
ar
X

iv
:1

01
2.

30
87

v1
  [

m
at

h.
A

P]
  1

4 
D

ec
 2

01
0 Homogenizations of integro-differential

equations with Lévy operators with
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Synopsis. We consider periodic homogenization problems for the Lévy
operators with asymmetric Lévy densities. The formal asymptotic expan-
sion used for the α-stable (symmetric) Lévy operators (α ∈ (0, 2)) is not
applicable directly to such asymmetric cases. We rescale the asymmetric
densities, extract the most singular part of the measures, which average out
the microscopic dependences in the homogenization procedures. We give two
conditions (A) and (B), which characterize such a class of asymmetric den-
sities, that the above ”rescaled” homogenization is available.

1 Introduction.

In this paper, we are interested in the following homogenization problems
concerning with the Lévy operator :

uε(x)− a(
x

ε
)
∫
RM

[uε(x+ β(z))− uε(x)− 1|z|<1〈∇uε(x), β(z)〉]dq(z) (1)

−f(
x

ε
) = 0 in Ω,
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u = φ(x) in Ωc, (2)

and

uε(x)− a(
x

ε
)
∫
RM

[uε(x+ β(z))− uε(x)]dq(z)− f(
x

ε
) = 0 in Ω, (3)

with (2). Here, Ω is an open bounded domain in RN,M<N , β is a positively
homogenious, continuous function from RM to RN such that

β(cz) = cβ(z) ∀c > 0; |β(z)|<B1|z| ∀z ∈ RM, (4)

where B1 > 0 is a constant, dq(z) = q(z)dz is a positive Radon measure on
RM which satisfies

∫
|z|<1

|z|γdq(z) +
∫
|z|≥1

|z|γ−1dq(z) <∞, (5)

with γ = 2 in the case of (1), and with γ = 1 in the case of (3), a, f are real
valued continuous functions defined in RN, periodic in TN= [0, 1]N , such
that there exist constants θ1, θ2 ∈ (0, 1], L > 0, a0 > 0 with which the
following hold:

a(·) ≥ ∃a0 > 0; |a(y)− a(y′)|<L|y − y′|θ1 y, y′ ∈ RN, (6)

|f(y)− f(y′)|<L|y − y′|θ2 y, y′ ∈ RN, (7)

and φ is a real valued bounded continuous function defined in Ωc.

For any ε > 0, there exists a unique solution uε of (1)-(2) and of (3)-
(2) respectively in the framework of the viscosity solution (see §6 for the
definition, and also M. Arisawa [2], [3], [8], G. Barles and C. Imbert [11]
for the existence and the uniqueness results, and M.G. Crandall, H. Ishii,
and P.-L. Lions [14] for the general theory of the viscosity solution). As ε
goes to zero the sequence of functions {uε} converges locally uniformly to a
limit u, and we are interested in finding an effective nonlocal equation which
characterizes u.

Such a homogenization problem was solved in the case that the Lévy
measure is α-stable (see M. Arisawa [6], [7]):

dq(z) =
1

|z|N+α
z ∈ RM, α ∈ (0, 2) a fixed number,
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by utilizing the formal asymptotic expansion :

uε(x) = u(x) + εαv(
x

ε
) + o(εα) x ∈ RN, (8)

where u = limε→0 uε, v a periodic function defined in RN, called corrector.
The above expansion leads to the so-called the ergodic cell problem, which
gives the effective equation for u. We refer the readers to A. Bensoussan, J.L.
Lions, and G. Papanicolaou [13] for the detailed discussion on this method. In
the framework of the viscosity solution, the formal argument can be justified
rigorously, by the perturbed test function method established by L.C. Evans
in [15] and [16] (see also P.-L. Lions, G. Papanicolaou, and S.R.S. Varadhan
[20]). However, as we shall see below in Examples 1-4, the above formal
expansion cannot be employed directly if the measure dq(z) is asymmetric.
Here, we assume that the Lévy measure satisfies the following condition (A).

(A): Let S = supp(dq(z)) ⊂ RM. There exists a constant α ∈ (0, 2) such
that

εM+αq(εz)<C1|z|
−(M+α) ∀ε ∈ (0, 1), ∀z ∈ RM, (9)

where C1 > 0 is a constant independent on ε, and a subset S0 ⊂ S and a
positive function q0(z) (z ∈ RM) such that

lim
ε↓0

εM+αq(εz) = q0(z) ∀z ∈ S0; = 0 ∀z ∈ RM\S0. (10)

We define a new measure:

dq0(z) = q0(z)dz ∀z ∈ S0; = 0dz ∀z ∈ RM\S0. (11)

The following property holds for this rescaled measure dq0(z).

Lemma 1.1.

Assume that the Radon measure dq(z) satisfies (5) and the condition (A).
Then, S0 is a positive cone, i.e.

sS0 ⊂ S0 ∀s > 0.

Moreover, sM+αq0(sz)= q0(z) (∀s > 0, ∀z ∈ S0), and

q0(z) = |z|M+αq0(argz) ∀z ∈ RM, (12)
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where q0(θ) (θ ∈ [0, 2π)) is a bounded real valued function.

Proof. Let z ∈ S0. For any s ∈ (0, 1), from the condition (A), (10),

lim
ε→0

εM+αq(εsz) = s−(M+α) lim
ε→0

(εs)M+αq(εsz)

= s−(M+α) lim
ε′→0

ε′M+αq(ε′z) = s−(M+α)q0(z) > 0.

Thus, sz ∈ S0, and

q0(sz) = s−(M+α)q0(z) ∀s ∈ (0, 1), ∀z ∈ S0.

Therefore, q0(z) = |z|M+αq0(
z
|z|
), and from the condition (A) (12) is proved.

The following examples satisfy the condition (A).

Example 1. Let M = N , β(z) = z, and for α ∈ (1, 2) (resp. (0, 1)),

dq(z) = |z|−(M+α)dz z ∈ RM

+ ; = 0 z ∈ (RM

+ )c,

where RM

+ = {z = (z1, ..., zM)| zi > 0 1<∀i<M}. In this case, for S =
S0 = RM

+ , we have

q(εz)εM+α = |z|−(M+α) = q0(z) ∀z ∈ S0; = 0 ∀z ∈ Sc
0, ∀ε > 0,

and for
dq0(z) = |z|−(M+α)dz z ∈ RM

+ ; = 0 z ∈ (RM

+ )c,

the condition (A) is satisfied. Both dq(z) and dq0(z) satisfy (5) with γ = 2
(resp. γ = 1).

Example 2. Let M = N = 1, β(z) = z, and for 1 < α1 < α2 < 2,

dq(z) = |z|−(1+α1)dz z<− 1 and z > 0; = |z|−(1+α2) − 1 < z < 0.

In this case, for α = α2, S = R, S0 = {z ∈ R| z < 0}, we have

lim
ε→0

q(εz)ε1+α = |z|−(1+α2) = q0(z) ∀z ∈ S0; = 0 ∀z ∈ Sc
0,

and for
dq0(z) = 0 z > 0; = |z|−(1+α) z < 0,
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the condition (A) is satisfied. Both dq(z) and dq0(z) satisfy (5) with γ = 2.

Example 3. Let M = 1, N = 2, β(z) = (z, γz), where γ > 0 is an
irrational number, and for α ∈ (1, 2) (resp. (0, 1)),

dq(z) = |z|−(1+α)dz z ∈ R.

In this case, for S = S0 = R, we have

q(εz)ε1+α = |z|−(1+α) = q0(z) ∀z ∈ S = S0, ∀ε > 0,

and for
dq0(z) = |z|−(N+α)dz z ∈ R,

the condition (A) is satisfied. Both dq(z) and dq0(z) satisfy (5) with γ = 2
(resp. γ = 1).

Example 4. Let M = N , β(z) = z, and for γ > 0, 1 < α < 2,

dq(z) = exp(−γ|z|)|z|−(M+α)dz z ∈ RM.

In this case, for g(s) = sα, S = S0 = RM, we have

lim
ε→0

q(εz)εM+α = lim
ε→0

exp(−εγ|z|)|z|−(M+α) = |z|−(M+α) ∀z ∈ S = S0,

and for
dq0(z) = |z|−(M+α)dz z ∈ RM,

the condition (A) is satisfied. Both dq(z) and dq0(z) satisfy (5) with γ = 2.

In Examples 1-3, the Lévy measures are either asymmetric or degenerate
(in the sense that S or S0 does not contain an open ball centered at the
origin in RM). Example 3 corresponds to the jump process satisfying the
non-resonance condition (see M. Arisawa and P.-L. Lions [9]). At first sight,
the formal asymptotic expansion (8) used for the α-stable Lévy operator
seems to be unapplicable for the measures in Examples 1-4. However, under
the condition (A), by using the constant α in it, we can still use the expansion
(8) :

uε(x) = u(x) + εαv(
x

ε
) + o(εα) x ∈ RN.
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We introduce the formal derivatives of uε into (1) (resp. (3)). From the
condition (A) (9), (10), we remark

lim
ε→0

∫
|z|<1

|z|γεM+αq(εz)dz =
∫
|z|<1

|z|γdq0(z), (13)

lim
ε→0

∫
|z|>1

|z|γ−1εM+αq(εz)dz =
∫
|z|>1

|z|γ−1dq0(z), (14)

for α ∈ (1, 2) with γ = 2 (resp. α ∈ (0, 1) with γ = 1). We get formally the
following ergodic cell problem: for any fixed x ∈ Ω and for the given

I1 =
∫
RM

[u(x+ β(z))− u(x)− 1|z|<1〈∇u(x), β(z)〉]dq(z),

( resp.

I2 =
∫
RM

[u(x+ β(z))− u(x)]dq(z),

) find a unique number dI1 (resp. dI2) such that the following problem has
at least one periodic viscosity solution v(y):

dI1 − a(y)
∫
RM

[v(y + β(z))− v(y)− 〈∇v(y), β(z)〉]dq0(z)− a(y)I1 (15)

−f(y) = 0 in TN,

(resp.

dI2−a(y)
∫
RM

[v(y+β(z))−v(y)]dq0(z)−a(y)I2−f(y) = 0 in TN, (16)

) provided that dq0(z) (the rescaled measure defined in (11)) satisfies (5) with
γ = 2 (resp. γ = 1). In some cases, we can only find the unique number dI1
(resp. dI2) which satisfies the following weaker property. For the case of (15),
dI1 is the unique number such that for any δ > 0, there exist a subsolution
vδ and a supersolution vδ of

dI1 − a(y)
∫
RM

[vδ(y + β(z))− vδ(y)− 〈∇vδ(y), β(z)〉]dq0(z)− a(y)I1

−f(y)<δ in TN,

and

dI1 − a(y)
∫
RM

[vδ(y + β(z))− vδ(y)− 〈∇vδ(y), β(z)〉]dq0(z)− a(y)I1

6



−f(y) ≥ −δ in TN.

The weaker version of (16) will be stated later in §4. As remarked in [9] for
the case of partial differential equations, the existence of the unique number
dI1 (resp. dI2) is shown by the strong maximum principle (SMP in short) for
the Lévy operator. Since the Lévy density dq0(z) in (15) (resp. (16)) is pos-
sibly degenerate, we must establish a new SMP for our present purpose. We
shall give a general sufficient condition for the SMP in §2 (the condition (B)),
in terms of the controllability of the jump process: x→ x+ β(z) (z ∈ S0).

Although we have stated our problem in linear cases, for the reason of
the simplicity, the present method is applicable to nonlinear homogenization
problems.

Example 5. Let Ω ⊂ R3, β1: R → R3, β2: R
2 → R3 be such that

β1(z
′) = (0, 0, z′) ∀z′ ∈ R, β2(z

′′) = (z′′1 , z
′′
2 , 0) ∀z′′ = (z′′1 , z

′′
2 ) ∈ R2.

Consider

uε(x)+max{−a(
x

ε
)
∫
R

[uε(x+β1(z
′))−uε(x)−1|z′|<1〈∇uε(x), β1(z

′)〉]dq1(z
′),

−a(
x

ε
)
∫
R2

[uε(x+ β2(z
′′))− uε(x)− 1|z′′|<1〈∇uε(x), β2(z

′′)〉]dq2(z
′′)}

−f(
x

ε
) = 0 in Ω, (17)

with the Dirichlet condition (2). Here, dq1(z
′), dq2(z

′′) are respectively a
one-dimensional and a two-dimensional Lévy measures, and further detailed
assumptions will be given later. We shall give the effective equation for this
homogenization problem in §5.

The plan of this paper is the following. In §2, we state the SMP for
Lévy operators with degenerate densities satisfying a quite general condition
(B) given in below. In §3, under the condition (B), we solve the ergodic
cell problems (15) and (16). In §4, the homogenization problem (1) and (3)
are solved rigorously. In §5, a generalization to nonlinear problems, such
as Example 5, is indicated. In §6, the definitions of viscosity solutions for
the integro-differential equations with Lévy operators are reviewed for the
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purpose of the readers. Throughout this paper, the notions of the subsolu-
tion and the supersolution mean the viscosity subsolution and the viscosity
supersolution, respectively. We denote by USC(RN) and by LSC(RN) the
set of all upper semicontinuous functions on RN, and the set of all lower
semicontinuous functions on RN, respectively. For x ∈ RN we denote by
Br(x) a ball centered at x with radius r > 0.

2 Strong maximum principle in TN

.

In this section, we establish the SMP for Lévy operators with asymmet-
ric, degenerate densities. We use this result to solve the ergodic cell problem
in §3. Our presentation is slightly more general than necessary. Let H(y, p)
be a continuous real valued function defined in RN ×RN, periodic in y with
the period TN, satisfying

H(y, 0) ≥ 0 ∀y ∈ TN. (18)

We consider

H(y,∇u)− a(y)
∫
RM

[u(y + β(z))− u(y)− 〈∇u(y), β(z)〉]dq0(z) = 0

in TN, (19)

and

H(y,∇u)− a(y)
∫
RM

[u(y + β(z))− u(y)]dq0(z) = 0 in TN, (20)

where β(z) satisfies (4), a(y) satisfies (6), and dq0(z) satisfies (5) with γ = 2
in the case of (19), with γ = 1 in the case of (20) respectively. We assume
the following condition.

(B) For any two points y, y′ ∈ TN, there exist a finite number of points
y1, ..., ym ∈ TN such that y1 = y, ym = y′, and for any m positive numbers
εi > 0 (1<i<m), we can take subsets Ji ⊂ S0= supp(dq0(z)) (1<∀i<m − 1)
satisfying

yi + β(z) ∈ Bεi(yi+1) ∀z ∈ Ji;
∫
Ji

1dq0(z) > 0 1<∀i<m. (21)
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The condition (B) describes the controllability of the jump process y→y+
β(z) (z ∈ S0).

Theorem 2.1.

Let u ∈ USC(RN) be a viscosity subsolution of (19) (resp. (20)). Assume
that (4), (6), (18) hold, and that dq0(z) satisfies the condition (B) and (5)
with γ = 2 (resp. γ = 1). If u attains a maximum at y in TN, then u is
constant in TN.

Proof. Let u(y) = M , and put Ω0 ={y ∈ TN| u ≡ M}. Assume that
Ωc

0 6= ∅, and we shall lead a contradiction. Take a point y′ ∈ Ωc
0, and remark

that u(y′) < M . From the condition (B), we can take a finite number of
points, y1,..., ym∈ TN such that y1 = y, ym = y′, m positive numbers εi
(1<i<m), and m − 1 subsets Ji ⊂ S0 which satisfy (21). There exists a
number k such that 1<k < m, with which yk ∈ Ω0 and yk+1 ∈ Ωc

0. Since Ωc
0

is open, we can take εk > 0 small enough so that Bεk(yk+1) ⊂ Ωc
0. From the

condition (B), there exists Jk ⊂ S0 = supp(dq0(z)) such that
∫
Jk
1dq0(z) > 0,

and
yk + β(z) ∈ Uεk(yk+1) ∀z ∈ Jk.

Thus, we can take δk > 0 such that

u(yk + β(z)) < M − δk ∀z ∈ Jk. (22)

For the constant function φ(y) ≡M (y ∈ TN), since u−φ takes a maximum
at yk, from the definition of the viscosity subsolution (see Definition C in §6),
by using ∇φ(yk) = 0, we have

H(yk, 0)− a(yk)
∫
RM

[u(yk + β(z))− u(yk)− 〈0, β(z)〉]dq0(z)<0.

( resp.

H(yk, 0)− a(yk)
∫
RM

[u(yk + β(z))− u(yk)]dq0(z)<0.)

From (6), (18), and from the fact that u(yk) = M > u(yk + β(z)) for any
z ∈ supp(dq0(z)), the above leads to

−
∫
Jk

[u(yk + β(z))− u(yk)]dq0(z)<0.

9



However, from the condition (B), this contradicts to (22), since −
∫
Jk
[u(yk +

β(z))− u(yk)]dq0(z)≥ δk
∫
Jk
1dq0(z) > 0. Therefore, Ωc

0 = ∅ must hold.

Remarks 2.1. 1. Consider the jump process: y → y + β(z) (z ∈ S0 =
supp(dq0(z))) in TN, where dq0(z) is either one of the measures defined in
Examples 1-4. Then, it is easy to see that the condition (B) is satisfied by
each of the measures dq0(z). (Remark that in Example 3, for y ∈ T2 fixed,
the set {y + (z, γz)|z ∈ R = S0} is dense in T2 for γ > 0 is irrational.)

2. Let M = N , and β(z) = z. If for some r > 0, Br(0) ⊂ dq0(z), then
the condition (B) is satisfied.

3. The SMP in Theorem 2.1 can be stated in parallel for a supersolution
u ∈ LSC(RN) of (19) (resp. (20)), i.e. if u attains a minimum at y ∈ TN,
then u is a constant function.

4. Let us replace the Lévy operator in (19) to the following :

∫
RM

[u(y + β(z))− u(y)− 1|z|<1〈∇u(y), β(z)〉]dq0(z),

where dq0(z) satisfies (5) with γ = 2. Then the SMP holds for the above
operator, under the condition (B), too.

3 Ergodic problem.

In this section, we study the ergodic problem of the jump process: x →
x+ β(z) (z ∈ supp(dq0(z))). For λ > 0, we consider

λvλ(y)− a(y)
∫
RM

[vλ(y + β(z))− vλ(y)− 〈∇vλ(y), β(z)〉]dq0(z) (23)

−f0(y) = 0 in TN.

( resp.

λvλ(y)− a(y)
∫
RM

[vλ(y + β(z))− vλ(y)]dq0(z)− f0(y) = 0 in TN. (24)

10



) It is known that there exists a unique periodic viscosity solution vλ of (23)
(resp. (24)) (see [2], [3], and [11]).

Theorem 3.1.

Let vλ be a viscosity solution of (23) (resp. (24)). Assume that (4), (6)
hold, that f0 satisfies (7), that dq0(z) satisfies the condition (B) and (5) with
γ = 2 (resp. γ = 1). Then, there exists a unique real number d such that

lim
λ→0

λvλ(y) = d uniformly in TN. (25)

The number d is characterized by the following property: for any δ > 0 there
exists a subsolution vδ and a supersolution vδ of

d− a(y)
∫
RM

[vδ(y + β(z))− vδ(y)− 〈∇vδ(y), β(z)〉]dq0(z)− f0(y)<δ, (26)

d−a(y)
∫
RM

[vδ(y+β(z))−vδ(y)−〈∇vδ(y), β(z)〉]dq0(z)−f0(y) ≥ −δ, (27)

( resp.

d− a(y)
∫
RM

[vδ(y + β(z))− vδ(y)]dq0(z)− f0(y)<δ, (28)

d− a(y)
∫
RM

[vδ(y + β(z))− vδ(y)]dq0(z)− f0(y) ≥ −δ, (29)

) in TN respectively.

Proof. We prove (25) for the problem (23). The proof for (24) is similar
and we do not write it here. We multiply (23) by λ > 0, and put mλ = λvλ.
We have

λmλ(y)− a(y)
∫
RM

[mλ(y + β(z))−mλ(y)− 〈∇mλ(y), β(z)〉]dq0(z) (30)

−λf0(y) = 0 in TN.

We claim that the following holds.

Lemma 3.2.

Let the assumptions in Theorem 3.1 hold.
(i) There exists a constant M > 0 such that the following hold:

|mλ|L∞<M ∀λ ∈ (0, 1). (31)
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(ii) For any θ ∈ (0,min{θ1, θ2}), there exists a constant Cθ > 0 such that

|mλ(y)−mλ(y
′)|<Cθ|y − y′|θ ∀y, y′ ∈ TN, ∀λ ∈ (0, 1). (32)

The constants M , Cθ > 0 are independent on λ ∈ (0, 1).

We admit the above estimates for a while, which we shall prove later.
By Lemma 3.2 (mλ = λvλ), from the Ascoli-Arzera lemma we can take a
sequence λ′ → 0 such that

λ′vλ′(y) → ∃d(y) as λ′ → 0, uniformly in TN,

where d(y) is a Hölder continuous, periodic function satisfying (32). To see
that d(y) is constant, we multiply (23) by λ′ > 0, and tend λ′ to zero. By
using (31), from the stability of viscosity solutions, we get

−
∫
RM

[d(y + β(z))− d(y)− 〈∇d(y), β(z)〉]dq0(z)<0 in TN.

Hence, from the SMP in Theorem 2.1, d(y) is constant, i.e. d(y) ≡ d for some
real number d. Next, assume that there exists another sequence λ′′ → 0 and
another number d′ such that

λ′′vλ′′(y) → d′ as λ′′ → 0, uniformly in TN.

Without loss of generality, we may assume that d′ < d. For arbitrary small
µ > 0, by taking λ′ > 0 and λ′′ > 0 small enough, we have the following two
inequalities.

d− a(y)
∫
RM

[vλ′(y + β(z))− vλ′(y)− 〈∇vλ′(y), β(z)〉]dq0(z)− f0(y)<
µ

2
,

d′ − a(y)
∫
RM

[vλ′′(y + β(z))− vλ′′(y)− 〈∇vλ′′(y), β(z)〉]dq0(z)− f0(y) ≥ −
µ

2
.

We shall write w = vλ′ , w = vλ′′ . By adding a constant if necessary, we may
assume that

w(y) > w(y) ∀y ∈ TN. (33)

We take λ > 0 small enough so that |λw|L∞, |λw|L∞< µ
2
. Then, w and w

satisfy respectively

λw(y)− a(y)
∫
RM

[w(y + β(z))− w(y)− 〈∇w(y), β(z)〉]dq0(z)

12



+d− f0(y)<µ,

λw(y)− a(y)
∫
RM

[w(y + β(z))− w(y)− 〈∇w(y), β(z)〉]dq0(z)

+d′ − f0(y) ≥ −µ.

From the comparison principle (see [2], [3], [11]), we get

λ(w(y)− w(y))<d′ − d+ 2µ ∀y ∈ TN,

which contradicts to (33), for µ > 0 small enough. Therefore, d = d′ should
hold, and we proved the claim.

Proof of Lemma 3.2. (i) The uniform bound for |mλ|L∞ (∀λ ∈ (0, 1)) is
clear from the comparison principle for (30), i.e. |λmλ|L∞<|λf0|L∞ .

(ii) We show the inequality by the contradiction argument. Let r > 0 be
a fixed number to be determined later. Put

Cθ =
2M

rθ
. (34)

Assume that there exist y, y′ ∈ TN such that

|mλ(y)−mλ(y
′)| > Cθ|y − y′|θ, (35)

and we shall lead a contradiction. Remark that |y − y′| < r must hold. Put

Φ(y, y′) = mλ(y)−mλ(y
′)− Cθ|y − y′|θ y, y′ ∈ TN.

Let (ŷ, ŷ′) be a maximum point of Φ in TN. We may assume that Φ(ŷ, ŷ′)
is the strict maximum. Put φ(y, y′) = Cθ|y − y′|θ, p = ∇yφ(ŷ, ŷ

′), Q =
∇2

yφ(ŷ, ŷ
′). From the definition of the viscosity solution, we get

λmλ(ŷ)− a(ŷ)
∫
RM

[mλ(ŷ + β(z))−mλ(ŷ)− 〈p, β(z)〉]dq0(z)<λf0(ŷ),

λmλ(ŷ
′)− a(ŷ′)

∫
RM

[mλ(ŷ
′ + β(z))−mλ(ŷ

′)− 〈p, β(z)〉]dq0(z) ≥ λf0(ŷ
′).

By deviding the above two inequalities by a(ŷ) and a(ŷ′) respectively, and
then by taking the difference of them, we have

λmλ(ŷ)

a(ŷ)
−
λmλ(ŷ

′)

a(ŷ′)
−

∫
RM

[mλ(ŷ + β(z))−mλ(ŷ)
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−mλ(ŷ
′ + β(z)) +mλ(ŷ

′)]dq0(z)<
λf0(ŷ)

a(ŷ)
−
λf0(ŷ

′)

a(ŷ′)
.

Since for any z ∈ RM,

mλ(ŷ)−mλ(ŷ
′)− Cθ|ŷ − ŷ′|θ ≥ mλ(ŷ + β(z))−mλ(ŷ

′ + β(z))− Cθ|ŷ − ŷ′|θ,

the preceding inequality leads to

λa(ŷ′)mλ(ŷ)− λa(ŷ)mλ(ŷ
′)<λa(ŷ′)f0(ŷ)− λa(ŷ)f0(ŷ

′),

which leads to

a(ŷ′)(mλ(ŷ)−mλ(ŷ
′))

<(a(ŷ)−a(ŷ′))mλ(ŷ
′)+a(ŷ′)(f0(ŷ)−f0(ŷ

′))+(a(ŷ′)−a(ŷ))f0(ŷ
′).

Thus, from (6), (7), (35), since (ŷ, ŷ′) is the maximum point of Φ, the above
leads to

Cθ|ŷ − ŷ′|θ<L′(|ŷ − ŷ′|θ1 + |ŷ − ŷ′|θ2),

where L′ = a−1
0 L(M + ||a||L∞(TN)+||f0||L∞(TN)). Therefore, from (34), since

θ ∈(0,min{θ1, θ2}) and |x̂− x̂′| < r,

2M<L′(|ŷ − ŷ′|θ1−θrθ + |ŷ − ŷ′|θ2−θrθ)<L′(rθ1 + rθ2).

By taking r > 0 small enough so that rθ1 + rθ2 < 2ML′−1, we get a desired
contradiction. This shows the existence of Cθ > 0 such that (ii) holds. More-
over, the constant Cθ does not depend on λ ∈ (0, 1).

Corollary 3.3.

(i) Let vλ be the solution of (23) with dq0(z) and β(z) given either one of
the following : Example 1 with α ∈ (1, 2), Examples 2 and 3 with α ∈ (1, 2),
and Exmple 4 with α ∈ (1, 2). Then, there exists a unique constant d such
that (25) holds.
(ii) Let vλ be the solution of (24) with dq0(z) and β(z) given either one of
the following : Example 1 with α ∈ (0, 1), Example 3 with α ∈ (0, 1), and
Exmple 4 with α ∈ (0, 1). Then, there exists a unique constant d such that
(25) holds.
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Proof. As we have seen in Remarks 2.1, each of the measures dq0(z) in
Examples 1-4 satisfies the condition (B). Hence, the claim follows from The-
orem 3.1.

Remarks 3.1. 1. The SMP (Theorem 2.1) is essential to prove the ex-
istence of the ergodic number d in Theorem 3.1.

2. We can generalize Theorem 3.1, by adding a fully nonlinear degenerate
elliptic second-order operator F (x,∇u,∇2u) to (23) (resp. (24)).

4 Homogenizations.

In this section, we give our main results of the homogenization problems
(1)-(2) and (3)-(2) in Theorems 4.6 and 4.8 respectively. Throughout this
section, we assume that the condition (A) holds. Let uε be the solution of
(1)-(2) (resp. (3)-(2) ). By introducing the formal asymptotic expansion (8):

uε(x) = u(x) + εαv(
x

ε
) + o(εα) x ∈ RN,

into (1) (resp. (3)), by using the homogeneity of β in (4), by remarking that
(13) and (14) hold, we get the following cell problem (15):

dI1 − a(y)
∫
RM

[v(y + β(z))− v(y)− 〈∇v(y), β(z)〉]dq0(z)

−a(y)I1 − f(y) = 0 in TN,

where

I1 = I1[u](x) =
∫
RM

[u(x+ β(z))− u(x)− 1|z|<1〈∇u(x), β(z)〉]dq(z),

( resp. (16):

dI2 − a(y)
∫
RM

[v(y + β(z))− v(y)]dq0(z)− a(y)I2 − f(y) = 0 in TN,

where
I2 = I2[u](x) =

∫
RM

[u(x+ β(z))− u(x)]dq(z),
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) provided that dq0(z) satisfies (5) with γ = 2 (resp. γ = 1). Remark that
according to the condition (A), the Lévy measure dq(z) in (1) (resp. (3)) is
transformed to dq0(z) in the cell problem (15) (resp. (16)). For any I1 ∈ R
(resp. I2 ∈ R), from Theorem 3.1 (with f0(y) =a(y)Ii + f(y) (i=1,2)), there
exists a unique number dI1 (resp. dI2) such that for any δ > 0 there exist vδ
a periodic subsolution and vδ a periodic supersolution of

dI1 − a(y)
∫
RM

[vδ(y + β(z))− vδ(y)− 〈∇vδ(y), β(z)〉]dq0(z)

−a(y)I1 − f(y)<
δ

2
in TN,

dI1 − a(y)
∫
RM

[vδ(y + β(z))− vδ(y)− 〈∇vδ(y), β(z)〉]dq0(z)

−a(y)I1 − f(y) ≥ −
δ

2
in TN.

( resp.

dI2 − a(y)
∫
RM

[vδ(y + β(z))− vδ(y)]dq0(z)− a(y)I2 − f(y)<
δ

2
in TN,

dI2 − a(y)
∫
RM

[vδ(y+β(z))− vδ(y)]dq0(z)− a(y)I2− f(y) ≥ −
δ

2
in TN.

) For the later purpose, let us regularize vδ and v
δ: for ν > 0, define

vνδ (x) = sup
|y−x|<ν

{vδ(y)−
1

ν2
|y − x|2} (sup convolution),

vδν(x) = inf
|y−x|<ν

{vδ(y) +
1

ν2
|y − x|2} (inf convolution).

Put v = vνδ , v = vδν . It is known that v is semiconvex, v is semiconcave,
and both are Lipschitz continuous (see [14], W.H. Fleming and H.M. Soner
[17]). Moreover, since limν→0 v

ν
δ = vδ, limν→0 v

δ
ν = vδ uniformly in TN, for

any δ > 0, we can take ν > 0 such that v and v are respectively a subsolution
and a supersolution of the following :

dI1 − a(y)
∫
RM

[v(y + β(z))− v(y)− 〈∇v(y), β(z)〉]dq0(z) (36)

−a(y)I1 − f(y)<δ in TN,
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dI1 − a(y)
∫
RM

[v(y + β(z))− v(y)− 〈∇v(y), β(z)〉]dq0(z) (37)

−a(y)I1 − f(y) ≥ −δ in TN,

( resp.

dI2 − a(y)
∫
RM

[v(y + β(z))− v(y)]dq0(z)− a(y)I2 − f(y)<δ in TN, (38)

dI2−a(y)
∫
RM

[v(y+β(z))−v(y)]dq0(z)−a(y)I2−f(y) ≥ −δ in TN, (39)

) (see for instance [3], [17]). We use the above approximated cell problem in
place of (15) in the following argument. Define

I1(I1) = −dI1 ∀I1 ∈ R (resp. I2(I2) = −dI2 ∀I2 ∈ R), (40)

where the right hand side is the unique number such that for any δ > 0,
(36) and (37) (resp. (38) and (39)) have a subsolution and a supersolution
respectively. We prepare some lemmas which we use later.

Lemma 4.1. ([6])

Assume that (4), (6), (7) and that dq0(z) satisfies the condition (B) and
(5) with γ = 2 (resp. γ = 1). Then, the function I1 (resp. I2) defined in
(40) is continuous and satisfies the following property: there exists Θ > 0
such that

I1(I+I
′)−I1(I)<−ΘI ′ (resp.I2(I+I

′)−I2(I)<−ΘI ′) ∀I ∈ R, ∀I ′ ≥ 0.
(41)

The above result was presented in [6], which was originally given in [15]
for the PDE case. The proof does not differ so much from [6], [15], and we
omit it here.

Remarks 4.1. Let u ∈ C2(RN). Then, by putting

I1 = I1[u](x) =
∫
RM

[u(x+ β(z))− u(x)− 1|z|<1〈∇u(x), β(z)〉]dq(z)

( resp.

I2 = I2[u](x) =
∫
RM

[u(x+ β(z))− u(x)]dq(z)
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) into I1 (resp. I2), the map: u → I1(I1[u](x)) (resp. u → I2(I2[u](x))) can
be regarded as an integro-differential operator. The property (41) implies
that I1(I1[u](x)) (resp. I2(I2[u](x))) is subelliptic (see [6]).

Lemma 4.2.

Let I1 (resp. I2) be the functions defined in (40). Consider

u+ I1(I1[u](x)) = 0 (resp.u+ I2(I2[u](x)) = 0) in Ω, (42)

with (2). Let u, v be respectively a subsolution and a supersolution of (42)-
(2). Then, u<v in Ω. Moreover, there exists a unique viscosity solution u of
(42)-(2).

Proof. The comparison principle can be shown by the usual contradin-
tion argument, from the subellipticity (41). The existence of the solution can
be obtained by the Perron’s method. This argument was done in [2], [3], [6],
[11] and we do not repeat it here.

We remind the following result in the convex analysis, which we cite with-
out proof (see [14], [17] for details). For an upper or a lower semicontinuous
function Φ defined in an open subset O in Rn, for ρ > 0, put

Mρ = {x ∈ O| ∃p ∈ Rn s.t. |p|<ρ, Φ(x)<Φ(x) + 〈p, x− x〉 ∀x ∈ O}.

Lemma 4.3. ([14], [17])

Let Φ be a semiconvex function in an open domain O, and let x′ be a
maximizer of Φ in O such that

µ = sup
O

Φ(x)− sup
∂O

Φ(x) = Φ(x′)− sup
∂O

Φ(x) > 0.

Then, the following hold.
(i) Φ is differentiable at x′ and ∇Φ(x′)=0.
(ii) For any m ∈ N, there exists xm ∈M 1

m

such that Φ is twice differentiable

at xm, limm→∞ xm = x′, ∇2Φ(xm)<O, |∇Φ(xm)|<
1
m
. For pm= ∇Φ(xm), the

function
Φm(x) = Φ(x)− 〈pm, x〉

takes a maximum at x = xm.
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Lemma 4.4.

Let v(y) be a periodic semiconcave function defined in TN. Assume that
for a function Ψ(x)∈ C2(RN), Ψ(x) + εαv(x

ε
) takes a global minimum at x.

Then, the following hold for any z ∈ RM, with a constant C > 0 independent
on ε > 0 and x.
(i)

−Cε2−α|z|2<v(
x

ε
+ β(z))− v(

x

ε
)− 〈∇yv(

x

ε
), β(z)〉<C|z|2. (43)

(ii)

−Cε1−α|z|<v(
x

ε
+ β(z))− v(

x

ε
)<C|z|. (44)

Proof of Lemma 4.4. (i) The second inequality comes from the semi-
concavity of v and (4). The first inequality is derived from the fact that
Ψ(x) + εαv(x

ε
) takes a global minimum at x. In fact, since Ψ(x) + εαv(x

ε
) is

semiconcave, it is differentiable at x and ∇Ψ(x)+ε−1+α∇yv(
x
ε
)= 0,

Ψ(x) + εαv(
x

ε
)<Ψ(x+ εβ(z)) + εαv(

x

ε
+ β(z)) ∀z ∈ RM,

for any ε > 0. Thus, we get

εα(v(
x

ε
+β(z))−v(

x

ε
)−〈ε−1∇yv(

x

ε
), εβ(z)〉)

≥ −(Ψ(x+εβ(z))−Ψ(x)−〈∇Ψ(x), εβ(z)〉) ≥ −ε2|β(z)|2|∇2Ψ(x+µεβ(z))|,

where µ ∈ (0, 1). From (4), the first inequality holds with a constant C > 0
independent on ε > 0 and x.
(ii) The second inequality comes from the Lipschitz continuity of v and (4).
The first inequality is proved similarly to (i).

Lemma 4.5.

Let v(y) be a periodic semiconcave function defined in TN. Assume that
for a function Ψ(x)∈ C2(RN), Ψ(x)+g(ε)v(x

ε
) takes a minimum at x. Then,

the following hold.
(i) If dq0(z) satisfies (5) with γ = 2,

εα
∫
RM

[v(
x+ β(z)

ε
)− v(

x

ε
)− 1|z|<1〈ε

−1∇yv(
x

ε
), β(z)〉]dq(z)
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=
∫
RM

[v(
x

ε
+ β(z))− v(

x

ε
)− 〈∇yv(

x

ε
), β(z)〉]dq0(z) +O(ε). (45)

(ii) If dq0(z) satisfies (5) with γ = 1,

εα
∫
RM

[v(
x+ β(z)

ε
)− v(

x

ε
)]dq(z) =

∫
RM

[v(
x

ε
+ β(z))− v(

x

ε
)]dq0(z) +O(ε).

(46)

Proof. (i) From (4) (i.e. ε−1β(z) = β( z
ε
)), we have

εα
∫
RM

[v(
x+ β(z)

ε
)− v(

x

ε
)− 1|z|<1〈ε

−1∇yv(
x

ε
), β(z)〉]dq(z)

= εα
∫
RM

[v(
x

ε
+ β(

z

ε
))− v(

x

ε
)− 1|z|<1〈∇yv(

x

ε
), β(

z

ε
)〉]dq(z)

=
∫
RM

[v(
x

ε
+ β(z′))− v(

x

ε
)− 1|εz′|<1〈∇yv(

x

ε
), β(z′)〉]εM+αq(εz′)dz′.

Then, by the condition (A), (5) with γ = 2,

|
∫
RM

[v(
x

ε
+β(z′))−v(

x

ε
)−1|εz′|<1〈∇yv(

x

ε
), β(z′)〉]εM+αq(εz′)dz′

−
∫
RM

[v(
x

ε
+ β(z))− v(

x

ε
)− 〈∇yv(

x

ε
), β(z)〉]dq0(z)|

<C
∫
|z|<1

[v(
x

ε
+ β(z))− v(

x

ε
)− 〈∇yv(

x

ε
), β(z)〉]|εM+αq(εz)− q0(z)|dz

+C
∫
|z|>1

|z||εM+αq(εz)− q0(z)|dz

<C ′(
∫
|z|<1

|z|2|εM+αq(εz)−q0(z)|dz+
∫
|z|>1

|z||εM+αq(εz)−q0(z)|dz) = O(ε),

where we used Lemma 4.4 (i) to have the last estimate.
(ii) The proof is similar to that of (i), while we use (5) with γ = 1 and

Lemma 4.4 (ii).

Now, we state our first main result of the paper.

Theorem 4.6.
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Let uε be the solution of (1)-(2). Assume that (4), (5) (with γ = 2), (6),
(7), and the conditions (A) and (B) hold. Assume also that dq0(z) defined
in (11) satisfies (5) with γ = 2. Then, there exists a unique function

u(x) = lim
ε→0

uε(x) ∀x ∈ RN,

which is a unique viscosity solution of

u(x) + I1[I1[u](x)] = 0 in Ω, (47)

and (2), where I1 is given by (40) with

I1[u](x) =
∫
RM

[u(x+ β(z))− u(x)− 1|z|<1〈∇u(x), β(z)〉]dq(z).

P roof of Theorem 4.6.We use the perturbed test function method intro-
duced in [15] (see [20], too), which is now standard to solve homogenization
problems in the framework of viscosity solutions. Here, we have to take an
extra care to treat the difference between the original Lévy measure dq(z)
and the rescaled measure dq0(z) in the cell problem (15) (and (36)-(37)). Let

u∗(x) = lim sup
ε→0,y→x

uε(y), u∗(x) = lim inf
ε→0,y→x

uε(y) ∀x ∈ RN.

In the following, we devide our argument in two steps.
(Step 1.) We show that u∗ is a subsolution of (47). By assuming that u∗ is
not the subsolution of (47), we shall get a contradiction. So, assume that
for a function φ(x) ∈ C2(RN), u∗ − φ takes a global strict maximum at x,
u∗(x) = φ(x), and for some γ > 0, the following holds.

φ(x) + I1[
∫
RM

[φ(x+ β(z))− φ(x)− 1|z|<1〈∇φ(x), β(z)〉]dq(z)] = 3γ > 0.

Then, from the continuities of I1 and φ, for r > 0 small enough

φ(x) + I1[I1[φ](x)] > 2γ in Br(x), (48)

where I1[φ](x) =
∫
RM[φ(x+ β(z))− φ(x)− 1|z|<1〈∇φ(x), β(z)〉]dq(z).

From (37), for δ > 0 and I1 = I1[φ](x), we know that there exists a
periodic, semiconcave, Lipschitz continuous function v which satisfies

dI1[φ](x) − a(y)
∫
RM

[v(y + β(z))− v(y)− 〈∇v(y), β(z)〉]dq0(z) (49)
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−a(y)I1[φ](x)− f(y) ≥ −
δ

2
in TN.

We claim the following.
Lemma 4.7.

Let φε(x) = φ(x) + εαv(x
ε
). The function φε is a viscosity supersolution

of

φε(x)− a(
x

ε
)
∫
RM

[φε(x+ β(z))− φε(x)− 1|z|<1〈∇φε(x), β(z)〉]dq(z) (50)

−f(
x

ε
) ≥ γ in Br(x),

where the Lévy density dq(z) is the one in (1).

Proof of Lemma 4.7. To confirm (50) in the sense of viscosity solutions,
assume that for some ψ ∈ C2(RN), φε − ψ takes a strict minimum at x = x′

and φε(x
′) = ψ(x′). From Definition B in §6, we must show

φε(x
′)− a(

x′

ε
)
∫
RM

[ψ(x′ + β(z))− ψ(x′)− 1|z|<1〈∇ψ(x
′), β(z)〉]dq(z)

−f(
x′

ε
) ≥ γ. (51)

Since −(φε − ψ) is semiconvex, from Lemma 4.3, we can take a sequence
x′m ∈ Ω such that x′m → x′ as m → ∞, φε − ψ is twice differentiable
at x′m, ∇

2(φε − ψ)(x′m) ≥ O, |∇(φε − ψ)(x′m)|<
1
m
. And by putting pm =

∇(φε −ψ)(x′m), (φε −ψ)(x)− 〈pm, x〉 takes a minimum at x′m. Put ψm(x) =
ψ(x) + 〈pm, x〉. To see (51), we first prove

φε(x
′
m)−a(

x′m
ε
)
∫
RM

[ψm(x
′
m+β(z))−ψm(x

′
m)−1|z|<1〈∇ψm(x

′
m), β(z)〉]dq(z)

−f(
x′m
ε
) ≥ γ, (52)

for anym ∈ N large enough. By remarking that φε−ψm is twice differentiable
at x′m, that ψm ∈ C2, we know that φε is twice differentiable at x

′
m, and thus

φε(x
′
m + β(z)) − φε(x

′
m) − 1|z|<1〈∇φε(x

′
m), β(z)〉∈ L1(RM, dq(z)) (we used

(5)). We can show that

φε(x
′
m)− a(

x′m
ε
)
∫
RM

[φε(x
′
m + β(z))− φε(x

′
m)− 1|z|<1〈∇φε(x

′
m), β(z)〉]dq(z)
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−f(
x′m
ε
) ≥ γ, (53)

in the classical sense, for any m ∈ N large enough. To see (53), we use
Lemma 4.5 (i) (45) for Ψ = φ− ψm, x = x′m to have

εα
∫
RM

[v(
x′m + β(z)

ε
)− v(

x′m
ε
)− 1|z|<1〈ε

−1∇yv(
x′m
ε
), β(z)〉]dq(z)

=
∫
RM

[v(
x′m
ε

+ β(z))− v(
x′m
ε
)− 〈∇yv(

x′m
ε
), β(z)〉]dq0(z) +O(ε).

Thus, from (49), for y = x′

m

ε
, ε > 0 small enough,

dI1[φ](x)−a(
x′m
ε
)εα

∫
RM

[v(
x′m + β(z)

ε
)−v(

x′m
ε
)−1|z|<1〈ε

−1∇yv(
x′m
ε
), β(z)〉]dq(z)

−a(
x′m
ε
)I1[φ](x)− f(

x′m
ε
) ≥ −δ.

We introduce this into (48) (for x = x′m∈ Br(x)):

φ(x′m) + I1[
∫
RM

[φ(x′m + β(z))− φ(x′m)− 1|z|<1〈∇φ(x
′
m), β(z)〉]dq(z)] > 2γ.

By taking ε > 0, δ > 0 small enough so that δ + |εαv(x
′

m

ε
)|<γ

4
, by remarking

that dI1[φ](x) = −I1(I1[φ](x)), from the continuities of I1, φ, for r > 0 small
enough we get

φ(x′m) + εαv(
x′m
ε
)− a(

x′m
ε
)
∫
RM

[(φ(x′m + β(z)) + εαv(
x′m + β(z)

ε
))

−(φ(x′m) + εαv(
x′m
ε
))− 1|z|<1〈∇φ(x

′
m) + εα−1∇yv(

x′m
ε
), β(z)〉]dq(z)

−f(
x′m
ε
) ≥ γ.

Thus, (53) is proved. From ∇φε(x
′
m)= ∇ψm(x

′
m) and

(φε − ψm)(x
′
m)<(φε − ψm)(x

′
m + β(z)) ∀z ∈ RM,

(53) leads to (52):

φε(x
′
m)−a(

x′m
ε
)
∫
RM

[ψm(x
′
m+β(z))−ψm(x

′
m)−1|z|<1〈∇ψm(x

′
m), β(z)〉]dq(z)
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−f(
x′m
ε
) ≥ γ.

From (52), since |pm|<
1
m
, and since

ψm(x
′
m + β(z))− ψm(x

′
m)− 1|z|<1〈∇ψm(x

′
m), β(z)〉

→ ψ(x′ + β(z))− ψ(x′)− 1|z|<1〈∇ψ(x
′), β(z)〉 ∈ L1(RM, dq(z))

as m→ ∞, we have shown (51) in Lemma 4.7.

We continue the proof of Theorem 4.6. Now, the comparison principle
for (1) and (50) leads

sup
x∈Ur(x)

{uε(x)− φε(x)}< sup
x∈Ur(x)c

{uε(x)− φε(x)}+ γ.

By letting ε→ 0, since γ > 0 is arbitrary,

sup
x∈Ur(x)

{u∗(x)− φ(x)}< sup
x∈Ur(x)c

{u∗(x)− φ(x)}.

However, this contradicts to the fact that x is the strict global maximum of
u∗ − φ. Therefore, u∗ must be a viscosity subsolution of (47).
(Step 2.) By the parallel argument, we can prove that u∗ is a viscosity
supersolution of (47). Now, from the definition of u∗ and u∗, we have

u∗<uε<u
∗ ∀ε > 0.

From the comparison principle for the viscosity solution of (47)-(2) in Lemma
4.2, we have

u∗<u∗ in Ω.

Thus, there exists a limit: u = limε→0uε= u∗ = u∗ which is the unique vis-
cosity solution of (47)-(2).

Our second result is the following.

Theorem 4.8.

Let uε be the solution of (3)-(2). Assume that (4), (5) (with γ = 1), (6),
(7) hold, and that the conditions (A) and (B) hold. Assume also that dq0(z)
defined in (11) satisfies (5) with γ = 1. Then, there exists a unique function

u(x) = lim
ε→0

uε(x) ∀x ∈ RN,
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which is a unique viscosity solution of

u(x) + I2[I2[u](x)] = 0 in Ω, (54)

and (2), where I2 is given by (40) and

I2[u](x) =
∫
RM

[u(x+ β(z))− u(x)]dq(z).

P roof of Theorem 4.8. The proof is similar to that of Theorem 4.6 (in
fact, it is simpler because there is no term 1|z|<1〈∇u(x), β(z)〉 in the inte-
gral). We use Lemma 4.5 (ii) instead of (i).

Corollary 4.9.

(i) Let uε be the solution of (1)-(2). Assume that (6), (7) hold, and
that dq0(z) and β(z) are given either one of the following : Example 1 with
α ∈ (1, 2), Examples 2 and 3 with α ∈ (1, 2), and Exmple 4 with α ∈ (1, 2).
Then, there exists a unique function

u(x) = lim
ε→0

uε(x) ∀x ∈ RN,

which is a unique viscosity solution of (47)-(2).
(ii) Let uε be the solution of (3)-(2). Assume that (6), (7) hold, and that
dq0(z) and β(z) are given either one of the following : Example 1 with α ∈
(0, 1), Example 3 with α ∈ (0, 1), and Exmple 4 with α ∈ (0, 1). Then, there
exists a unique function

u(x) = lim
ε→0

uε(x) ∀x ∈ RN,

which is a unique viscosity solution of (54)-(2).

Proof. The claims follows from Corollary 3.3, Theorems 4.6 and 4.8.

Remark 4.2. The present argument can be generalized to the following
type of the homogenization problem :

uε(x) + sup
α̃∈A

{−a(
x

ε
)
∫
RM

[uε(x+ β(z, α̃))− uε(x)
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−1|z|<1〈∇uε(x), β(z, α̃)〉]dq(z)− f(
x

ε
, α̃)} = 0 in Ω,

with (2), where A is a compact metric set (control set), β(z, α) is a contin-
uous function in RM × A with values in RN satisfying (4) uniformly in A,
f(y, α) is a real valued continuous function in TN × A satisfying (7) uni-
formly in A. We leave the detail to the readers.

5 A nonlinear problem.

In this section, we show how the present method can apply to more general
nonlinear problems. We consider Example 5 in §1. Let uε be the unique
viscosity solution of (17).

Assume that there exist two positive numbers αl ∈ (0, 2) (l = 1, 2),
subsets Sl

0 ⊂ Sl = supp(dql(z)) (l = 1, 2), and positive functions ql0(z) (l =
1, 2) such that the assumption (A) is satisfied:

lim
ε→0

ql(εz)ε
l+αldz = ql0(z)dz ∀z ∈ Sl

0; = 0dz ∀z ∈ Rl/Sl
0, l = 1, 2,

(55)
|εl+αlql(εz)|<C|z|

−(l+αl) ∀ε ∈ (0, 1), ∀z ∈ Rl. (56)

where dql(z) = ql(z)dz (l = 1, 2), and C > 0 is a constant. We define the
following new measures :

dql0(z) = ql0(z)dz ∀z ∈ Sl
0; = 0dz ∀z ∈ Rl/Sl

0, l = 1, 2. (57)

Here, we further assume that α1 = α2 = α (otherwise, a different problem
which does not concern with the present interest of the nonlocal problem
arises). We use the formal asymptotic expansion :

uε(x) = u(x) + εαv(
x1
ε
,
x2
ε
,
x3
ε
) x ∈ R3, (58)

and get the following ergodic cell problem. For any given I ′, I ′′ ∈ R, find
a unique number dI′,I′′ with which the following problem has a periodic vis-
cosity solution v:

dI′,I′′ +max{−a(y)
∫
R

[v(y + β1(z
′))− v(y)− 〈β1(z

′),∇v(y)〉]dq10(z
′)

−a(y)I ′,−a(y)
∫
R2

[v(y + β2(z
′′))− v(y)− 〈β2(z

′′),∇v(y)〉]dq20(z
′′)
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−a(y)I ′′} − f(y) = 0 in T3, (59)

where

I ′ = I ′[u](x) =
∫
R

[u(x+ β1(z
′))− u(x)− 1|z′|<1 〈β1(z

′),∇u(x)〉]dq1(z
′),

I ′′ = I ′′[u](x) =
∫
R2

[u(x+ β2(z
′′))− u(x)− 1|z′′|<1 〈β2(z

′′),∇u(x)〉]dq2(z
′′).

As in §3, the existence of the unique number dI′,I′′ in (59) comes from the
SMP of the integro-differential equation:

H(y,∇v) + max{−
∫
R

[v(y + β1(z
′))− v(y)− 〈β1(z

′),∇v(y)〉]dq10(z
′),

−
∫
R2

[v(y + β2(z
′′))− v(y)− 〈β2(z

′′),∇v(y)〉]dq20(z
′′)} = 0 in T3. (60)

In order to establish the SMP for (60), we need to generalize the condition
(B) of Theorem 2.1 to the following.

(B’) For any two points y, y′ ∈ T3, there exist a finite number of points
y1, ..., ym ∈ TN such that y1 = y, ym = y′, and for any m positive numbers
εi > 0 (1<i<m), we can take subsets Ji (1<∀i<m) either Ji ⊂ S1

0 or Ji ⊂ S2
0 ,

such that if Ji ⊂ Sl
0 (l = 1, 2),

∫
Ji

1dql0(z) > 0; yi + βl(z) ∈ Bεi(yi+1) ∀z ∈ Ji,

for any 1<i<m.

Theorem 5.1.

Let u ∈ USC(R3) be a viscosity subsolution of (60). Assume that βl
(l = 1, 2) satisfy (4), that dql0 (l = 1, 2) satisfy (5) and the condition (B’),
and that (18) holds. If u attains a maximum at y in T3, then u is constant
in T3.

The proof of Theorem 5.1 is similar to Theorem 2.1, which we do not
reproduce here. By using Theorem 5.1, the existence of the unique number
dI′,I′′ in (59) can be shown by using a similar argument in §3. In this way,
we can define

I(I ′, I ′′) = −dI′,I′′ ∀(I ′, I ′′) ∈ R2.

27



Then, the effective integro-differential equation for u= limε→0 uε is the fol-
lowing:

u+ I(I ′[u](x), I ′′[u](x)) = 0 x ∈ Ω,

associated with the Dirichlet condition (2), where I ′[u](x) and I ′′[u](x) are
given before. This formal argument can be confirmed by the perturbed test
function method used in §4. Since the argument is similar, we just show the
direction and do not enter in detail here.

6 Appendix.

In this section, by following [5], we note three types of equivalent defi-
nitions of the viscosity solutions for a class of integro-differential equations,
which includes (1). The comparison and the existence of viscosity solutions
in this framework are found in [1], [3], [8], O. Alvarez and A. Tourin [1], G.
Barles, R. Buckdahn, and E. Pardoux [10], G. Barles and C. Imbert [11], and
the references there in. The equivalence of these definitions was shown in [5].
We consider the following problem.

F (x, u(x),∇u(x),∇2u(x))−
∫
RM

[u(x+ β(z))− u(x)

−1|z|<1〈β(z),∇u(x)〉]dq(z) = 0 in Ω, (61)

where F is a real valued continuous function defined in Ω ×R ×RN × SN,
which satisfies the degenerate ellipticity (see [14] for the notion). We say that
for u ∈ USC(RN) (resp. (LSC(RN)), (p,X) ∈ RN ×SN is a subdifferential
(resp. superdifferential) of u at x ∈ Ω if for any small µ > 0 there exists
ν > 0 such that the folowing holds.

u(x+z)−u(x)<(resp. ≥) 〈p, z〉+
1

2
〈Xz, z〉+(resp.−)µ|z|2 ∀|z|<ν, z ∈ RN,

We denote the set of all subdifferentials (resp. superdifferentials) of u ∈
USC(RN) (resp. LSC(RN)) at x ∈ Ω by J2,+

Ω u(x) (resp. J2,−
Ω u(x)). We say

that (p,X) ∈ RN × SN belongs to J2,+
Ω u(x) (resp. J2,−

Ω u(x)), if there exist a
sequence of points xn ∈ Ω and (pn, Xn) ∈ J2,+

Ω u(xn) (resp. J
2,−
Ω u(xn)) such

that limn→∞ xn = x, limn→∞(pn, Xn) = (p,X).
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From (4), for u ∈ USC(RN) (resp. LSC(RN)), if (p,X) ∈ J2,+
Ω u(x) (resp.

J2,−
Ω u(x)), we can take a pair of positive numbers (ν, µ) such that

u(x+ β(z))− u(x)<(resp. ≥)〈p, β(z)〉+
1

2
〈Xβ(z), β(z)〉+ (resp.−)µ|β(z)|2

∀|z|<ν, z ∈ RM, (62)

Definition A. ([2]) Let u ∈ USC(RN) (resp. LSC(RN)). We say that
u is a viscosity subsolution (resp. supersolution) of (61), if for any x̂ ∈ Ω,
any (p,X) ∈ J2,+

Ω u(x̂) (resp. ∈ J2,−
Ω u(x̂)), and any pair of numbers (ν, µ)

satisfying (62), the following holds

F (x̂, u(x̂), p,X)−
∫
|z|<ν

1

2
〈(X+(resp.−)2µI)β(z), β(z)〉dq(z)

−
∫
|z|≥ν

[u(x̂+ β(z))− u(x̂)− 1|z|<1〈β(z), p〉]dq(z)<(resp. ≥)0. (63)

If u is both a viscosity subsolution and a viscosity supersolution , it is called
a viscosity solution.

Definition B.([10],[11],[19]) Let u ∈ USC(RN) (resp. LSC(RN)).
We say that u is a viscosity subsolution (resp. supersolution) of (61), if for
any x̂ ∈ Ω and for any φ ∈ C2(RN) such that u(x̂) = φ(x̂) and u − φ takes
a maximum (resp. minimum) at x̂, the following holds

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))−
∫
RM

[φ(x̂+ β(z))− φ(x̂)

−1|z|<1〈β(z),∇φ(x̂)〉]dq(z)<(resp. ≥)0. (64)

If u is both a viscosity subsolution and a viscosity supersolution, it is called
a viscosity solution.

Definition C. [5] Let u ∈ USC(RN) (resp. LSC(RN)). We say that
u is a viscosity subsolution (resp. supersolution) of (61), if for any x̂ ∈ Ω
and for any φ ∈ C2(RN) such that u(x̂) = φ(x̂) and u − φ takes a global
maximum (resp. minimum) at x̂,

h(z) = u(x̂+ z)− u(x̂)− 1|z|<1〈β(z),∇φ(x̂)〉 ∈ L1(RM, dq(z)),
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and

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))−
∫
z∈RM

[u(x̂+ β(z)) (65)

−u(x̂)− 1|z|<1〈β(z),∇φ(x̂)〉]dq(z)<(resp. ≥)0.

If u is both a viscosity subsolution and a viscosity supersolution, it is called
a viscosity solution.

Theorem 6.1.

The definitions A, B, and C are equivalent.

The claim was proved for the case M = N and β(z) = z in [5], and for
the case β depending also in x ∈ RN in [8]. The present case is contained
in the latter, which is not so different from the former. Thus, we do not
reproduce the proof here.

We next modify the above definitions to treat the following

F (x, u(x),∇u(x),∇2u(x))−
∫
z∈RM

[u(x+ β(z))− u(x)]dq(z) = 0 in Ω,

(66)
which includes (3), where dq(z) satisfies (5) with γ = 1. Remark that
from (4), for u ∈ USC(RN) (resp. LSC(RN)), if (p,X) ∈ J2,+

Ω u(x) (resp.
J2,−
Ω u(x)), for any µ > 0, we can take ν > 0 such that

u(x+β(z))−u(x)<(resp. ≥)〈p, β(z)〉+(resp.−)µ|β(z)|2 ∀|z|<ν, z ∈ RM,
(67)

Definition A’. Let u ∈ USC(RN) (resp. LSC(RN)). We say that u is
a viscosity subsolution (resp. supersolution) of (66), if for any x̂ ∈ Ω, any
(p,X) ∈ J2,+

Ω u(x̂) (resp. J2,−
Ω v(x̂)), and any pair of positive numbers (ν, µ)

satisfying (67), the following holds

F (x̂, u(x̂), p,X)−
∫
|z|<ν

〈p+ (resp.−)µβ(z), β(z)〉dq(z)

−
∫
|z|≥ν

[u(x̂+ β(z))− u(x̂)]dq(z)<(resp. ≥)0. (68)

If u is both a viscosity subsolution and a viscosity supersolution , it is called
a viscosity solution.
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Definition B’. Let u ∈ USC(RN) (resp. LSC(RN)). We say that u is
a viscosity subsolution (resp. supersolution) of (66), if for any x̂ ∈ Ω and for
any φ ∈ C2(RN) such that u(x̂) = φ(x̂) and u − φ takes a maximum (resp.
minimum) at x̂, and for any ν > 0,

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))−
∫
RM

[φ(x̂+β(z))−φ(x̂)]dq(z)<(resp. ≥)0. (69)

If u is both a viscosity subsolution and a viscosity supersolution, it is called
a viscosity solution.

Definition C’. Let u ∈ USC(RN) (resp. LSC(RN)). We say that u is
a viscosity subsolution (resp. supersolution) of (61), if for any x̂ ∈ Ω and for
any φ ∈ C2(RN) such that u(x̂) = φ(x̂) and u − φ takes a global maximum
(resp. minimum) at x̂,

h(z) = u(x̂+ z)− u(x̂) ∈ L1(RM, dq(z)),

and

F (x̂, u(x̂),∇φ(x̂),∇2φ(x̂))−
∫
z∈RM

[u(x̂+ β(z))− u(x̂)]dq(z)<(resp. ≥)0.

(70)
If u is both a viscosity subsolution and a viscosity supersolution, it is called
a viscosity solution.

Theorem 6.2.

The definitions A’, B’, and C’ are equivalent.

Proof. The proof of Theorem 6.2 can be done in the same way to [5],
and we abbreviate it to avoid the redundancy.
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