ and z € Vo(3R|t|*, 3R|t|*) such that

| Ho — Ho(w)]l

ol

(4.23) ro(z)

8wi8wj 8’lf)j '

2(BL,9¢)
<Kus (IRHS of @23 |cogs.) + 1Ho — Holwe)leos,)) < Kus(Kir + Kao)[t]5
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As in the proof of Proposition 410} this final estimate can be improved to ||Hy —

Ho@)ll 4
desired bound |

< K19|t|§°‘, and we use elliptic regularity once again to get the

5. THE APPROXIMATE HERMITIAN METRICS ON & OVER X;

5.1. Construction of approximate metrics. In this subsection we construct ap-
proximate Hermitian metrics on &. We will compare the estimates on the bundles
&, each over a different manifold X;. For this we first recall the smooth family
of diffeomorphisms z; : Q¢\{r; = \t\%} — Qo,sm from Section 2. Recall also the
fixed large number R > 1 from Section 3 (after (3.12])). For ¢ small, restricting to

V}(%R]t]%, 1) we get a smooth family of injective maps
1 1 1 13
Vi(=R|t|2,1) = Vo(=RJt|Z, =).
We can extend these to a smooth family of injective maps, still denoted by x4:
1 1 1 1
X[ RltlH] — XolRitl?).
Next, choose a smooth family

Jes &y nmaty = Elxoprm)
of maps between smooth complex vector bundles which commute with x; and are
diffeomorphic onto the images.

In addition, we require the following condition on f;. Denote by (X ,5) the
smoothing of the pair (X, 7+€) mentioned in the introduction. By our assumption
on & the restriction of £ to V := Uiea, Vi(1) is a trivial holomorphic bundle. Fix a

holomorphic trivialization |y 2 O}, inducing the trivialization Ely, . 1) = Oy (1)

under which H = I, the r x r identity matrix. With the induced holomorphic triv-
ialization of &y, (1) for all small ¢, we require the family f; to be such that when

restricting to V}( R\t\ ) we get a map from the trivial rank r bundle to another
trivial rank r bundle Wthh is the product of the map on the base and the identity
map on the C" fibers.

Over Xt[%R|t|%] we let H = fHy, the pullback of the HYM metric Hy from
Xo[%R]t]%]. Note that our choice of f; over Vi(3 R\th 3) is one such that f; be-
comes the pullback of vector-valued functions by x;. In particular, the pullback of
a constant frame of glxt(vt(sza,%)) by f: is again a constant frame of Et\%(QRma,%).

Therefore, under some constant frame of Et\v (LRiE 2) the pullback H; of H can
t(3 1

be seen as an identity matrix. We can extend this constant frame of &/, (2Rlt],3)
naturally to one over V;(2), and we then can extend H, over Vi(3) by taking the

identity matrix under this constant frame. We then further extend H,; over the
whole X; to form a smooth family. We still denote these extensions by H;, and they
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will serve as reference metrics on &;.

From Proposition [4.10l one can deduce

Lemma 5.1. There exists a constant Cy, such that for any t # 0 and z € X, [R]t]%]
we have ”ft*hOHCk(Bszlt,gt) < Ck.

In view of Theorem [3.1I] and Proposition B.3] we can deduce

Corollary 5.2. There ezists a constant C} such that for any t over V}(R]t]%, 5,

we have
k

2 .
SV (00 g S O
§=0

For « such that 0 < a < % and ¢ small, the image of the restriction of x;
to Vi(R[t|Y, 2R|t|%) lies in VO(%R|7§|O‘,3R|t|O‘). For w; as in Proposition [4.11] define
Hj := f{(Ho(w;)) to be the constant metric on &y, (2pj¢e) (W.r.t. a constant frame).

Then by Proposition 11l we immediately get

Lemma 5.3. There is a constant D > 0 such that for any t and z € Vi(R[t|*, 2R|t|*),
we have ,
”Ht”(Hé)_l _ IHCQ(BZﬁhge) < DJt|3~.

Now let 7(s) be a smooth increasing cutoff function on R! such that

1
. 1, s>2RJt|*"2
Ti(s) =
t( ) { 07 s < R|t|a_%7

and such that its [-th derivative %t(l) satisfies |7~'t(l)| < f(l|t|(%_°‘)l for [ > 1 for a
constant K; > 0 independent of ¢. Define 7, = ﬂ(|t|_%rt), which is a cutoff function
on X, and define the approximate Hermitian metric to be

Hy = (1—7)H]+nH = (I + w(H/(H)™* —1))H,.
Remark The metric H; is just an interpolation between f;Hy and H; = f;*(Ho(wy)).
Because the determinant f;"hg is bounded uniformly both from above and below,

the common C°-bound of fhg w.r.t. H; in Lemma 5.1l implies that the norms |- |z,
and | - |5, are in fact equivalent (uniformly in ¢).

The following estimates for H; are analogous to those for Hy in Proposition A.10l
They follow from that proposition with the help of Corollary

Proposition 5.4. There are constants Cy > 0 for k > 0 such that
VD) e 5.1, g1y < C
for each z € Xy.
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5.2. Bounds for the mean curvatures. The following proposition gives the
bounds for the mean curvatures v —1Ag, Fy, of the approximate metrics Hj.

Proposition 5.5. There are constants A, > 0 and Zr > 0 such that for t small
enough, we have the following:

(1) For any z € Xy and k > 1,

(5.1) Hrt%A@tFHt”C«k(Bz’the) < A,
(2)
(5.2) |r§AthHt|Ht < 7 max{|t|§a7 |t|1—2a},
and
(3)
o 1800 g xe ey < Zamac{ e, 11]'75%).

PROOF. The first estimates (5.1]) follow from Theorem Bl and Proposition (.4
For (5.2]), first of all we have

(5.4) Az, Fr, =0 on Vi(R|t|Y)

because Hy = HJ there and H is a flat metric.
Next consider the annulus V;(R|t|*,2R[t|*). Let

hy = I +n(H{ (H)™" = 1I),
then we have
Mg Fr, = Ao, Py + Do, 00y by (1) 1) = A, 0y (hy) ™).

Now, on each local coordinate chart B, N Vi(R|t|*, 2R|t|*), compute in a frame
under which Hj is constant, we have

(5.5)
4 _ 4 _
v} A, 0Oy (hy) ™) =r Ay, 0 ((0ht — OH{(H{) ™ hi + hioH{(H}) ™) (hy) ™)
4 _
=r} A, 0(0hy(h) ™)
4 _ 4 _
=r3 Ag, Ol (h})OR(hy) ™ + r2 Ag, 00R)(h,) L.

To bound the derivatives of h; we need to bound the derivatives of 7;. The first
order derivative of 7; can be bounded as
(5.6)

~r g —L 1 SATE SEDNN | ~ o ~
|Ve7—t|ge < |7’ (|t| 2I't)|7f| 2V61'15|g\,i < K1|t|2 |t| 2-Rirp < K1R1|t| rs <2K1R\R

where (3.2]) is used. The last inequality follows from the fact that the support of
V1 is contained in Vi(R|t|*, 2R[t]|*).
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Similarly, the second order derivative of 7 can be bounded as
V2rilg. <17 (1t1= ) (|7 IV er5, + |7/t~ [t 72 V2r],.
(5.7) < Rolt]' =2t x? + Kq|t| 2|t 72 - Rory
<Ko|t|72r? + K  Ro|t| “ry < 4KoR?* + 2K 1 RyR

where ([3.2) is used again and the last inequality follows as in (G.6]).
From (5.6), (5.7) and Lemma [5.3] we can obtain the estimates

|Oh; =0(r(H{ (H}) ™" = 1))l g, ,.
<|Vertlg. [HY (H)™! = 11, + 1| Ve(HY (H) ™) g, ,.

‘ﬁtvge

<2K RiR - D|t|3® + DJt|3* < 2K1RiR + 1)D - [t|5°
and
00K o, I3l [ ()™ = I + 7 S2 (D)
+2|VeTtlg | Ve(HY (H) ™l g, 4.
% 2 % 2q 2q % 2q
§(4K2R + 2K1R2R) . D‘t‘?’ + D‘t‘?’ +2-2K1R1R- D‘t‘?’
<(4KR? 4+ 2K RyR + 4K R R + 1) - DJt|3%,
4 4
In local charts, the term r} Ag, contributes to r} g, ! which is bounded by Theorem
Bl Therefore, from expression (5.5]) we can now conclude that
4 4 _ 2
I0i Mo Fra, | gy, = |07 Ao, (0 by (h) ™) g, < Za]t]3®
on Vi(R[t|*,2R|t|*) for some constant Z; > 0 independent of ¢.

From the remark before Proposition 5.4l we get

4 2
(58) |rt3 A(DtFHt |Ht < Z2|t|§a

on Vi(R|t|*,2R|t|*) for some constant Z > 0 independent of ..
We now estimate the L§7_4—norm of /—1Ag, Fr, on Vi(R|t|“, 2R|t|*) with respect
to g+ and H,.

8 4 4
3 ko —4 ELIN ko.—4
/ ’rtSA&JtFHt‘Htrt th = / rt3 ’rtg AQtFHt’Htrt th
Vi(R[t|>,2R[t]~) Vi (R|t|™ 2R]t|*)

S(QR)%k’t’%ak . Zg‘t‘go‘k/ rt_4th < (2R)%kZ§’t’2ak23,
Vi(R|t|>,2R][t|*)

where Z3 > 1 is an upper bound for th(th\“ SRJH]) rt_4dV} for any t # 0 small. Thus

4
(5.9) 182 Fr I vicriege 2mige) gty < (2R)3 ZoZslt).

We proceed to consider the region V;(2R|t|%, %) We will first give a pointwise
estimate on the mean curvature of the Hermitian metric Hy = fHy. We will use 0
and 0; to emphasize that they are the 9- and J-operators on X;, respectively. The
calculation will be done under the specific choices of frames as mentioned before
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Lemma 5.1 With these choices, we have H; = I and fi Ho can be regarded as
the pullback by z; of a matrix-valued function representing Hy. Since constant
frames are holomorphic, the curvature of fHy can be computed using this pullback
matrix-valued function which we still denote by f;"Hp.

Lemma 5.6. There is a constant Z4 > 0 independent of t such that

v} A, (BOF Ho) (FiHo) ™)) |y, < Za- [ty ?

on V,(2R|t|*, 3).

PrROOF. We expand and get
(5.10)

0u(0c(fi Ho)(f{ Ho)™") = (e0e(f; Ho))(f; Ho) ™' +0:(f; Ho)A(f; Ho) ™' 9u(fi Ho) (fi Ho) ™.

We compute

90, (f; Ho) = — ngtd(ft*Ho) = —ngtft*(dHo)

- = Lo £ Ho)) Y5 (e~ o) £ Ho)
= (i ) Y i~ i ha s )
=i @uot) ~ Y5 a1~ atdo g ().

Moreover,

o 110) ==Y ey — L = g

(5.12) L0 = VT g ) - Y 0 g o g

=Ji (GoHo) — g(& — zJo) f{ (dHo),

and similarly

(5.13 B Ho) = £ BoHo) + Y2 (o) f7 (o).
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Plug in (511), (512) and (&I3) to (BI0)), we get

0017 Ho) (7 Ho) ™)
= 17 Bt Ho) (o)™ — YL ((y — g o) £ (o) - (57 Ho)

+ (ff0oHo)(ff Ho) ™" A (ff00Ho)(f; Ho)™"

YL oy ) ) A (s ) 7 )G Ho)

- ?K% — &} Jo) f (dHo)] (fF Ho) ™ A (f380Ho)(f; Ho) ™"

4 20— w07 (AR)) 57 Ho) ™ A (s w0 £ ()57 Ho)
=£{(90(oHo(Ho) ™)) — gd [(J — @} Jo) f7(dHo)] - (f7 Ho) ™!
+%§W%HMﬁ%V”W%—ﬁMﬁM%Wﬁ%V1
L= o) O Ho) ™ A (700 7 o)

4 (00— o) AHO))( Ho)™ A [ — o) i (dHo ) Ho) ™

Therefore we have

(5.14)

i Aa, 0017 Ho) (17 Ho) ™) 5,

SIF?Awtft*(éo(aoHo(Ho)_l))|gt + %|P§Awtd [(Je — @i Jo) fi (dHo)] - (ff Ho) ',
gl s, [(FF00Ho) (77 o)™ A 10 — o) i (dH) ) Ho) ™) I,
gl A, (07— 23 J0) fF @HOS7 Ho) ™ A oHo) (i Ho) ™ I,

I A (10— a3 J0) £ @O Ho) ™ AT = a7 Jo) FF (AHO)I ¢ Ho) ™ L,

Note that because H; = I under the chosen frame, we have fiHo = ffho. Using
the bounds in Proposition [£.10, we can estimate the first term on the RHS of (5.14])
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in each coordinate chart B, as
(5.15)
\rt%Awtft*(go(ﬁoﬂo(ﬂo)_l))!gt
S\rt%Am:woft*(éo(aoﬂo(ﬂo)_l))!gt + ‘rt% (Az, — Aazao) [ (Bo(BoHo(Ho) ™M),
SZs|1‘t% £ @00 Ho(Ho) ™))l g, ...,
SZG|ft*(50(30H0(H0)_1))|CO(BZ,1:1“§CO¢) 07t = wootlgeos
<21\ £ (Bo(O0Ho(Ho) ™o sy - C"IEIEs

<Zs|00(00Ho(Ho)™))

~—1 * —1
: |wt - ':Ut wco,o Gco,t

|CO(th(z)vH79e) ’ |t|rt ’
_2
<Zo (1 Holloas, ) gy + 1HO W5 i) - HIEE
_2
<Zy - (Cy+(C1)?) - |tlr, ® < Zyo|t|r;”

where Proposition B.8 and the equation in Lemma are applied. We have also
used the fact that

Az 7 (00(80Ho(Ho) ™)) = f#(Aay (00(B0Ho(Ho) ™)) =0

since Hy is HYM with respect to the balanced metric wy on Xg sp-
The second term on the RHS of (5.14) is bounded as

(5.16)
e Ay d (e — o) 7 (AHo)) - Ho)
<l M (e — 23.00) 7 (@HO)] - (7 Ho) ™ 5,
I (s = A )G — 23 J0) i (H)] - (7 Ho) ™,

4
<Zulr{ Aw,o, d[(Jr — 2 Jo) fi (dHo)] | 5,
4
+ Z11|‘;Jt_1 - Wc_tit|gco,t|rt3d [(Je — 27 Jo) fi (dHo)] |f{hgw¢
<Z1(1+ 167 — wegtlge.)-
2 * 2 * * 2 gj 1 *
rt3 ’vgco,t(‘]t - xt JO)‘Qco,t‘rt3 d(ft HO)’I:It,gco,t + ’Jt - xt Jo‘gco,t Z ‘rt3 v‘;co,t(ft Ho)ljflt7gco’t

J=0

To proceed, let Vs, , — Vg, be the difference between the two connections.
It is in fact the difference between the Christoffel symbols of Y} geo+ and geo0. From
the explicit formulas of Christoffel symbols in terms of the metrics and Proposition
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3.3l for some universal constans D; > 0 and Dy > 0 we have
(5.17)
2
-1 -1 -3
’v’r:gco,t - vgco,O‘T*gco,t S Dl(‘gco,odgcovol’r:gco,t + ’ngco,tdrrgcoﬂt’T:gco,t) S D2rt ? .

t

Now, by Corollary 2.4] we have

(5.18) [Tt = 2 Jolgen < 1T5 It = Jol Tt g0 < Doltlry?
and by (5.17)) we have
(5.19)

|Vgco,t(']t - $IJO)|gco,t §|vTrgco,t(T:Jt - J0)|T;§gco,t
§|vgco,0(TIJt - JO)|T;§gco,t + |(vTrgco,t - Vgco,o)(T:Jt - JO)|T;§gco,t
_8
SD0|t|rt ? + |vTrgco,t - Vgco,0|Tz‘gco,t : |TIJt - J0|Trgco,t

_8 _8
SDQ‘t‘I‘t 8 +D2D0\t\rt 3.

2 2
We also have |rt3d(ft*H0)|ﬁt,gm¢ < Cf and Z?:o |rf’]V§w’t(ft*H0)|Ht7gw’t <Y

from Corollary 5.2} and |, — wc_o}t‘gco,t < C”\t\% from Proposition B.8 Plug these,
(GI8) and (5.19) into (B.16) we get
(5.20)

1 ES — é * *

§|(ft Hy) 1I't3Athd [(Je — Ty JO)ft (dHy)] |ﬁt

2 _8
<Zi(1+ ") ( (Do + DaDo)ltlr; ¥ - €Y + Doltlry? 05’) < Zultlri2.

The third term on the RHS of (5.14]) is bounded as
(5.21)

i Ay (B0 Ho) (7 Ho)™ A G — i Jo) i (AH) (7 Ho) ] 1,
<31 o [(F700H0) (7 Ho) ™ A [ — o) (AHO)] (77 Fo) '] |,
g0 (N — As,) [(F7B0HO) (77 Ho)™ A [(Je — o) i (dH) ) Ho) ™ I,
<2+ 167~ g T = 5 Tl - P (T HO,
<Zya(1+ C"|t]5) - Doftlry - (CF)? < Zys |ty .

where (5.18) and Corollary 5.2 have been used again.
The last two terms on the RHS of (5.14)) are also bounded by Zg|t|r; ? by similar

discussion. This together with (5.14)), (5.15)),([5.20) and (5.21I)) complete the proof of
Lemma 5.6l &
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We continue with the proof of Proposition From the remark before Proposi-
tion [5.4] we get, for Vi (2R|t|*, %), that

4 4 _
(5.22) 07 A Pty |11, = |27 Mgy, (00(05(f7 Ho) - (ffHo)™) 1, < Zaz - [tlry®
for some constant Z17 > 0. Consequently, in this region we have
4 1
(5.23) |rt3AthFHt|Ht < Zi7- @Ml—&x‘

and one can estimate

8 4 4

3L k -4, 3k 3 ko.—4
/ 5 v AthHt‘Htrt dVy —/ 5 r} e AthHt‘Htrt dVy
Vi (2RIt~ %) Vi(2R|t]*, %)

3

624 <zt [ e av < Zbzl [T
Vi(2R|t]*,3) ri=2R|t|*
<2 gl - - (2R) e,
We thus obtain
(5.25) ||A(I)tFHt||Lgvi4(W(2R|t‘a7%)’gt7Ht) < Zlg|t|l_%a-

This ends the discussion on the region V;(2R[t|*, 3). As for the region X;[3], because
the geometry is uniform there it is easy to see that

4
(5.26) ’I‘t3 A(:)tFHt’Ht S ZQ() . ‘t‘

and

(5.27) 1A Fr s xo2)50m) < 2204t

when ¢ is small.

Finally, from (&.4), (5.8), (523) and (£.26) we get (5.2), and from (54), (&9,
(B25), and (B.27) we get (5.3). The proof of Proposition is complete now. 1

Remark From now on we fix a = %. Then we have

4 ~ 1
(5.28) vy Mg, Fr, |1, < Zolt]s
and
- 3
(5.29) 1A Fr ey xogom) < Zxlt3

6. CONTRACTION MAPPING ARGUMENT

Our background Hermitian metric on & as constructed in Section 5 is denoted
by H;. Let H, be another Hermitian metric on & and write h = ﬁth_l =1+h
where h is Hy-symmetric.

It is known that the mean curvature

V=1Ag, Fy, = V=105,0((0n,(I + h))(I +h)™") + vV—=1Ag, Fp,

of Hy is ﬁt—symmetric.
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To make it Hy-symmetric, consider a positive square root of ﬁth_ 1 denoted by
(ﬁth_ 1)% More explicitly, write h = P~'DP where D is diagonal with positive
eigenvalues, then (ﬁth_l)% =PI+ D)%P.

Remark Write (ﬁth_l)% = I +wu(h). Then it is easy to see that the linear part of
u(h) in h is 1h.

After twisting the mean curvature above by I + u(h), we obtain
(6.1) V=L +u(h) " Az 0O, (I + W) + 1)) + Az, Fir, ) (I +u(h)),
which is H;-symmetric. The equation
V—=1Ay, Fy, =0

is equivalent to the equation

VI 4 u(h) ™ A 80, (1 + W)+ 7)Y + Az, Fir, (I +u(h)) =0,
which can be written in the form

Li(h) = Qi(h)
where
Li(h) = v=1 <A@t88ch + 3 [As h])
is a linear map from
Hermp, (End(&;)) := { H;-symmetric endomorphisms of &}
to itself, and
(6.2)
Qi(h) = —V/=1(I +u(h)) " (Az,801,h)(I + h) (I + u(h)) + V=1Az,005,h
—V=1(I +uw(h) " Ap, Qb - (I 4+ 1) AOh- (I +h)"") (I + u(h))

= VT ({04 ) o P (4 u() = 310, P 1)

In the above formulas, we use the fact that %h is the linear part of u(h).
Notice that since

= 1
/ (v—1 (A@taach + §[AthHt, h]> D), dV, =0
X
we have an induced map from
Herm};, (End(&;)) ==
{H¢-symmetric endomorphisms of & which are orthogonal to I'}

to itself. Because (6.1]) is a H;-symmetric endomorphisms of & which are orthogonal
to I, we see the same is true for Q¢(h). In this section h will always be a section for
the bundle Herm%t (End(&)).
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We consider the contraction mapping problem via weighted norms introduced in
Section 2. The metrics that define these norms and all the pointwise norms will be
w.r.t. the balanced metrics g on X; and the Hermitian metrics Hy on &, and the
connections we use are always the Chern connections of H;. Therefore we remove
g: and H; from the subscripts of the norms for simplicity unless needed.

As in Section 2, we now consider the following norms defined on the usual Sobolev
space Lf(Herm(}It (End(&))):

\hHLk — Z/ 3ﬁ+3ﬁvyh‘k —4dvt
Xy

As before, we use LF ' to denote L} (Herm 7, (End(&;))) for simplicity. The following
Sobolev inequalities will be used i 111 our discussion:

1
k

Proposition 6.1. For each l,p,q,r there exists a constant C > 0 independent of t
such that for any section h of Herm}; (End(&;)),

[hllLy, < C'||hHL§ﬁ

+qT_l and

1hllcy < CllAllze

=
IN
D=

<

S =

whenever ;

whenever

D=

< qT Here the norms are with respect to Hy and g;.

We now begin the discussion on the properties of the operator L;.
Lemma 6.2. For any given 0 < v < 1 and t # 0 small enough, we have
—2v
1Pllez —, < 8l IILe(h)lzz -
In particular, the operator Ly is injective on L%_Q(Herm?{t(End(&))).

PROOF. Later in Proposition [Tl we will show that for arbitrarily given v > 0, we
have

2
< Ve Dl

1P

0,—2

for t # 0 small enough. Using this one easily deduce that
2
1hll s, < 20t |ef Ol
for t # 0 small enough. Now
2 _
Iefom iy = [ (OnhOnhyaVi = | (V=TNc,001.1) v,

Xt

VA
< / [Le(h) = = [Aa, Fu,, h] || Vs
Xt

< / \Lo(h)||h] dV; + / 1P| As, i, | dVi.
Xt Xt
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4 -
From (5.28)) we have |rf Ag, Fp,| < Zolt]%. Therefore we can bound
1 4
[ PG Fin Vi = [ i P Ao F e av
Xt Xt

~ 1 4 - 1
<ot [ i hPrtavi < Zotl
X, 1,-2
Using this bound, we now have

2
2 -2 3 2
B2, <Al e om b2

~ 1
<t ([ 1zl avi + Zole 1ol )
t |

1 1
8 2 4 2 ~
<4lt| </ w7 Ly(h)|*r; th> (/ v? h|?r; dV;) +AZo [t T2 )2
X, X, 1,-2
_ .
<A Ie®lg, Whlls _, +AZoltlF A2,
Therefore for v < 1 and ¢ # 0 small enough such that 4ZO|t|i_2” < 1, we have the

desired result. W

We conclude from this that for k£ > 6, the operator L; : L'2“7_2 — ng7_4 is injective.

The operator L; is also surjective. First of all, Az, 00y, is a self-adjoint Fredholm
operator, so it has index zero. Secondly, since for each t # 0, Ag, Fy, is a smooth
function on X;, the operator

1
h — §[A(:JtFHt7h:|

from L’§7_2 to L’§7_4 is a compact operator. Therefore L; has index zero, and the
injectivity of L; implies its surjectivity. Let the inverse be denoted by P;.

Proposition 6.3. There exist constants Zj, > 0 such that for any 0 < v < 1 and
t # 0 small enough,

A l 92y
(6.3) hll s, < Zu(~log )3 | Ze(h) 5,

4

Consequently, the norm of the operator P; : L’g’_4 — L’g’_z 1s bounded as
5 1
1Bl < Zi(—log [t])2 [t~
PROOF. From the estimates of §; in Theorem[B3.1], the estimates of H; in Proposition
4

5.4 and the estimates (5.1)) of r} Ag, Fly, in Proposition[5.5] we can apply Proposition
4
213 to the operator r} L;, and obtain

~ 4
Iollsg , <Ci (If Lt + 1l

<Ci (1Ll _, +Inllzs )
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for constans é,’f > 0 independent of . By Lemma and Holder inequality,
(6.4)

8
B3, | <6ARI=||Lo(R)II3; = 64t~ /X v} Li(h) Pr; v
’ ’ t

2,
<64t~ < | r;‘*dvt) ( [ Lt<h>r’fr;4dvt)
Xt Xt

_ _2 _
<Zg[t ™ (= log [t) ' TE [ ()75 < Zglt|™™ (—log [t Le(R)I7s -
for t # 0 small. The claim follows now. R
Now we consider the contraction mapping problem for the map

Up: L5 o — L5 o, Ui(h) = Po(Qi(R)).

Here Q¢(h) is given in (6.2]).
Take 8’ to be a number such that 0 < 8 — 2 < 1. We restrict ourselves to a ball

,3/
B(f') of radius |t| 3 centered at 0 inside L'2“7_2, and show that U; is a contraction
mapping from the ball into itself when ¢ # 0 is small enough.

Proposition 6.4. For each k large enough, there is a constant Z,/f > 0 such that
when t # 0 is small enough the operator h — Q¢(h) maps the ball of radius |t|% n

, oy B2 g
L’g’_z into the ball of radius Z|t| 5 - |t|5 in L’§7_4.

PrOOF. Note that when k is large enough one has the Sobolev embedding L§7_2 —

C1,. Proposition implies the existence of a constant C’gb independent of ¢ such
that

b
(6.5) 1Bller, < CR2liPllg -
/ i ’
In this case, Hh||L’2c L, < |t|% implies in particular that |hlr} < C’,ﬁb|t|%, and hence

(6.6) In| < O 75

Therefore, because 0 < 3/ — 2, when ¢ # 0 is small it makes sense to take the inverse
of I +h and I +u(h), and there are constants Z; and Z} such that, for ¢t # 0 small,
o) (I +u(h)) ™ (A5, 00m,h)(I + h) (I +u(h)) — vV—1Az,00m,h|

6.7 ~ Iy _
< Z1100m || < Z1CP 5 100m,h] < ZLCPNT VBl

and

(6.8) max{|h|, |I +u(h)|, |(I+u(h)7|, [I+h|, |(I+h)7 }< 2.
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From the expression (6.2]) for ¢ we can bound it as

1Q:(h)| <|(I 4 u(h)) Y (Az,d0m,h) (I + h) Y (I +u(h)) — V—1Az,00m,h)
+(I 4 u(h) " Ag, (Om,h - (T4 h) " AOR - (I +h)"H(T +u(h)))
H (I +u) - Az, Fry| - [(1+ u(R)| + |h] - [Ag, Frr, |
<Z T Vbl + (2 Vb + ((Z8)% + Z5) Ay Fi|

where (6.7) and (€8] are used.

Now we estimate the L’&_ y-norm of [V h| and [V, h|?. First of all we have

2 k _
I3 = /.

and hence

(6.10) 1%l g

0,—4

(6.9)

3kio2 g ko4 2242 o2 k-4 k
I‘f’ ‘thh’ I‘t d‘/; = /X ‘I‘ts thh’ rt d‘/t S Hh”Ll2€ .
, ,

t

B8’
<l , <105

2
Next we estimate

&k _
Ity = [ bt

t

—24k_2(2+1)2k _ _2
= [ et avi < e
t 5

~ ~ 8’
By Proposition [6.I] we have, for large k, ||h||L§’12 < C’,‘zb||h||L§ L, < Ct|7 for some

constant é,ﬁb independent of t. Thus we get
_2 A sb 1 ’_ ~sb g-2 g
6-11)  [IVahlllpy_, < 1753 1RNZ5 , < (CF R (0 T e
From the remark after Proposition [5.5, we have for some constants Z;, > 0
~ ~ s B
(6.12) Az s, < Zeltl < Zelt|i= 7)),

Note that for 0 < 5/ —2 <« 1, %—%/ >¥>0. We fix such a /3.

Now, from (6.9)), (610), (6I1)), and (6.12)) we have
(613) |l Qum)lLy_, < (ZICH + (Z)* (G + (2 + Z) %) 15 - el
for t # 0 small enough. R

Fix B’ as in Proposition and choose v < % B — % in Proposition [6.3] then for
t # 0 sufficiently small, U; maps B(f’) to itself. Next we show

Proposition 6.5. U; is a contraction mapping on B(3') for t # 0 small enough.

Proor. We @rst show that when ¢ # 0 is small enough and k large enough, there
are constants Z; > 0 such that for any h; and hy contained in B(f’), we have

Sy B2
(6.14) 1Qe(h1) = Qu(h2)lls , < Zgltl = |Iha = hallpy -
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As discussed in Proposition [6.4], for i = 1,2 when |h;| € B(8') we have |h;| <
C’gb|t|L‘;2 for some constants C’gb. In this case there is a constant Zj; independent
of t such that

(T + 7)™ (I +u(hn) = (I + ho) ™ (I + u(h))| < Zg|ha — hal,

(1 +u(hn)) ™ = (I +u(h2) 7| < Zglhy — hal,

(6.15) (T +u(h)) — (I + u(h2))| < Zs|hy — hal,
(I +h1)™" = (I +ho)™Y| < Zb|hy — hal,

[u(h1) — u(h2)| < Z3|h1 — hol.

Using these bounds, the bounds in (6.8]), and the expression in (6.2]) for Q;(h), it is
not hard to see that for some constant Zj we have

(6.16)
|Q¢(h1) — Q¢(h2)]
<Z4((|Az,00m, 1| + |A2, 00w, ha|)|h1 — ha| + (|ha| + [2|)| A, 00m, (71 — ha))|
+ (Ve + [V i,hol?) by — ho
+ (Ve | + Vi, ho|) [V, (R = ho)| + [Ag, Fa,| [y — hal)

_ _ 4
<Z4 (|73 (/A2 00, Iy | + | Ay, 00z, ho | + A, Fr,|)|rf (hy — ho)
4
5V + [V he|?)[ef (hn — ho)l

_2 _2
75 (e PV | + v, PV ho| )07V i, (By — ho)
+ (Jh1| + |h2])| Az, 00H, (1 — h2)|)

4
where in the last line we use the fact that |75|_%r1t3 > 1 on X;. Therefore

(6.17)
1Qe(h1) — Qe(h2) | 1

0,—4

SZ!;(W_%(HA@ﬁa}a{thlHLgﬁ4 + |’AJJ,55<9H,5h2HLgﬁ4 + HAthHtHLgA)S;{lF ‘rt%(hl — ho)|
SRl + IVl ) sup i — ho)
1 Vanhllag_, + e Vahall gy ) sup eV, (b — ho)
t
208 11) "5 | As, B0, (1 — ho)l g5 )

where ([6.6)) is used to bound |h1| + |ha].
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The first term in the RHS of (6.I7) is bounded as
(6.18)

_2 = = 3
1175 (182,00 Pl g, + A2 00mhallny , + |AaFacllny ) sup e/ (ha = ho)
’ ’ ’ t

S N1 =22 5 82
<2+ Zo)lt 5[5 1ha = hallco, = 2+ ZW)CPN ™ |1hy — hallg

for t small enough. Here we have used (6.10]), (6.12]) and (6.5).
The second term in the RHS of (6.I7)) is bounded as

(6.19)
_2 4
SV e Pl + IV kol ) suples (n — ha)]
) ) Xt

28’ —4

7 [lha = hallpy

<|t175 - 22 T T - [l — halleo, < 2ACE2C1

2

for ¢t small enough. Here (G.I1]) and (6.5]) are used.
To bound the third term in the RHS of (6.17]), we first estimate that, for || h||L§ LS

45,
-3 k Sk -3 ko—4 2 ko—4 k
v, *V e = | v e Vbl e, dVe < | [ryVgh|"r, " dVe < [[R]|7,
Lg _4 X; X; L3
and hence ,
_2 8
ey Vbl < bl <15,
Therefore we have
_2 -2 -2
[t (llft Vahallgs A+ lee *Vihallgy 4> sup [r7 Vi, (b1 — ha))]
(6.20) ’ X
_2 B sb B -2
<20t[7s e[ [[h1 = hallcr, < 2G5 [ = hallp

where the above estimate and (6.5]) are used.
Finally, it is easy to see that the last term in (G.I7)) is also bounded as

82 A 82
(6.21) 20717 (| A2, 008, (h1 — ho)l g, < 2CR°[H75 [|hn = halpy -

Plugging (6.18)), (6.19)), (6.20) and (6.21)) into (6.I7) proves (6.14]).
Recall that we have chosen v < 3’ — %. Therefore (614) and the bound for

the norm of P; given in Proposition [6.3] show that for ¢ # 0 small enough Uy is a
contraction mapping, as desired. B

Using the contraction mapping theorem on U; : B(8') — B(f'), we have now
proved

Theorem 6.6. Fort # 0 sufficiently small, the bundle & admits a smooth Hermitian-
Yang-Mills metric with respect to the balanced metric ;.
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7. PROPOSITION 7.1
What remains to be proved is the following proposition.

Proposition 7.1. For each v > 0, we have
4
[ wintavi< i [ 0w hPav
Xt Xt

fort #£0 small.

We can regard this proposition as a problem of smallest eigenvalue of a self-adjoint
operator. Consider the pairing

8
<h1,h2>L(2) B ::/ r} (hl,h2>Htrt_4dV}.
, X,
One can compute

/ <8ch1’8ch2>Ht,§th;f :/ <V_1A®tgachlvh2>thV;f
Xt Xt

8 4 _ 4 _
:/ I'tg (\/ —1I't3 Ag,ﬁ@chl, h2>Htrt_4th = <\/ —1I't3 A@taaHt hq, h2>L8 .
Xt T

4
From this we see that the operator /—1r} Az, 00H, is self-adjoint on La_Q(Herm?{t (End(&))).
Define the number
. fX |8ch|2d‘/;g
At = , o nf .
07éh€L0,72(HermHt(End(&g))) th ‘h’21‘t 34V,

It is not hard to show that the above infimum is achieved at those h satisfying
4
(7.1) vV —1I‘t3 A@taach = )\th,

4
i.e., h is an eigenvector of the operator /—1r? Az, 00, corresponding to the smallest
nonzero eigenvalue \; on La_Q(Herm(I]{t (End(&;))). For each t # 0 let h; be such an
element which satisfies ||h]| 2, =1L

PROOF. Our goal is to show that for each v > 0 one has \; > [t|” when ¢t # 0
is small. Suppose such a bound does not exist. Then for some v > 0 there is
a sequence {t,} converging to 0 such that \;, < |t,|. The endomorphisms hy,
introduced above satisfy

(7.2) V=1r3 Az, 00w, by = Anha,
(7.3) / |hn2r™3dV, = 1
and

(7.4) / 1001, 24V, < [t].

n



51

Here we use the notations r, @,, H, and A, to denote ry,, &, H;, and A,
respectively. In the following we will replace the subscripts ¢,, with n.

For each fixed § > 0 and n sufficiently large, because the Riemannian manifold
(Xn[d], @) has uniform geometry, and because the coefficients in the equations (7.2))
are uniformly bounded, there is a constant C' independent of large n such that

1
2
1Pl e 20y < Cllbnllz2(x, 0y < € (/X |ha 1 _§an> <’

where C’ depends only on ¢ and p. For p large enough we see that [|hy,[lc2(x, [2))
is bounded independent of n. Therefore by using the diagonal argument, there is
a subsequence of {h,} converging to an Hg-symmetric endomorphism A in the C
sense over each compactly embedded open subset of X sp,. From (.4]) one sees that
Oh = 0 over X g, But then h is a holomorphic endomorphism of & UG and by

Hartog’s Theorem it extends to a holomorphic endomorphism of £ over X. Since
€ is irreducible, the existence of a HYM metric on £ implies that it is stable and
hence simple. Therefore h = pl for some constant p.

Lemma 7.2. There exists an 0 < ¢ < % and a constant C1g > 0 such that for any
0<d< % and large n,

/ |hn|2r™3dV,, < C1o0%.
n(6)
Let’s assume the lemma first. Then we have
/ ’h‘2r_%dV() = lim \h[2r_%dvo = lim lim / ’hn‘2r_§dvn
Xo,sm 6=0 J x,[4] 0n—o0
> lim lim (1 — 01052‘) =

d—0n—oo

On the other hand
/ |h|2r~ SdVO = lim lim |h | ~3dV, < lim lim 1 = 1,
Xo0,sm

0—0n—o0 Xn [6} d—0n—oo

so we have

/ h[2r~3dV = 1.
XO,sm

Since h = pl, this implies that

-1
(7.5) |l = (rank(é’)/ r_%dVO> .
XO,sm

On the other hand, note that for each § > 0,

/ tr h dVj
Xold]

/ tr hy, dV,, = 0,
Xn

|p|rank(E) Vol (Xo[d]) =

= lim
n—oo

/ tr h,, dV,,
Xnld]

Because
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we have

|pe|rank(E)Volp(Xo[d]) = lim

n—oo

= lim
n—oo

/ tr by, dV, / tr by, dV,,
Xn[0] n(0)

1 1
2 2
< (C lim / |hn|2dV,, | < Cy lim / ha|2r73dV, | < Cy0".

Now choose § small enough such that

(7.6)

(77) Volo(Xo[3]) > 5 Volo(Xo)
and
A 2030"
(7.8) <rank(5) /Xo,sm rs dV0> > rank(Z)Volg(Xo)
%(3 see that a contradiction arises from ([.5)-(7.8]). We have thus shown Proposition
|

PROOF OF LEMMA First of all, by Holder inequality,

2 1

3 3
/ \hn\2r‘§dvns< / rhny?’r—&dvn) < / r‘4+6Lan>.
Vi (6) Va(3) n (0)

nig

Because
1

3
/ vy, | < G,
Vi (8)
2
3
/ |hn|Pr ™34V, | < Cy
Va(§)

7LZ

it is enough to prove that

for some constant Cy > 0.

The proof makes use of Michael-Simon’s Sobolev inequality [29] which we now
describe. Let M be an m-dimensional submanifold in RY. Denote the mean curva-
ture vector of M by H. Then for any nonnegative function f on M with compact
support, one has

(79) ([ savi, ) <t [ (95lys +1011- Prav,

where C'(m) is a constant depending only on m. Here all metrics and norms are the
induced ones from the Euclidean metric on C*. We denote this induced metric by
gr- Do not confuse this metric with the metric g. appearing in earlier sections. In
our case M is the space V}(%) identified as part of the submanifold Q; C C*. As
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pointed out in [14], the relations between the volumes and norms for the CO-metric
Jeo,t and those for the induced metric g are

2
(7.10) Wyeo = 37 AV
and
_2
(7.11) IV, <Cr 2 |VFZ,,

for any smooth function f on Vt(g)
Let 7(r) be a cutoff function defined on V(1) such that 7(r) = 1 when r < 1 and
7(r) = 0 when r > 3. Extend it to X,, by zero. From (ZI0) we have

(7.12) / e dVo 1 < 2 /
(L) 3 v

where dV,,,, is the volume form with respect to the CO-metric weot,, -
Moreover, using Holder inequality, one can deduce from (7.9]) that

2
3
(o) <]
n(ﬁ) V%(

and using (Z.I0) and (T.II) we get

3
(7.13) ( / f3dVgE> < Cs /
Va(3) Va(

where | - |0 is the used to denote | - |, , -
Apply (ZI3) to f = |hn|r 57, and then together with (ZIZ) (and Lemma 7))

we have

</vn< )

1
1

~2
§013 (/ |hn|3r_3Ld‘/co,n>
Va(d)

<Co [ 19(halr iR, Ve
Vi

co,n

| [Pr 270 d V.
)

1
2

1
2

Gco,n

IV f[2,,r3dV,
)

1
2

(7.14)

»

3
\hn\?’r_?”dvn)

Wl

2
3

2 (2
<Ci 2 (e 37)%ay,
3 Jvad) :

2

n(3)

<3Ck / V{12 nr 272V + 3C /
Va(d)

2

1 co,n co,n

ni2

o2 Ve™ 5 2 r2r34V,
)

+3Cs / PP VTG, dVeo .
Va(5

2
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The third term on the RHS of (7I4)) is an integral over V;,(,3) in which the
support of V7 lies. From (7.3)) one sees that it is bounded by some constant C7 > 0
independent of n. Later whenever we encounter an integral with a derivative of 7
in the integrant, we will bound it by a constant for the same reason.

Because h,, is H,-hermitian symmetric, Oh,, = (0m, hy)*Hn, and so the first term
on the RHS of (T.I4)) can be bounded as

(7.15)
/ ) |v|hn| |go,nr_2b7—2d‘/co,n < / (<6Hn b, aHn hn>co,n + <5hn7 5hn>co,n)I'_2L7—2dcho,n
Vn(3) Vi (

3)

:2/ <8thn78thn>co,nr_2b7'2d‘/co,n < é?)ltn‘y_b
Va(3)

2

for some constant C3 > 0 independent of n. The last inequality follows from (7.4)
and Lemma 2.7 We now fix an ¢ such that 0 < ¢ < min{%, v}. Then we see that as
n goes to infinity, this term goes to zero.

Finally we deal with the second term on the RHS of (7.14)). It can be bounded as

(716) / |hn|2|vr_b_%|go,n7—2r%d‘/co,n SCS/ |hn|2r_2b_%7—2d‘/co,n
Va(3) Va(3)

2

for some constant C's > 0. hence it is enough to bound the term on the right.
To do so, we introduce the notation ¢ = r~2, and denote 8}’_51271 = On,, +0log paA.
We can estimate

0< [ | (Ohn, Oy, 0770V < = [ (VTN O O b dar Vs + C
Va(b) Va(

3)

_ /V (1)—<\/—_1A@n8}’§1 Oy 4/ TAG, 0 . b 27V
n\y

+ / (V71,003 huyha)g, 27 AV + Cr.
Va(3)

One can compute that
V=1Az, 07 Ohy, + V—1A3, 005 hy = —[V=1Ag, Fiy,,, hn] + (V=1Ag, 09 log ¢2)ha,

and so we have

0< / (WV=1As, Fi,, hal, s, — (V—1Az,0010g d2)hn, hy) g, pa?dVi
n(%)

+ / 1 (0% Py 092 i)z, d272dVyy + Cr
Va(2)

N

<2 [ o Bl Pourtavi + 2 [
\(3)

2

0, hn |§n¢27—2an
)

ni2

+/ 1 (2010g ¢o|2, — V—1Ag, 0010g ¢2)|hn|*GomdV;, + Cr
Va(3)
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To proceed, we use the bound |Ag, Fg, | < Zor~3 |tn|i from the remark at the end
of Section 5 to deal with the first term. We use (7.4]) to take care of the second
term. Finally, we have

|0log (ﬁg\gn <3273 and V—1Ag,0010g ¢pg > LI‘_%,

which follow from (bottom of) p.31 of [14] together with the observation /=190 log ¢o >
0 and the crude estimate % Jeot < Gt < 2Geot ON V}(%) for ¢ sufficiently small.

Thus
0 gzzo\tny%/ M| 2273 o 72dV,, + 2|t | +/ (67 - 0| 2273 gor2dV, + Cy
)

3 n(3)

(35

§(2Z~O‘tn’% +6L2—L)/ ) ’hn‘2r_2b_%7-2dvn+2’tn‘V_L+C4.

ni2

Recall that 0 < ¢ < min{, v} is fixed. Let n be large so that 220#”]% +602—1 <0,
we see from above that

(7.17) / I Pr 23724V, < C()
Va(3)

for some constant C'(¢) > 0 depending on ¢.

From (7.14)), (TI5)), (C.I6), and (TIT) the proof is complete. N
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