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Groups of formal diffeomorphisms in several complex variables

and closed one-forms

Mitchael Martelo and Bruno Scardua

Abstract

We study groups of formal diffeomorphisms in several complex variables. For abelian,
metabelian or nilpotent groups we investigate the existence of suitable formal vector
fields and closed differential forms which exhibit an invariance property under the group
action. Our results are applicable in the construction of suitable integrating factors for
holomorphic foliations with singularities. We believe they are a starting point in the study
of the connection between Liouvillian integration and transverse structures of holomorphic
foliations with singularities in the case of arbitrary codimension.

1 Introduction and main results

The study of groups and germs of complex diffeomorphisms fixing the origin is an important
tool in the Theory of Holomorphic Foliations, through the study of holonomy groups of its
leaves. Indeed, the holonomy groups of (the leaves) of a codimension n ≥ 1 holomorphic
foliation are (identified with) groups of germs of complex diffeomorphisms fixing the origin of
C
n. In the codimension n = 1 case these are subgroups of germs of one variable holomorphic

maps and there is a well-established dictionary relating topological and dynamical properties
of (the leaves of) the foliation to algebraic properties of the group. This is clear in works as
[2], [7], [9], [10] and [15].

All these facts are compiled in some works relating the existence of suitable “transverse
structures” for the foliation with the transverse dynamics of the foliation ([3], [12], [13]).
Further, relations with the existence of suitable formal or analytic objects invariant by the
holonomy group are obtained (cf. [12]).

Let us be more precise. Denote by Diff(Cn, 0) the group of germs of complex diffeomor-
phisms fixing the origin 0 ∈ C

n. To each germ f ∈ Diff(Cn, 0) we associate its (convergent)
power series f(z) =

∑
INn

aIz
I , aI ∈ C. This gives an embedding of Diff(Cn, 0) into the group

D̂iff(Cn, 0) of formal complex diffeomorphisms in n variables, consisting of all formal series
f̂ =

∑
I∈Nn

aIz
I with complex coefficients aI ∈ C with f̂ ′(0) := a0 6= 0. We denote by On the

ring of germs at the origin of holomorphic functions of n variables and by Ôn its formal coun-
terpart. Also denote by X(Cn, 0) the On-module of germs of complex vector fields vanishing
at the origin 0 ∈ C

n and by X̂(Cn, 0) its formal counterpart. Compiling results of various
authors we have for the one-dimensional case (n = 1):

Theorem 1 ([8]). Let G ⊂ D̂iff(C, 0) be a subgroup.

1. G is abelian if, and only if, G admits a formal invariant vector field: ∃ξ̂ ∈ X̂(C, 0) such
that g∗ξ̂ = ξ̂, ∀g ∈ G.
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2. G is solvable if, and only if, G admits a formal vector field which is projectively invariant
by G: ∃ ξ̂ ∈ X̂(C, 0) such that for each g ∈ G we have g∗ξ̂ = cĝ.ξ̂ for some cĝ ∈ C

∗.

We also quote that a subgroup G < D̂iff(C, 0) is solvable if and only if its subgroup G1

of flat elements is abelian, that is, if and only if, G is metabelian. This important fact is
essentially a consequence of two other facts:

1. For a subgroup G < D̂iff(C, 0) the derivative group DG = {g′(0) : ĝ ∈ G} is abelian
and therefore the group of commutators G(1) := [G,G] =< ĝĥĝ−1ĥ−1 : ĝ, ĥ ∈ G > is a
flat subgroup, i.e., a subgroup of G1.

2. Two flat elements f̂ , ĝ ∈ G1 commute only if they have the same order of tangency to
the identity.

As we shall see, none of the above facts holds for subgroups of D̂iff(Cn, 0) when n ≥ 2.
Therefore it is quite natural to expect that the above mentioned dictionary is much different
or much harder to find, in the n ≥ 2 case. To begin this study is one of the main goals of this
work. We also aim on possible applications of our results to the framework of holomorphic
foliations.

For some of the reasons mentioned above we divide this work in two parts. The first
is concerned with the study of flat subgroups, i.e., groups with all elements tangent to the
identity. The second is about not necessarily flat groups, but we require the existence of
suitable dicritic (“radial type”) elements in the group.

1.1 Part I - Flat groups

As mentioned above, in the first part we focus on the study of subgroups G < D̂iff(Cn, 0)
under the hypothesis that G is abelian and flat or metabelian with abelian derivative group.
Before stating our main results we observe that in some main applications of the results in
Theorem 1 (case n = 1), the winning strategy is to construct from the information on the
holonomy groups of the foliation, some suitable differential forms which allow to “integrate”
the foliation (as for instance a foliation admitting a Liouvillian first integral). More precisely,
in dimension n = 1 a formal vector field ξ̂ ∈ X̂(C, 0) can be written as

ξ̂(z) =
zk+1

1 + λzk
d

dz

for some λ ∈ C and k ∈ N.
The duality equation ω̂ · ξ̂ = 1 has, in this dimension one case, a single solution

ω̂ = λ
dz

z
+

dz

zk+1

This expression, is the expression of general closed meromorphic one-form with an isolated
pole of order k + 1 at the origin 0 ∈ C, residue λ, in a suitable coordinate system. It is a
particular case of the so called Integration Lemma (see for instance [12] Example 1.6 page
174, or Proposition 5 in Section 5).

Given a formal diffeomorphism ĝ ∈ D̂iff(Cn, 0) and ξ̂ and ω̂ satisfying the duality equation
as above, we have:

1. ĝ∗ξ̂ = ξ̂ ⇐⇒ ĝ∗ω̂ = ω̂
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2. ĝ∗ξ̂ = cĝ ξ̂ for some cĝ ∈ C
∗ ⇐⇒ g∗ω̂ = 1

cĝ
ω̂

Finally, notice that, in dimension-one each formal or meromorphic one-form is closed.
This suggests, in view of Theorem 1 and all the above, that one may expect to obtain results
relating algebraic properties of subgroups of D̂iff(Cn, 0) with the existence of suitable closed
one-forms.

In Section 3 we prove (cf. Proposition 4) that an abelian subgroup of formal diffeomor-
phisms admits an invariant formal vector field. Nevertheless, unlike the one-dimensional
case, in general the existence of such an invariant vector field is not enough to assure that
the group is abelian (see Remark 4).

We will adopt the following convention. Denote by D̂iff1(C
n, 0) < D̂iff(Cn, 0) the subgroup

of flat elements, i.e., the subgroup of formal complex diffeomorphisms f̂ with f̂ ′(0) = Id.
Given a flat subgroup G < D̂iff1(C

2, 0), by the dimension of the associate Lie algebra we
mean the dimension of Lie algebra exp(G), viewed as vector space over K̂(C2), the fraction
field of O(C2). In [1] it is proved (Proposition 4.1) that every nilpotent subalgebra L of
X̂(C2, 0) is metabelian. This proposition implies a characterization of abelian subgroups of
Diff1(C

2, 0) (cf. [1] Corollary 4.4, and Proposition 3 in this paper). Applying this to our
framework we obtain:

Theorem A. Let G < D̂iff1(C
2, 0) be an abelian flat subgroup. We have the following

possibilities:

(i) G leaves invariant an exact rational one-form, say ω̂ = dT for some rational function

T .

(ii) G embeds into the flow of a formal vector field ξ̂.

(iii) The Lie algebra of G has dimension two. There are two invariant independent com-

muting formal vector fields.

We shall see (cf. Theorem B below) that a subgroup G ⊂ D̂iff(C, 0) admitting two
commuting formal invariant vector fields, exhibits two invariant closed formal meromorphic
one-forms.

Unlike the one-dimensional case, the fact that the group is flat and abelian does not imply
that it embeds into the flow of a formal vector field. Indeed, the point is that there are flat
commuting vector fields of different orders of tangency to the identity (Remark 4 (2)).

The derivative map D : D̂iff(Cn, 0) → GL(C, k), f̂ 7→ Df̂ := f̂ ′(0), induces by restriction
to any subgroup G < D̂iff(Cn, 0) a linear map D : G → GL(C, k). The kernel of this linear
map is the subgroup G1 := G ∩ D̂iff1(C

n, 0) and the image is the derivative subgroup DG <
GL(C, n). If G1 is trivial then we have an embedding G →֒ GL(C, n).

Let now G < D̂iff(C2, 0) be an abelian subgroup. The Lie algebra of G1 = G∩D̂iff1(C
2, 0)

has dimension ≤ 2. If the dimension is zero then G1 = {Id} and the map G → GL(2,C)
embeds G into an abelian linear group. Then, in this case, either G is finite or its image in
GL(2,C) contains a flow in its closure (Remark 1).

As a converse of (iii) in Theorem A we have:

Theorem B. Let G ≤ D̂iff(C2, 0) be a subgroup admitting two invariant commuting formal

vector fields. Then G admits two closed, independent, formal meromorphic, invariant one-

forms. If G is flat or exhibits two formal transverse separatrices then G is abelian.

The notions of formal closed meromorphic one-form and other formal objects are clearly
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stated in Section 2 (Remark 2). As a spolium of the proof of the second part of Theorem B we
obtain normal forms for abelian subgroups admitting two transverse separatrices and having
Lie algebra of dimension two (cf. Remark 7).

All the above is concerned with the abelian case. As for the metabelian case we have:

Theorem 2. Let G < D̂iff(C2, 0) be a metabelian not-abelian subgroup. Assume that G(1) is
flat, for instance if the derivative group DG < GL(2,C) is abelian. Denote by L(G(1)) the
Lie algebra of the group of commutators G(1) = [G,G]. We have the following possibilities:

(i) L(G(1)) is one-dimensional. There is a formal vector field ξ̂ such that, for each ĝ ∈ G
there is a rational function Tĝ that satisfies: ξ̂(Tĝ) = 0 and ĝ∗(ξ̂) = Tĝ ξ̂.

(ii) L(G(1)) is two-dimensional. There are two formal vector fields ξ̂, ζ̂, linearly independent
such that

(ii.1) [ξ̂, ζ̂] = 0

(ii.2) For each ĝ ∈ G there are (s1, t1), (s2, t2) ∈ C
2 linearly independent that satisfy

ĝ∗(ξ̂) = s1ξ̂ + t1ζ̂ and ĝ∗(ζ̂) = s2ξ̂ + t2ζ̂.

In this last case there are two linearly independent closed formal meromorphic one-forms ω̂j,
(j = 1, 2) and aj , bj ∈ C

∗ such that

ĝ∗(ω̂j) = aj ω̂1 + bj ω̂2, ∀ĝ ∈ G.

Groups as in (ii.2) above are studied in Section 6 (cf. Remark 7).

1.2 Part II - Dicritic diffeomorphisms, vector fields and groups

The second part of this work is dedicated to the study of subgroups of formal diffeomorphisms
under the hypothesis of existence of a suitable dicritic (radial type) element. Let us introduce
the main notion we use. According to [1] a flat diffeomorphism f̂ ∈ D̂iff(C, 0) is dicritic it
writes as f̂(z) = z + fk+1(z) + h. o. t., where fk+1(z) = pf (z)z and pf is a homogeneous

polynomial of degree k. This is equivalent (by Proposition 1) to say that f̂ is of the form
f̂ = exp(ξ̂) where ξ̂ ∈ (Cn, 0) is a formal vector field having as first jet the product of a homo-
geneous polynomial by the radial vector field. In this paper we introduce a useful subclass of
dicritic diffeomorphisms. A formal vector field ξ̂ ∈ X̂(Cn, 0) is dicritic (respectively, regular
dicritic) if the formal diffeomorphisms f̂ = exp(ξ̂) is dicritic (respectively, regular dicritic).
We shall say that f̂ is regular dicritic if ξ̂ has an isolated singularity at the origin. The above
concepts are studied in our next results. A subgroup G < D̂iff(Cn, 0) is quasi-abelian if its
subgroup G1 of flat elements is abelian. A formal vector field ξ̂ ∈ X̂(Cn, 0) is projectively
invariant by G < D̂iff(Cn, 0) if for each ĝ ∈ G we have ĝ∗ξ̂ = cĝ.ξ̂ for some cĝ ∈ C

∗.
Our next results are analogous to those in Theorem 1, for groups containing a regular

dicritic element.

Theorem C. A subgroup of formal diffeomorphisms containing a regular dicritic diffeomor-

phism is quasi-abelian if and only if it admits a projectively invariant regular dicritic formal

vector field.

In particular we obtain:

Corollary 1. A flat subgroup of D̂iff(Cn, 0) containing a regular dicritic diffeomorphism is
abelian if and only if it admits an invariant formal vector field.
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The proof of Theorem C also shows that a subgroup containing its derivative group and
with a regular dicritic diffeomorphism is abelian if and only if the group leaves invariant a
formal vector field and its derivative group is abelian (cf. Proposition 11). Regarding the
case of metabelian groups we have:

Theorem 3. A subgroup of formal diffeomorphisms containing a regular dicritic diffeomor-
phism and with abelian derivative group is metabelian provided that it admits a projectively
invariant formal vector field.

As a converse of Theorem 3, it is proved in Proposition 13 that a metabelian group
G < D̂iff(C2, 0) of formal diffeomorphisms, containing a regular dicritic diffeomorphism f̂ of
order k and a linear diffeomorphism ĥ(z)λz with λk 6= 1, λk+1 6= 1, admits a projectively
invariant formal vector field.

As an application we study the case where a group with two generators, one of which is
linear, is metabelian (cf. Corollary 4).

Recall that a group G is called nilpotent if there is n ∈ N, such that γn(G) = {Id}, where
γk(G) = [γk−1(G), G] and γ0(G) = G. Finally, G is solvable, if there is n ∈ N, such that the
n-th commutator is trivial, i.e., G(n) = {Id}, where G(k) = [G(k−1), G(k−1)] and G(0) = G.

Next we state an equivalence similar to the dimension one case, but for groups that contain
some dicritic diffeomorphism. Theorem D below is related to Theorem 4.1 and Corollary 4.2
in [1] and to our Example 1 of a solvable flat group of formal diffeomorphisms which is not
metabelian. This example shows the need of our assumption of existence of a dicritic element
in the group of commutators in any extension of Theorem 1 to higher dimension.

Theorem D. For a flat subgroup of formal diffeomorphisms containing a dicritic diffeomor-

phism with order of tangency k + 1, the following statements are equivalent:

(1) The group is abelian.

(2) The group is nilpotent.

(3) Every nontrivial element in the group is tangent to the identity with order k + 1.

Theorem D has the following consequence:

Corollary 2. A subgroup of formal diffeomorphisms containing a dicritic element in its
commutators group and such that the group of commutators is a flat nilpotent group, is
metabelian, i.e., its group of commutators is abelian.

Our results apply to the study of foliations on complex projective spaces and other am-
bient manifolds as well. The class of singularities which correspond, via the holonomy of its
separatrices, to the class of regular dicritic diffeomorphisms is to be formally introduced and
studied in a forthcoming work. Using an adaptation of a classical result due to Hironaka and
Matsumara ([6], [5]) we may be able to move from the formal world (considered is this paper)
to the analytic/convergent world, which is the natural ambient to the study of holomorphic
foliations with singularities.

A final word should be said about the possible applications of our results. We are inter-
ested in the study of Liouvillian integration for holomorphic foliations of codimension n ≥ 1.
As suggested by the codimension one cases (see for instance [14]), this passes through the
comprehension of algebraic, geometric and formal structures of subgroups of D̂iff(Cn, 0) in
terms we propose in this work.
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2 Preliminaries

In this paper we write z = (z1, ..., zn) as several complex variables. We denote by C
2[[z]]i is

the set of vectors of C2, whose coordinates are homogeneous polynomials of degree i. The
subgroup of formal diffeomorphisms of two variables, tangent to the identity with order k, is
defined as D̂iffk(C

2, 0) = {ĥ(z) = z + Pk(z) + · · · | ĥ ∈ D̂iff(C2, 0)}, Pk 6= 0. Similarly the
group of germs of holomorphic diffeomorphisms at the origin 0 ∈ C

2, tangent to the identity
with order k is defined as Diffk(C

2, 0) = D̂iffk(C
2, 0) ∩Diff(C2, 0). The Lie algebra of formal

vectors field of C2 of order k is defined by X̂k(C
2, 0) = {f̂1(z)

∂
∂z1

+ f̂2(z)
∂

∂z2
| f̂k ∈

∞⊕
i=k

C
2[[z]]i}

where f̂1 or f̂2 has order k.

Proposition 1 ([8]). The exponential map exp : X̂k(C
2, 0) → D̂iffk(C

2, 0) is a bijection.

According to [1] Theorem 3.3 a subgroup G ⊂ Diff(Cn, 0) is analytically linearizable if
and only if it admits an analytic invariant vector field of the form z = R + h. o. t. where
R is the radial vector field. In this same work it is proved (Proposition 4.1) that every
nilpotent subalgebra L of X̂(C2, 0) is metabelian. This proposition implies the following
characterization of abelian subgroups of Diff1(C

2, 0) (cf. [1] Corollary 4.4).

Proposition 2. If G < Diff1(C
2, 0) is a flat abelian (convergent) group, then one of the

following items is true:

(1) There is a formal vector field ξ̂ with exp(ξ̂) ∈ G such that for each g ∈ G we have
g = exp(Tg ξ̂) where Tg is a rational holomorphic function such that ξ̂(Tg) = 0;

(2) G <
〈
f [t] ◦ g[s]|t, s ∈ C

〉
, where f, g ∈ G and [f, g] = Id.

Notice that Proposition 2 above is for convergent (analytic) objects. The formal version
is easily obtained by a mimic of the proof, and reads as:

Proposition 3 ([1]). Let G ≤ D̂iff1(C
2, 0) be an abelian flat subgroup, we have the two

following possibilities:

1. There is a formal vector field ξ̂, invariant by G, such that for each element f̂ ∈ G there
is a rational function T depending on f̂ , such that ξ̂(N) = 0 and f̂ = exp(Nξ̂).

2. There are formal commuting vector fields ξ̂ and ζ̂ such that exp(ξ̂), exp(ζ̂) ∈ G and
G < 〈exp(tξ̂) ◦ exp(sζ̂) | t, s ∈ C〉.

Remark 1 (infinite linear groups). Let G < GL(k,C) be an infinite linear algebraic group.
Then its Lie Algebra L(G) is not trivial and we may choose a (linear) vector field z ∈ L(G).
The Zariski closure {Xt} of the flow zt of z in C

n is a closed abelian subgroup of the closure Ḡ.
Since {Xt} is abelian, there is a closed one-parameter subgroupH, which is a one-dimensional
linear algebraic subgroup of G.

Remark 2 (formal meromorphic objects). By a formal meromorphic function of n complex

variables we shall mean a formal quotient R̂ = P̂

Q̂
of two formal power series with positive

exponents P̂ , Q̂ ∈ Ôn = C[[z]]. In other words, the field of formal meromorphic functions of
n variables M̂n will be the fraction field of the domain of integrity Ôn. By a meromorphic

one-form we mean a formal expression ω̂ =
n∑

j=1
R̂j dzj where each R̂j is a formal meromorphic

function as defined above. The exterior derivative, wedge product and other concepts are
defined for meromorphic formal one-forms in the same way as for analytic one-forms.
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Remark 3 (formal separatrices). A formal curve of n complex variables is defined as follows:
denote by Ôn the ring of formal functions of n complex variables. In Ôn we introduce the
equivalence relation f̂ ∼ ĝ ⇐⇒ ϕ̂ = û.ψ̂ for some unit û ∈ Ôn, i.e., for some power series û
with first coefficient u0 6= 0. By a formal curve we mean an equivalence class of a function
ϕ̂ ∈ Ôn that satisfies ϕ̂(0) = 0, that is, a non-invertible formal power series. Such a formal
curve is called invariant by a formal complex diffeomorphism f̂ ∈ D̂iff(Cn, 0) if f̂∗ϕ = ϕ ◦ f̂
is equivalent to ϕ in the above sense. Such a formal curve will be called a separatrix of
a subgroup G < D̂iff(C2, 0) if it is invariant by each element of this group. The tangent
space of a formal curve with representative ϕ̂ is defined as the linear subspace of C2 given
by the kernel of Dϕ̂(0) : C2 → C. Two formal curves with representatives ϕ̂ and ψ̂ are called
transverse if their tangent spaces span C

2.

3 Construction of a formal invariant vector field

In this section we prove the existence of an invariant formal vector field for an abelian group:

Proposition 4. An abelian subgroup of formal diffeomorphisms admits an invariant formal
vector field.

Some steps in the proof of the following well-known lemma will be used later on this
paper:

Lemma 1. If f̂ ∈ D̂iff(Cn, 0) commutes with the time one flow map of a formal vector field
ξ̂ ∈ X̂k(C

n, 0), k ≥ 2 then f̂ commutes with the flow of ξ̂ for all time t ∈ C.

Proof. Let Φ̂t be the (formal) flow of ξ̂, which is defined by Φ̂t := exp(tξ̂) ∈ D̂iff(Cn, 0). Then
Φ̂1 ◦ f̂ = f̂ ◦ Φ̂1. We claim that Φ̂t ◦ f̂ = f̂ ◦ Φ̂t for all t ∈ Z. First we prove this by induction,
∀t ∈ N. In fact, this is true for t = 1, Suppose that equality holds for n ∈ N. Then

Φ̂n+1 ◦ f̂ = Φ̂ ◦ Φ̂n ◦ f̂ = Φ̂ ◦ f̂ ◦ Φ̂n = f̂ ◦ Φ̂ ◦ Φ̂n = f̂ ◦ Φ̂n+1

thus Φ̂t ◦ f̂ = f̂ ◦ Φ̂t, ∀t ∈ N. Now to show that Φ̂t ◦ f̂ = f̂ ◦ Φ̂t, ∀t ∈ C, is sufficient
to prove this equality in the spaces of jets, i.e. in J k(Cn, 0) = C[[z]]/mk+1 (this has a
natural identification with the space of polynomials of degree less than or equal to k), where
m = {f̂ ∈ C[[z]]/f̂ (0) = 0} is the maximal ideal of C[[z]]. Indeed, given k ∈ N we have that
jk ◦ Φ̂t ◦ f̂ = (f1, . . . , fn), where the truncation of formal series

jk : C[[z]] → J k(Cn, 0),

is defined by jk(f̂) = f̂ mod m
k+1, we have that

fl(z) =
∑

|N |≤k

P l
N (t)zN

e P l
N (t) is a polynomial of degree less than or equal to |N |. Similarly, we have

jk ◦ f̂ ◦ Φ̂t = (f̃1, . . . , f̃n) where

f̃l(z) =
∑

P̃ l
N (t)zN

e P̃ l
N (t) is a polynomial of degree less than or equal to |N |. now, as Φ̂t ◦ f̂ = f̂ ◦ Φ̂t, ∀t ∈ Z,

for each N ∈ N
n with |N | ≤ k, we have that P l

N (t) |Z= P̃ l
N (t) |Z, now as these are polynomial

and coincide in Z, we have that

P l
N (t) = P̃ l

N (t),∀t ∈ C.
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in consequence fl(z) = f̃l(z) ∀X ∈ C
n, l ∈ {1, . . . , n}. therefore jk ◦ Φ̂t ◦ f̂ = jk ◦ f̂ ◦ Φ̂t,

∀t ∈ C e k ∈ N. So
Φ̂t ◦ f̂ = f̂ ◦ Φ̂t,∀t ∈ C.

On the other hand, if Φ̂t ◦ f̂ = f̂ ◦ Φ̂t then Φ̂−t ◦ f̂ = f̂ ◦ Φ̂−t. Consequently Φ̂t ◦ f̂ = f̂ ◦ Φ̂t,
∀t ∈ Z. Now note that Φ̂t◦f̂ = (f1, . . . , fn) where fk ∈ C[t][[z]]. Thus fk =

∑
P k
N (t)zN where

P k
N (t) is a polynomial of degree less or equal to |N |. Similarly f̂ ◦ Φ̂t = (f̃1, . . . , f̃n) where

f̃k ∈ C[t][[z]], thus f̃k =
∑
P̃ k
N (t)zN . Since Φ̂t ◦ f̂ = f̂ ◦ Φ̂t, ∀t ∈ Z, then P k

N (t) |Z= P̃ k
N (t) |Z

for z Fixed. Since they are polynomials and coincide in Z, we have P k
N (t) = P̃ k

N (t), ∀t ∈ C.

consequently fk(z) = f̃k(z) ∀X ∈ C
n and k ∈ {1, . . . , n}. Therefore Φ̂t◦f̂ = f̂◦Φ̂t, ∀t ∈ C.

Proof of Proposition 4. First we assume that G1 is nontrivial. Thus there is f̂ ∈ G1 which
is of the form f̂ = exp(ξ̂) for some formal vector field ξ̂ ∈ X̂j(C

n, 0), j ≥ 2. Since G

is abelian, for any ĝ ∈ G, ĝ ◦ f̂(z) = f̂ ◦ ĝ(z), i.e, ĝ ◦ exp(ξ̂)(z) = exp(ξ̂) ◦ ĝ(z). Thus,
from the previous lemma, we have ĝ ◦ exp(tξ̂)(z) = exp(tξ̂) ◦ ĝ(z), ∀t ∈ C or equivalently
ĝ ◦ exp(tξ̂) ◦ ĝ−1 = exp(tξ̂), ∀t ∈ C. Therefore ĝ∗ξ̂ = ξ̂, ∀ĝ ∈ G. In case G is abelian and
the identity is the only flat element, the map ĝ 7→ Dĝ(0) gives a natural group isomorphism
G ∼= DG, i.e., G is algebraically linearizable. According then to a classical theorem on linear
groups ([16]) either G is finite (and therefore analytically conjugated to a finite group of
diagonal periodic linear maps) or the Zariski closure G contains a linear flow. In this last
case, as in Remark 1, there is a (linear) vector field ξ̂ which is invariant under the action of
G.

Remark 4. Now we give some examples showing that the conditions in our main results,
cannot be dropped.

1. The converse of Proposition 4 is not always true for dimension (n ≥ 2). In fact if
f̂(x, y) = (2x, 4y) and ĝ(x, y) = (x, x+ y) then G = 〈f̂ , ĝ〉 is not abelian, however, G is
invariant by ξ̂, where exp(ξ̂) = (x, y+x2). As for the flat case, let f̂(x, y) = exp(x2y ∂

∂x
)

and ĝ(x, y) = exp(x3y2 ∂
∂x

), then G =< f̂, ĝ > is not abelian, however, G is invariant

by X̂ = −xy ∂
∂x

+ y2 ∂
∂y
.

2. In dimension k = 1, we have that a group G < D̂iff1(C, 0) of diffeomorphisms tangent
to the identity is abelian if and only if there is a formal vector field ξ̂ ∈ X̂k(C, 0)
(k ≥ 1), such that G < 〈exp(tξ̂) | t ∈ C〉. For (n ≥ 2) if there is a formal vector field
ξ̂ ∈ X̂k(C

n, 0) (n ≥ 2), such that G < 〈exp(tξ̂) | t ∈ C〉 then G is abelian, however again
the converse is not always true. This is due to the fact that for n = 1, if the lie bracket
of two vector field ξ̂ ∈ X̂k(C, 0) and ζ̂ ∈ X̂r(C, 0) is zero ([ξ̂, ζ̂] = 0) then r = k and
there is c ∈ C

∗ such that ξ̂ = c ζ̂. However this last fact is not always true in dimension
n ≥ 2 as can be seen in the following examples:

(a) Let a ∈ C∗ be constant and take ξ̂(x, y) = xy ∂
∂x

− y2 ∂
∂y
, ζ̂(x, y) = ax2y2 ∂

∂x
−

axy3 ∂
∂y
.

(b) ξ̂(x, y) = (x2+3xy) ∂
∂x

+(3xy+y2) ∂
∂y
, ζ̂(x, y) = (3x3−5x2y+xy2+y3) ∂

∂x
+(x3+

x2y − 2xy2 + 3y3) ∂
∂y
.

(c) For k ≥ 1, we have: ξ̂ = (xk+1) ∂
∂x

+ (xk.y) ∂
∂y
, ζ̂ = (yk.x) ∂

∂x
+ (yk+1) ∂

∂y

(d) ξ̂(x, y) = x2 ∂
∂x

+ xy ∂
∂y
, ζ̂(x, y) = xy ∂

∂x
+ y2 ∂

∂y
.
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4 Flat abelian groups

Now we study the characterization and classification of flat abelian groups, which is the
subject of Theorem A.

Proof of Theorem A. Assume that the Lie algebra L(G1) has dimension one. By Proposi-
tion 3 there is a formal vector field ξ̂, invariant by G, such that for each f̂ ∈ G there is a
rational function T = T

f̂
with ξ̂(T ) = 0 and f̂ = exp(T ξ̂). Suppose that for some f̂ ∈ G the

function T = T
f̂
is not constant. We consider the one-form ω̂ := dT . This is a closed rational

one-form and we claim that this is G-invariant. In fact, take ĝ ∈ G and write G = exp(Sξ̂)
for some rational function S such that ξ̂(S) = 0. Then (Sξ̂)(T ) = dT (Sξ̂) = SdT (ξ̂) = 0.
Therefore T ◦exp(Sξ̂) = T . This gives ĝ∗(ω) = ĝ∗(dT ) = d(T ◦ ĝ) = d(T ◦exp(Sξ̂)) = dT = ω,
proving the claim. This corresponds to (i) in Theorem A.

Now we consider the where T
f̂
is constant for each f̂ ∈ G. In this case each element f̂ ∈ G

writes as f̂ = exp(c
f̂
ξ̂) for some constant c

f̂
∈ C. In other words, G embeds into the flow of

ξ̂ as in (ii) in the statement.
Suppose now that G is as in (2) in Proposition 3. There are two linearly independent,

formal commuting vector fields ξ̂j, invariant by G, such that exp(ξ̂j) ∈ G and G < 〈exp(tξ̂1)◦

exp(sξ̂2) | t, s ∈ C〉. We can write ξ̂j = Aj
∂
∂x

+Bj
∂
∂y
. Since ξ̂j is G invariant, we have




∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y



[
A1(z) A2(z)

B1(z) B2(z)

]
=

[
A1(ĝ) A2(ĝ)

B1(ĝ) B2(ĝ)

]

Taking transposes, we obtain:

[
A1(z) B1(z)

A2(z) B2(z)

]


∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y


 =

[
A1(ĝ) B1(ĝ)

A2(ĝ) B2(ĝ)

]

thus 


∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y



[
A1(ĝ) B1(ĝ)

A2(ĝ) B2(ĝ)

]−1

=

[
A1(z) B1(z)

A2(z) B2(z)

]−1

so that, take:

[
C1(z) C2(z)

D1(z) D2(z)

]
=

[
A1(z) B1(z)

A2(z) B2(z)

]−1

=
1

Q(z)

[
B2(z) −B1(z)

−A2(z) A1(z)

]

Where Q(z) = A1B2−A2B1. Thus, take ω̂j = Cjdx+Djdy the above relationship clearly
ω̂j are invariant for G and are linearly independent. In order to finish we show that ω̂j are

closed forms, i,e.
∂Dj

∂x
−

∂Cj

∂y
= 0. As [X̂1, ξ̂2] = 0 then

∂A2

∂x
A1 +

∂A2

∂y
B1 =

∂A1

∂x
A2 +

∂A1

∂y
B2

∂B2

∂x
A1 +

∂B2

∂y
B1 =

∂B1

∂x
A2 +

∂B1

∂y
B2

9



Thus

Q2(
∂D1

∂x
−
∂C1

∂y
) = Q2(−

1

Q

∂A2

∂x
+
A2

Q2

∂Q

∂x
−

1

Q

∂B2

∂y
+
B2

Q2

∂Q

∂y
)

= A2
∂Q

∂x
−Q

∂A2

∂x
+B2

∂Q

∂y
−Q

∂B2

∂y

= A2B2
∂A1

∂x
+A2A1

∂B2

∂x
−A2B1

∂A2

∂x
−A2

2

∂B1

∂x
−A1B2

∂A2

∂x
+A2B1

∂A2

∂x
+

B2
2

∂A1

∂y
+B2A1

∂B2

∂y
−B2B1

∂A2

∂y
−B2A2

∂B1

∂y
−A1B2

∂B2

∂y
+A2B1

∂B2

∂y

= B2(
∂A1

∂x
A2 +

∂A1

∂y
B2 −

∂A2

∂x
A1 −

∂A2

∂y
B1)+

A2(
∂B2

∂x
A1 +

∂B2

∂y
B1 −

∂B1

∂x
A2 −

∂B1

∂y
B2)

= B2.0 +A2.0 = 0.

Therefore ω̂1 is closed. Analogously ω̂2 is closed and we are in case (iii) in Theorem A.

Applying Remark 1 we have the following immediate consequence of Theorem A.

Corollary 3. Let G < D̂iff(C2, 0) be a (not necessarily flat) commutative subgroup. There
are four possibilities:

(i) G is finite and linearizable.

(ii) G embeds into a linear flow.

(iii) The Lie algebra of G1 has dimension one: G1 leaves invariant an exact rational one-
form, say ω̂ = dT for some rational function T .

(iv) The Lie algebra of G1 has dimension two: G1 admits two closed, independent, formal
meromorphic, invariant one-forms.

As already mentioned in the Introduction, (iii) in Theorem A admits a converse, proved
as follows:

First part of the proof of Theorem B. Suppose that G is flat. Let ω̂j two linearly indepen-
dent invariant closed formal meromorphic one-forms invariant by G, i,e, we have ĝ ∈ G,
ĝ∗(ω̂j) = ω̂j (j = 1, 2). Write ω̂j = Ajdx+Bjdy then,

ω̂j = ĝ∗(ω̂j) = Aj(ĝ)dg1 +Bj(ĝ)dg2 = (Aj(ĝ)
∂g1
∂x

+Bj(ĝ)
∂g2
∂x

)dx+(Aj(ĝ)
∂g1
∂y

+Bj(ĝ)
∂g2
∂y

)dy

Thus [
A1(ĝ) B1(ĝ)

A2(ĝ) B2(ĝ)

]


∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y


 =

[
A1(z) B1(z)

A2(z) B2(z)

]

consequently 


∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y



[
A1(z) B1(z)

A2(z) B2(z)

]−1

=

[
A1(ĝ) B1(ĝ)

A2(ĝ) B2(ĝ)

]−1
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Let us introduce ξ̂1, ξ̂2 as follows:

ξ̂1 =
1

Q(z)
(B2

∂

∂x
−A2

∂

∂y
) , ξ̂2 =

1

Q(z)
(−B1

∂

∂x
+A1

∂

∂y
)

where Q(z) = A1(z)B2(z)−A2(z)B1(z). Since the ω̂j are closed one-forms we have ĝ∗(ξ̂j) =

ξ̂j, for all ĝ ∈ G and [ξ̂1, ξ̂2] = 0. Also ξ̂1, ξ̂2 are linearly independent in K̂(C2), the fraction

field of O(C2). Note that {ξ̂1, ξ̂2} is a basis for the vector space X̂M (C2, 0) ⊗ K̂(Cn) and,
since for ĝ ∈ G we can write ĝ = exp(ζ̂ĝ) with ζ̂ĝ ∈ X̂(C2, 0) ⊂ X̂M (C2, 0), then ζ̂ĝ =

u1ξ̂1 + u2ξ̂2, where uj ∈ K̂(C2). On the other side ĝ∗(ξ̂j) = ξ̂j we have that [ζ̂ĝ, ξ̂1] = 0

and [ζ̂ĝ, ξ̂2] = 0, then ξ̂j(uk) = 0 (j, k = 1, 2), consequently uj are constant in C∗. Now if

G < 〈exp(tζ̂ĝ)) | t ∈ C〉 there is nothing left to prove, thus suppose that there is ĥ ∈ G,

ĥ = exp(ζ̂
ĥ
) with ζ̂ĝ and ζ̂

ĥ
linearly independent in K̂(C2) then there are vj ∈ C such that

ζ̂
ĥ
= v1ξ̂1 + v2ξ̂2 and (u1, u2),(v1, v2) are linearly independent in C

2, therefore ξ̂j ∈ X̂(C2, 0)

and G = exp(aξ̂1) ◦ exp(bξ̂2), with a, b ∈ C∗, therefore there are formal vector fields ξ̂ and ζ̂
such that [ξ̂, ζ̂] = 0 and G < 〈exp(tξ̂) ◦ exp(sζ̂) | t, s ∈ C〉. Therefore G is abelian, this proves
the first part of Theorem B.

5 Groups preserving closed one-forms

In this section we proceed studying the classification of groups of formal diffeomorphisms
preserving closed meromorphic one-forms in (C2, 0). Special attention is given to the “generic”
case where the group exhibits two transverse formal separatrices. Before going further into
the main subject we recall some classical facts about integration of closed meromorphic one-
forms in several complex variables.

Proposition 5 (Integration Lemma). Let ω be a closed meromorphic one-form on M where
M is a polydisc in C

n. Then there are irreducible holomorphic functions f1, .., fr ∈ O(M),
n1, ..., nr ∈ N, complex numbers λ1, ..., λr and a holomorphic function g ∈ O(M) such that

ω =

r∑

j=1

λj
dfj
fj

+ d(
g

fn1
1 · · · fnr

r
)

The polar set of ω is given in irreducible components by
r⋃

j=1
{fj = 0}, nj is the order

of {fj = 0} as a component of the polar set of ω, λj is the residue of ω at the component
{fj = 0} and the function g has no common factors with fj in O(M).

If M = C
n and ω is rational then we have the same result, where the fj are irreducible

polynomials and g is a polynomial without common factors with the fj. The proof of Theo-
rem 5 relies on integration and the fact that the first homology group of the complement of a

pure codimension one analytic subset Λ =
r⋃

j=1
Λj , where each Λj is an irreducible component,

of a polydisc M as above, is generated by small loops around the components Λj, contained
in transverse discs circulating the component. Then a standard argument involving Laurent
series implies the result. This cannot be repeated in the formal case, because we cannot
rely on integration processes, at first glance. Nevertheless, we still have a formal version of
Theorem 5 as follows:
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Proposition 6 (Formal integration lemma). Let ω̂ be a closed formal meromorphic one-form
in n complex variables. Denote by f̂j ∈ Ôk, j = 1, ..., r the formal equations of the set of
poles of ω̂, in independent terms. Then, there are λj ∈ C and nj ∈ N and a formal function
ĝ ∈ Ôk such that

ω̂ =

r∑

j=1

λj
df̂j

f̂j
+ d(

ĝ

f̂n1
1 · · · f̂nr

j

)

The proof is somehow similar to the proof of the local analytic version and it is based on
the following:

Lemma 2. A closed formal meromorphic one-form ω̂ in n complex variables, without residues
is exact: ω̂ = df̂ for some meromorphic formal function f̂ ∈ M̂n.

This lemma is proved similarly to the following particular case:

Lemma 3. Let ω̂ be a closed formal meromorphic one-form in two complex variables and
assume that the polar set of ω̂ consists of two transverse formal curves, and that the residues
of ω̂ are all zero. Then ω̂ is exact, indeed, in suitable formal coordinates (x, y) we can write

ω̂ = d(
f̂

xnym
)

for some n,m ∈ N and some formal function f̂ ∈ Ô2.

Proof. Since the polar set of ω̂ consists of two transverse formal curves, we can find formal
coordinates (x, y) such that this polar set corresponds to the coordinates axes. We write

ω̂ = (P̂ /xn+1ym+1)dx + (Q̂/xn+1ym+1)dy where P̂ , Q̂ ∈ C[[x, y]]. We can write P̂ =
∞∑
ν=0

Pν

and Q̂ =
∞∑
ν=0

Qν in terms of homogeneous polynomials Pν , Qν of degree ν − n −m. Then

ω̂ =
∞∑
ν=0

(Pν/x
n+1ym+1)dx+(Qν/x

n+1ym+1)dy =
∞∑

ν=−n−m

ων where ων = (Pν/x
n+1ym+1)dx+

(Qν/x
n+1ym+1)dy is a homogeneous rational one-form of degree ν − n−m− 2. Then dω̂ =

∞∑
ν=−n−m−2

dων where each one-form dων is homogeneous of degree ν − 1. Therefore, since

ω̂ is closed we have 0 = dω̂ =
∞∑

ν=−n−m

dων and then dων = 0, ∀ν ≥ −n − m. Since ω̂

has no residues, the same holds for ων . Moreover, because each form ων is of the form
ων = Pν/x

n+1ym+1)dx + (Qν/x
n+1ym+1)dy, we conclude from the Integration lemma that

ων = d( fν
xnym

) for some homogeneous polynomial fν of degree ν. Thus ω̂ = d(
∞∑
ν=0

fν/x
nym) =

d(f̂/xnym) where f̂ =
∞∑
ν=0

fν ∈ Ô2.

As a consequence we obtain the following particular case of Proposition 6:

Proposition 7. Let ω̂ be a closed formal meromorphic one-form in two complex variables
and assume that the polar set of ω̂ consists of two transverse formal curves. Then ω̂ writes
in suitable formal coordinates (x, y) as

ω̂ = λ
dx

x
+ µ

dy

y
+ d(

f̂

xnym
)
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for some λ, µ ∈ C, some n,m ∈ N and some formal function f̂ ∈ Ô2.

Proof. As in the proof of Lemma 3 we choose formal coordinates (x, y) such that the polar
set of ω̂ corresponds to the coordinate axes. Denote by λ ∈ C and µ ∈ C the residue of ω̂ at
the x-axis and y-axis respectively. Then θ̂ = ω̂ − λdx

x
+ µdy

y
is a closed formal meromorphic

one-form with polar set contained in the coordinate axes and zero residues. By Lemma 3 we

can write θ̂ = d( f̂
xnym

) for some formal function f̂ ∈ Ô2.

An improvement of the above proposition is the following:

Lemma 4. Let ω̂j, j = 1, 2 be linearly independent closed formal meromorphic one-forms
in two variables with polar sets along two transverse formal curves. Then there are formal
coordinates (x, y) such that each ω̂j writes:

ω̂j = aj
dx

x
+ bj

dy

y
+ d(

cj
xnjymj

) (1)

for some constant aj , bj , cj ∈ C and some nj,mj ∈ N.

Proof. By Proposition 7 we can write ω̂j = aj
dx
x
+bj

dy
y
+d(

f̂j
x
nj y

mj ), where aj , bj ∈ C; nj,mj ∈

N and f̂j ∈ Ôk. Let us write n1 = n,m1 = m and n2 = p,m2 = q. We take a model of formal

change of coordinates φ̂ = (xu, yv), where we want that φ̂∗(a1
dx
x
+ b1

dy
y
+ d( c1

xnym
)) = ω̂1 and

φ̂∗(a2
dx
x
+ b2

dy
y
+d( c2

xpyq
)) = ω̂2 implies a1

du
u
+ b1

dv
v
= d( 1

xnym
.(f̂1−

c1
unvm

)) and a2
du
u
+ b2

dv
v
=

d( 1
xpyq

.(f̂2 −
c2

upvq
)) then,

(a1 lnu+ b1 ln v)x
nym − f̂1 +

c1
unvm

+ k1x
nym = 0

and
(a2 lnu+ b2 ln v)x

pyq − f̂2 +
c2
upvq

+ k2x
pyq = 0

Now define a formal meromorphic function R̂ by

R̂(x, y, u, v) = (R̂1(x, y, u, v), R̂2(x, y, u, v)

where
R̂1(x, y, u, v) = a1 lnu+ b1 ln v)x

nym − f̂1 +
c1

unvm
+ k1x

nym

and
R̂2(x, y, u, v) = a2 lnu+ b2 ln v)x

pyq − f̂2 +
c2
upvq

+ k2x
pyq.

We have R̂(0, 0, u, v) = (0, 0), so that if c1 = f̂1(0) and c2 = f̂2(0) we have
1

un(0)vm(0) = 1 and
1

up(0)vq (0) = 1 and as Det(J2R(0, (u, v)) = (nq −mp)uk+n+1vm+q+1 6= 0, if (m,n) and (p, q)
are linearly independent, from the formal version of the Implicit function theorem we obtain
a unique solution (u, v).

Remark 5. Let G ≤ D̂iff1(C
2, 0) be a subgroup. Given a closed meromorphic 1-form ω̂ such

that ω̂ is invariant by G, if ω̂ is conjugated to a 1-form α̂ by a diffeomorphism ĥ, then the
1-form α̂ is invariant by the group ĥ−1 ◦ ĝ ◦ ĥ. As the groups G and ĥ−1 ◦ ĝ ◦ ĥ have similar
algebraic proprieties, there is no loss of generality in assuming that the forms are as in the
normal form of Lemma 4.
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The second part of the proof of Theorem B follows from the following proposition:

Proposition 8. Let G < D̂iff(C2, 0) be a subgroup with two transverse separatrices, if there
are linearly independent closed formal meromorphic formal one-forms ω̂j, (j = 1, 2) which
are invariant by G then G is abelian. Indeed, G is formally conjugate to a group of diffeo-
morphisms generated by any of the following types:

(a) ĝ(x, y) = (x
(1+

k2
c2

xpyq)
m
D

(1+
k1
c1

xnym)
q
D
, y

(1+
k1
c1

xnym)
p
D

(1+
k2
c2

xpyq)
n
D

)

(b) ĝ(x, y) = (ax, a−
n
m y

(1+kxnym)
1
m
)

(c) ĝ(x, y) = ( b−
m
n x

(1+kxnym)
1
n
, by)

Proof. A diffeomorphism ĝ ∈ G writes ĝ(x, y) = (xu, yv) where u, v ∈ Ô2 satisfy û(0) 6=
0, v̂(0) 6= 0. From equation (1) and ĝ∗(ω̂j) = ω̂j we obtain:

a1 lnu+ b1 ln v =
c1

xnym
.(1−

1

unvm
) + k1 and a2 lnu+ b2 ln v =

c2
xpyq

.(1 −
1

upvq
) + k2

If a1 = a2 = b1 = b2 = 0 then unvm = 1

1+
k1
c1

xnym
and upvq = 1

1+
k2
c2

xpyq
, as (m,n) and

(p, q) must be linearly independent we have

ĝ(x, y) = (x
(1 + k2

c2
xpyq)

m
D

(1 + k1
c1
xnym)

q

D

, y
(1 + k1

c1
xnym)

p

D

(1 + k2
c2
xpyq)

n
D

)

with D = nq − pm. The group G therefore has just linear diffeomorphisms as above and is
an abelian group.

Assume now that the left side of equality is holomorphic we have, 1
unvm

= 1 and 1
upvq

= 1
when (m,n) and (p, q) are linearly independent, we have that u and v are constant, so that
G is linear therefore G is abelian.

A similar argumentation with the other possible cases gives the forms: ĝ(x, y) = (ax, a−
n
m y

(1+kxnym)
1
m

),

ĝ(x, y) = ( b−
m
n x

(1+kxnym)
1
n

, by) and ĝ(x, y) = ( x

(1+k1xn)
1
n

, y

(1+k2ym)
1
m

). In particular, on each case,

G is abelian.

Remark 6 (holomorphic case). If G is invariant by two linearly independent closed formal
one-forms (without poles) then G = {Id}.

Proof. Let ĝ ∈ G and write ω̂j = df̂j, (j = 1, 2) left invariant by G. Take Φ̂ = (f̂1, f̂2),

as df̂1 and df̂2 are linearly independent in this neighborhood of the origin, we have that
Φ̂ is a formal diffeomorphism. Therefore we may assume that ω̂1 = dx and ω̂2 = dy, i.e.,
(Φ̂◦ ĝ ◦Φ̂−1)∗(dx) = dx and (Φ̂◦ ĝ ◦Φ̂−1)∗(dy) = dy, because (Φ̂◦ ĝ ◦Φ̂−1)∗(dx) = (Φ̂−1)∗ ◦ ĝ∗ ◦
Φ̂∗(dx) = (Φ̂−1)∗◦ ĝ∗(df̂1) = (Φ̂−1)∗(df̂1) = (Φ̂−1)∗◦Φ̂∗(dx) = dx, therefore Φ̂◦ ĝ◦Φ̂−1 = {Id}
and consequently G = {Id}.
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6 Metabelian groups

Now we study metabelian groups in D̂iff(C2, 0), that is, subgroups G < D̂iff(C2, 0) such that
the group of commutators G(1) = [G,G] is abelian. Let G be such a metabelian subgroup.
Then, the derivative group DG < GL(C, 2) is also metabelian but not necessarily abelian.
For instance, take G as the linear subgroup of 2× 2 triangular superior matrices. Then G is
not abelian but G(1) is abelian.

Now if the group DG is abelian then G(1) is flat, which is a very useful property. For this
reason, in our statements below, we require that DG is abelian.

Lemma 5. Let G < D̂iff(C2, 0) be a subgroup with DG abelian. Suppose that, there are two
linearly independent vector fields ξ̂ and ζ̂, projectively invariant by G and such that [ξ̂, ζ̂] = 0.
Then G is metabelian.

Proof. Since ξ̂ and ζ̂ are projectively invariant by G, for each ĝ ∈ G there are constants
aĝ, bĝ ∈ C such that ĝ∗ξ̂ = aĝ ξ̂ and ĝ∗ζ̂ = bĝ ζ̂. Given now a flat element ĥ ∈ G1 we have

ah = 1 and bh = 1, so that ĥ∗ξ̂ = ξ̂ and ĥ∗ζ̂ = ζ̂. This implies that G1 is abelian. Since DG
is abelian, we have that [G,G] < G1, so that [G,G] is abelian.

Proof of Theorem 2. Let G < D̂iff(C2, 0) be a metabelian subgroup. Since DG is abelian by
Proposition 3 we have two cases:
Case 1. [G,G] ≤ 〈exp(Nξ̂) | N is a rational funtion, ξ̂(N) = 0〉 and f̂ = exp(ξ̂) ∈ [G,G].
Then for all ĝ ∈ G, [ĝ, f̂ ] ∈ [G,G] so that, there is a rational function Ñ such that [ĝ, f̂ ] =
exp(Ñ ξ̂) then ĝ ◦ exp(ξ̂) ◦ ĝ−1 = exp(Ñ ξ̂) ◦ exp(ξ̂) = exp((Ñ + 1)ξ̂) therefore ĝ∗(ξ̂) = Nξ̂

Case 2. [G,G] ≤ 〈exp(sξ̂) ◦ exp(tζ̂) | s, t ∈ C
∗〉, take f̂ = exp(ξ̂). Then for all ĝ ∈

G, [ĝ, f̂ ] ∈ [G,G] so that, there are s̃1 and t1 such that [ĝ, f̂ ] = exp(s̃1ξ̂) ◦ exp(t1ζ̂) then
ĝ ◦ exp(ξ̂) ◦ ĝ−1 = exp(s̃1ξ̂ + t1ζ̂) ◦ exp(ξ̂) = exp(s1ξ̂ + t1ζ̂). Therefore ĝ∗(ξ̂) = s1ξ̂ + t1ζ̂.
Analogously we have ĝ∗(ζ̂) = s2ξ̂+ t2ζ̂. Let us now construct the formal closed meromorphic
one-forms ω̂j, j = 1, 2. We can write ξ̂j = Aj

∂
∂x

+Bj
∂
∂y

then




∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y



[
A1(z) A2(z)

B1(z) B2(z)

]
=

[
s1A1(ĝ) + t1A2(ĝ) s2A1(ĝ) + t2A2(ĝ)

s1B1(ĝ) + t1B2(ĝ) s2B1(ĝ) + t2B2(ĝ)

]

taking transposes, we have:

[
A1(z) B1(z)

A2(z) B2(z)

]


∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y


 =

[
s1A1(ĝ) + t1A2(ĝ) s1B1(ĝ) + t1B2(ĝ)

s2A1(ĝ) + t2A2(ĝ) s2B1(ĝ) + t2B2(ĝ)

]

thus



∂g1
∂x

∂g2
∂x

∂g1
∂y

∂g2
∂y



[
s1A1(ĝ) + t1A2(ĝ) s1B1(ĝ) + t1B2(ĝ)

s2A1(ĝ) + t2A2(ĝ) s2B1(ĝ) + t2B2(ĝ)

]−1

=

[
A1(z) B1(z)

A2(z) B2(z)

]−1

so that we can take:

[
C1(z) C2(z)

D1(z) D2(z)

]
=

[
s1A1(z) + t1A2(z) s1B1(z) + t1B2(z)

s2A1(z) + t2A2(z) s2B1(z) + t2B2(z)

]−1
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and define ω̂j = Cjdx+Djdy. Then ĝ
∗(ω̂1) = ĝ∗( 1

rQ(z) .(s2B1 + t2B2,−(s1B1 + t1B2)) =
1

Q(z)(B2,−A2) = s1ω̂1 + s2ω̂2, where Q(x) = C1(z).D2(z)−C2(z).D1(z) and r = s1t2 − s2t1.

Analogously ĝ∗(ω̂2) = t1ω̂1 + t2ω̂2, clearly ω̂1 and ω̂2 are linearly independent. It remains to

show that the ω̂j are closed forms, i,e.
∂Dj

∂x
−

∂Cj

∂y
= 0. Since [ξ̂1, ξ̂2] = 0 then

∂A2

∂x
A1 +

∂A2

∂y
B1 =

∂A1

∂x
A2 +

∂A1

∂y
B2

∂B2

∂x
A1 +

∂B2

∂y
B1 =

∂B1

∂x
A2 +

∂B1

∂y
B2

Thus ousting the value of Cj and Dj and using the above equations we can conclude.

Next we study the possible normal forms of groups as in the conclusion of Theorem 2.

Remark 7 (groups leaving invariant a linear system of closed forms). Let G ≤ D̂iff(C2, 0)
be a subgroup of formal diffeomorphisms of two variables, that preserves the coordinate axes
(x = 0) and (y = 0). Suppose that we have

ĝ∗(ω̂j) = aj ω̂1 + bj ω̂2, ∀ĝ ∈ G. (2)

where aj , bj ∈ C
∗ and ω̂j is a closed formal meromorphic one-form. A diffeomorphism ĝ ∈ G

writes ĝ(x, y) = (xu, yv) where u, v ∈ Ô2 We have the following possibilities for ω̂1, ω̂2 in
suitable formal coordinates:

(1) (simple poles case) If both forms have simple poles along the coordinate axes we can
write ω̂1 = α1

dx
x
+ β1

dy
y

and ω̂2 = α2
dx
x
+ β2

dy
y
. From equation (2) we get

α1
dx

x
+ β1

dy

y
+ α1

du

u
+ β1

dv

v
= ĝ∗(ω̂j) = (a1α1 + b1α2)

dx

x
+ (a1β1 + b1β2)

dy

y

In matrix form we have:

[
α1 β1

α2 β2

]


dx
x

dy
y


+

[
α1 β1

α2 β2

][
du
u

dv
v

]
=

[
a1 b1

a2 b2

][
α1 β1

α2 β2

]


dx
x

dy
y




Comparing the poles we obtain:

[
a1 b1

a2 b2

]
= Id and

[
du
u

dv
v

]
= 0

Thus ĝ(x, y) = (xu0, yv0) with u0 and v0 constant. In this case the group G is linear.

(2) (Pure polar case) Assume now that ω̂j has poles of order higher than one and no
residues. We can write ω̂1 = d( 1

xnym
) and ω̂2 = d( 1

xpyq
). Given now a diffeomorphism

ĝ(x, y) = (xu, yv) in G from equation (2) we have:

d(
1

xnymunvm
) = a1d(

1

xnym
)+b1d(

1

xpyq
) and d(

1

xpyqupvq
) = a2d(

1

xnym
)+b2d(

1

xpyq
)
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Thus

1

xnymunvm
=

a1
xnym

+
b1
xpyq

+ k1 and
1

xpyqupvq
=

a2
xnym

+
b2
xpyq

now

1

unvm
= a1 + b1x

n−pym−q + k1x
nym and

1

upvq
= a2 + b2x

p−nyq−m + k2x
pyq

thus

u =
(a2 + b2x

p−nyq−m + k2x
pyq)

m
D

(a1 + b1xn−pym−q + k1xnym)
q

D

and u =
(a1 + b1x

n−pym−q + k1x
nym)

p

D

(a2 + b2xp−nyq−m + k2xpyq)
n
D

where D = qn− pm, therefore we have:

ĝ(x, y) =

(
x.

(a2 + b2x
p−nyq−m + k2x

pyq)
m
D

(a1 + b1xn−pym−q + k1xnym)
q

D

, y.
(a1 + b1x

n−pym−q + k1x
nym)

p

D

(a2 + b2xp−nyq−m + k2xpyq)
n
D

)

Other mixed cases are studied in the same way.

The following example contradicts Corollary 4.2 in [1].

Example 1. An example of a flat group G < D̂iff1(C
2, 0), which is solvable but not

metabelian is G =< (ĥ(x), â(x) + b̂(x)y); ĥ ∈ H >, where H < D̂iff1(C, 0) is any metabelian
flat subgroup, â(x) ∈ C[[x]] has order greater than 2 and b̂(x) ∈ C[[x]] is a unit, b̂(0) = 1.

7 Dicritic groups with abelian commutators

Unlike the one-dimensional case two commuting flat diffeomorphisms may have different
orders of tangency to the identity: take f̂ = exp(ξ̂) and ĝ = exp(ζ̂), where the vector fields ξ̂
and ζ̂ are given as in (1) above. This is the main reason why we do not have an equivalence
between the concepts of metabelian, quasi-abelian and solvable groups in dimension n ≥ 2.
From now on we shall take a closer look at this issue. Firstly, in this section, we investigate
the characterization of quasi-abelian groups. For this we shall refer to the following concepts,
which are two main notions in this paper.

Definition 1 (Dicritic and regular dicritic vector fields and diffeomorphisms). A diffeomor-
phism f̂ ∈ D̂iffr+1(C

n, 0) is called dicritic if f̂(z) = z + f̂r+1(z) + f̂r+2(z) + · · · , where
f̂r+1(z) = f(z)z and f is a homogeneous polynomial of degree r. A formal vector field ξ̂ ∈

X̂k+1(C
n, 0), k ≥ 1 is called dicritic if ξ̂ = f(z)~R+(p

(1)
k+2+· · · ) ∂

∂z1
+· · ·+(p

(n)
k+2+· · · ) ∂

∂zn
where

f is a homogeneous polynomial of degree k and ~R = z1
∂
∂z1

+ · · · + zn
∂

∂zn
; ξ̂ is called regular

dicritic if ξ̂ is dicritic and there are i0, j0 ∈ {1, . . . , n}, such that gcd(f, zj0p
(i0)
k+2−zi0p

(j0)
k+2) = 1.

This implies that 0 is an isolated singularity of ξ̂. The map f̂ is called regular dicritic if there
is ξ̂ regular dicritic such that f̂ = exp(ξ̂).

Now we pave the way to Theorem C. For the first part we shall need some lemmas below.

Lemma 6. Let ξ̂ = f(z)~R and ζ̂ = g(z)~R, where ~R is the radial vector field and f and g are
homogeneous polynomials of degree k e s respectively. Then [ξ̂, ζ̂] = 0 if and only if k = s.
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Proof. Trivial, because [ξ̂, ζ̂] = (k − s)f(z)g(z)~R.

Lemma 7. Let ξ̂ ∈ X̂k+1(C
n, 0) a dicritic vector field. For any vector field ζ̂ with order

greater than 2, such that [ξ̂, ζ̂] = 0, we have that ζ̂ is a dicritic vector field with order k + 1.

Proof. Suppose that ζ̂ has order r ≥ 2, thus:

ξ̂ = f(z)
−→
R + (p

(1)
k+2 + · · · )

∂

∂z1
+ · · ·+ (p

(n)
k+2 + · · · )

∂

∂zn

ζ̂ = (q(1)r + · · · )
∂

∂z1
+ · · ·+ (q(n)r + · · · )

∂

∂zn

Now, the term of lower order of [ξ̂, ζ̂] is:

[f
−→
R, q(1)r

∂

∂z1
+ · · ·+ q(n)r

∂

∂zn
] = (r − 1)f.(q(1)r

∂

∂z1
+ · · ·+ q(n)r

∂

∂zn
)− (q(1)r

∂f

∂z1
+

· · ·+ q(n)r

∂f

∂zn
).
−→
R

As [ξ̂, ζ̂] = 0, we have that (r − 1)f.q
(j)
r = (∇f.Qr)zj , onde Qr = (q

(1)
r , . . . , q

(n)
r ). Thus

(r−1)f.q
(1)
r zj = (r−1)f.q

(j)
r z1 and as q

(1)
r 6= 0, we have q

(j)
r = q

(1)
r

z1
.zj = g.zj , for j = 1, . . . , n.

So the 1-Jet of ζ̂ is g
−→
R , therefore ζ̂ is dicritic vector field and by the previous lemma ζ̂ have

order k + 1.

Lemma 8. Let ξ̂, ζ̂ ∈ X̂k(C
n, 0), k ≥ 2. Suppose that ξ̂ is regular dicritic and ζ̂ is dicritic.

If [ξ̂, ζ̂] = 0, then there is c ∈ C \ {0} such that ζ̂ = c.ξ̂.

Proof. Since ξ̂ and ζ̂ are dicritic, then

ξ̂ = f(z)~R+ (p
(1)
k+2 + · · · )

∂

∂z1
+ · · ·+ (p

(n)
k+2 + · · · )

∂

∂zn

ζ̂ = g(z)~R + (q
(1)
k+2 + · · · )

∂

∂z1
+ · · · + (q

(n)
k+2 + · · · )

∂

∂zn

We have [f ~R, g ~R] = 0, by Lemma 6. Since [ξ̂, ζ̂] = 0, then the 2k + 2-jet to lie bracket is

[g ~R, p
(1)
k+2

∂

∂z1
+ · · ·+ p

(n)
k+2

∂

∂zn
]− [f ~R, q

(1)
k+2

∂

∂z1
+ · · ·+ q

(n)
k+2

∂

∂zn
] = 0

Now note that

[f ~R, q
(1)
k+2

∂

∂z1
+ · · ·+ q

(n)
k+2

∂

∂zn
] = (k + 1)f.(q

(1)
k+2

∂

∂z1
+ · · ·+ q

(n)
k+2

∂

∂zn
)− (q

(1)
k+2

∂f

∂z1
+

· · ·+ q
(n)
k+2

∂f

∂zn
). ~R

Then we have
(k + 1)(f.qik+2 − g.pik+2) = zi(∇f.Qk+2 −∇g.Pk+2)

for i ∈ {1, . . . , n}, thus

f.qi0k+2 − g.pi0k+2

zi0
=
f.qj0k+2 − g.pj0k+2

zj0
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or equivalently, f.(zj0q
(i0)
k+2−zi0q

(j0)
k+2) = g.(zj0p

(i0)
k+2−zi0p

(j0)
k+2). But by hypothesis gcd(f, zj0p

(i0)
k+2−

zi0p
(j0)
k+2) = 1, then f | g. As f and g has the same degree g = c.f were c ∈ C

∗. Thus the
2k + 2- jet of Lie bracket is:

[f
−→
R, (q

(1)
k+2 − cp

(1)
k+2)

∂

∂z1
+ · · ·+ (q

(n)
k+2 − cp

(n)
k+2)

∂

∂zn
] = 0

Using the same argument of the previous lemma we have

(q
(1)
k+2 − cp

(1)
k+2)zj = (q

(j)
k+2 − cp

(j)
k+2)z1

so, q
(1)
k+2 − cp

(1)
k+2 = 0, in consequence q

(j)
k+2 − cp

(j)
k+2 = 0, for all j = 1, . . . , n, or

(q
(1)
k+2 − cp

(1)
k+2)

∂

∂z1
+ · · ·+ (q

(n)
k+2 − cp

(n)
k+2)

∂

∂zn
=

(q
(1)
k+2 − cp

(1)
k+2)

z1

−→
R

but this latter does not occur, because by the Lemma 6 we have
(q

(1)
k+2−cp

(1)
k+2)

z1
has degree k,

and this is impossible because q
(1)
k+2 − cp

(1)
k+2 has degree k + 2. Then, we have q

(j)
k+2 = cp

(j)
k+2,

∀j ∈ {1, . . . , n}.
Finally suppose that Qk+j = cPk+j for j = 1, . . . , i, the (2k + i+ 1)-jet of lie bracket is

[g ~R, p
(1)
k+i+1

∂

∂z1
+ · · · + p

(n)
k+i+1

∂

∂zn
]− [f ~R, q

(1)
k+i+1

∂

∂z1
+ · · ·+ q

(n)
k+i+1

∂

∂zn
] = 0

by the supposed the following sum is symmetric

i∑

j=2

[p
(1)
k+j

∂

∂z1
+ · · ·+ p

(n)
k+j

∂

∂zn
, q

(1)
k+i+2−j

∂

∂z1
+ · · · + q

(n)
k+i+2−j

∂

∂zn
] = 0

Then similarly to the case k + 2 we have that Qk+j+1 = cPk+j+1 therefore ζ̂ = cξ̂

Remark 8. We cannot exclude the regularity condition in the previous lemma, since the two
vector fields of item 2.(d) in Remark 4 are dicritic and commute, but they are not regular
dicritic and are not linearly dependent.

The following proposition is found in [1].

Proposition 9. Let f̂ ∈ D̂iffr+1(C
n, 0) and ĝ ∈ D̂iffs+1(C

n, 0). Suppose that f̂ is dicritic
and f̂(ĝ(z)) = ĝ(f̂(z)). Then r = s and G is also dicritic.

The following proposition is the main tool in the proof of Theorem C.

Proposition 10. Let G < D̂iff1(C
n, 0) be a subgroup of diffeomorphisms tangent to the

identity and f̂ ∈ D̂iff1(C
n, 0) a regular dicritic diffeomorphism. If f̂ commutes with ĝ then

G ≤ 〈exp(tX̂) | t ∈ C〉, where f̂ = exp(ξ̂). In particular, G is abelian.

Proof. Let ĝ ∈ G be a diffeomorphism, from Proposition 9, ĝ is a dicritic diffeomorphism
of same order than f̂ , we say k + 1. From the exponential bijection there is ζ̂ such that
exp(ζ̂) = ĝ. Then

ζ̂ = g(z)~R + (q
(1)
k+2 + · · · )

∂

∂z1
+ · · · + (q

(n)
k+2 + · · · )

∂

∂zn
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and thus ζ̂ is dicritic. Since f̂ commutes with ĝ it commutes with ĝ(z) = exp(ζ̂)(z) and
from Lemma 1, f̂ commutes with exp(tζ̂)(z) for all t ∈ C. Similarly, for each t we have that
exp(tζ̂)(z) commutes with exp(sξ̂)(z) and thus [ξ̂, ζ̂] = 0. From Lemma 8, there is r ∈ C such
that ζ̂ = rξ̂. Consequently ĝ(z) = exp(rξ̂)(z) and therefore G ≤ 〈exp(tξ̂) | t ∈ C〉.

Proof of Theorem C. Let G ≤ D̂iff(Cn, 0) be a subgroup with a regular dicritic diffeomor-
phism f̂ = exp(ξ̂) ∈ G. First, suppose that G is quasi-abelian. From Proposition 10, we have
G1 ≤ 〈exp(tξ̂) | t ∈ C〉. Let ĝ ∈ G, as f̂ ∈ G1 then [f̂ , ĝ] ∈ G1. Thus there is tĝ ∈ C

∗ such

that [f̂ , ĝ] = exp(tĝX̂), then ĝ ◦ f̂ ◦ ĝ−1 ◦ f̂−1 = exp(tĝ ξ̂) so that

ĝ ◦ exp(ξ̂) ◦ ĝ−1 = exp(tĝX̂) ◦ exp(ξ̂) = exp((tĝ + 1)ξ̂)

= exp(cĝ ξ̂)

from the same argument used in the proof of Lemma 1, we have ∀s ∈ C, ĝ ◦ exp(sξ̂) ◦ ĝ−1 =
exp(scĝ ξ̂). Therefore ĝ∗X̂ = cĝ ξ̂, ∀ĝ ∈ G. Conversely, suppose that ∀ĝ ∈ G, ∃cĝ such

that ĝ∗ξ̂ = cĝ ξ̂. We claim that ∀ĝ ∈ G1, cĝ = 1. In fact, if f̂(z) = z + f(z)z + · · · then

exp(cĝ ξ̂)(z) = z + cĝf(z)z + · · · . Thus if ĝ ∈ G1, ĝ ◦ f̂(z) = z + f(z)z + ĝk+1(z) + · · · and

exp(cĝ ξ̂)(z)◦ ĝ(z) = z+cĝ.f(z)z+ ĝk+1(z)+ · · · , then cĝ = 1. Consequently ∀ĝ ∈ G1, ĝ
∗ξ̂ = ξ̂,

i.e., G1 commutes with f̂ . From Proposition 10, G1 is abelian, i.e., G is quasi-abelian.

In the same way as Theorem C we have:

Proposition 11. Let G ≤ D̂iff(Cn, 0) be a subgroup with a regular dicritic diffeomorphism
f̂ = exp(ξ̂) ∈ G, such that DG ⊂ G. The following conditions are equivalent:

1. G is abelian

2. DG is abelian and ∀ĝ ∈ G, ĝ∗ξ̂ = ξ̂.

Proof. It is immediate to verify that (1) ⇒ (2). Let us now prove (2) ⇒ (1). Since DG ⊂ G,
for all ĝ ∈ G we have that g̃ = Dĝ−1(0) ◦ ĝ ∈ G1. From (2) we have that G commutes with
f̂ then Dĝ−1(0) ◦ ĝ = exp(cg̃X), therefore G = Dĝ(0) ◦ exp(cg̃X), ∀ĝ ∈ G. Now let ĝ, ĥ ∈ G
be diffeomorphisms, as DG ⊂ G and from (2), we have that:

ĝ ◦ ĥ = Dĝ(0) ◦ exp(cg̃X) ◦Dĥ(0) ◦ exp(c
h̃
X) = ĥ ◦ ĝ

Therefore G is abelian.

8 Metabelian and solvable dicritic groups

Now we shall study metabelian subgroups of D̂iff(Cn, 0). We strongly rely on the preceding
argumentation. The main step is:

Proposition 12. Let G < D̂iff(Cn, 0) be a subgroup with DG abelian, and f̂ = exp(ξ̂) ∈ G
a regular dicritic diffeomorphism. Then ξ̂ is projectively invariant by G if, and only if, f̂
commutes with [G,G].

Proof. Since DG is abelian the group of commutators of G is flat i,e., [G,G] ≤ G1. If f̂
commutes with [G,G], from Proposition 10 we have that [G,G] ≤ 〈exp(tξ̂)/t ∈ C〉 and from
the proof of Theorem 1 we know that ξ̂ is projectively invariant by G. Assume now that the
vector field ξ̂ is projectively invariant by G. Once again, since [G,G] ≤ G1 we know that if
S ∈ [G,G] then cS = 1. Thus ∀S ∈ [G,G], S∗ξ̂ = ξ̂, therefore f̂ = exp(ξ̂) commutes with
[G,G].
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Proof of Theorem 3. Notice that ifG is quasi-abelian andDG is abelian thenG is metabelian.
Therefore, Theorem 3 follows from Propositions 10 and 12.

The following is a partial converse of (2) in Theorem 3.

Proposition 13. Let G ≤ D̂iff(Cn, 0) be a metabelian subgroup containing a regular dicritic
diffeomorphism with order of tangency k+1. Suppose that DG is abelian and there is a linear
diffeomorphism ĥ ∈ G, given by ĥ(z) = λz, with λk 6= 1, λk+1 6= 1. Then there is a formal
vector field ξ̂ ∈ X̂j(C

n, 0), j ≥ 2, which is projectively invariant by G, i.e., such that ∀ĝ ∈ G,

ĝ∗ξ̂ = cĝ ξ̂, for some constant cĝ 6= 0.

Proof. By hypothesis [G,G] is an abelian subgroup of flat diffeomorphisms and we have that

[f̂ , ĥ](z) = z + λ(λk − 1)f(z)z + λ(λk+1 − 1)Pk+2(z) + · · ·

thus [f̂ , ĥ] = exp(ξ̂), where

ξ̂ = λ(λk − 1)f(z)~R + (λ(λk+1 − 1)p
(1)
k+2 + · · · )

∂

∂z1
+ · · ·+ (λ(λk+1 − 1)p

(n)
k+2 + · · · )

∂

∂zn

since f̂ is regular dicritic and λk 6= 1, λk+1 6= 1, the above expression implies that [f̂ , ĥ] is
regular dicritic. According to Proposition 12 there is a projectively invariant formal vector
field ξ̂ = exp([f̂ , ĥ]).

Now we give an application of our results:

Corollary 4. Let G = 〈f̂ , ĥ〉 ≤ D̂iff(Cn, 0), where f̂ is regular dicritic and ĥ(z) = λX,
λk 6= 1, λk+1 6= 1. The group G is metabelian if and only if [f̂ , ĥ2] and [f̂2, ĥ] commute with
[f̂ , ĥ].

Proof. Given two elements ϕ̂, ψ̂ ∈ D̂iff(C2, ) we shall write ϕ̂∗ψ̂ := ϕ̂◦ψ̂◦ϕ̂. If G < D̂iff(C2, 0)
is metabelian, it is immediately seen that [f̂ , ĥ2] and [f̂2, ĥ] commute with [f̂ , ĥ]. We prove the
converse, in fact we have that [f̂ , ĥ] is regular dicritic as noted above. Now, as [f̂ , ĥ2], [f̂2, ĥ]
commutes with [f̂ , ĥ], we have [f̂2, ĥ] = exp(cξ̂) and [f̂ , ĥ2] = exp(rξ̂), since f̂∗[f̂ , ĥ] ◦ [f̂ , ĥ] =
[f̂2, ĥ] and [f̂ , ĥ] ◦ ĥ∗[f̂ , ĥ] = [f̂ , ĥ2] then

exp(cξ̂) = [f̂2, ĥ] = f̂∗[f̂ , ĥ] ◦ [f̂ , ĥ] = f̂∗ exp(ξ̂) ◦ exp(ξ̂)

consequently, f̂∗ exp(ξ̂) = exp(cξ̂) ◦ exp(−X ) = exp(c̃ξ̂). Using the same argument in the
proof of Lemma 1, f̂∗ξ̂ = c̃ξ̂. Similarly ĥ∗ξ̂ = r̃ξ̂. Thus by Theorem 3 the group G is
metabelian.

The next three lemmas will be used in the proof of Theorem 4.

Lemma 9. Let f̂ ∈ D̂iffr+1(C
n, 0) and ĝ ∈ D̂iffs+1(C

n, 0) be formal diffeomorphisms. Then

f̂(ĝ(z))− ĝ(f̂(z)) = Df̂r+1(z)ĝs+1(z)−Dĝs+1f̂r+1(z) +O(|z|r+s+2)

so [f̂ , ĝ] = Id or [f̂ , ĝ] ∈ D̂iffp(C
n, 0) with p ≥ r + s+ 1.
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Proof. Let f̂(z) = z+
r+s∑
k=r

f̂k+1(z)+O(|z|r+s+2) and ĝ(z) = z+
r+s∑
j=s

ĝj+1(z)+O(|z|r+s+2) then:

f̂(ĝ(z)) = z +

r+s∑

j=s

ĝj+1(z) +O(|z|r+s+2)+

+

r+s∑

k=r

f̂k+1(z +

r+s∑

j=s

ĝj+1(z) +O(|z|r+s+2)) +O(|z|r+s+2)

= z +
r+s∑

j=s

ĝj+1(z) +
r+s∑

k=r

(f̂k+1(z) +Df̂k+1ĝs+1(z) +O(|z|k+s+2))

+O(|z|r+s+2)

= z +

r+s∑

j=s

ĝj+1(z) +

r+s∑

k=r

f̂k+1(z) +Df̂r+1(z)ĝs+1(z) +O(|z|r+s+2)

Similarly we have:

ĝ(f̂(z)) = z +
r+s∑
k=r

f̂k+1(z) +
r+s∑
j=s

ĝj+1(z) +Dĝs+1(z)f̂r+1(z) +O(|z|r+s+2)

subtracting these two equalities we get the lemma.

Lemma 10. Let f̂ ∈ D̂iffr+1(C
n, 0) and ĝ ∈ D̂iffs+1(C

n, 0) be dicritic diffeomorphisms with
r 6= s, given by

f̂(z) = z + f(z)z + · · · ĝ(z) = z + g(z)z + · · ·

then [f̂ , ĝ] ∈ D̂iffs+r+1(C
n, 0) is dicritic and given by

[f̂ , ĝ](z) = z + (r − s)g(z)f(z)z + · · ·

Proof. From Lemma 9 the term of smaller order of [f̂ , ĝ] is

Df̂r+1(z)ĝs+1(z)−Dĝs+1f̂r+1(z) = (f(z)I + (zi
∂f

∂zj
))ĝs+1(z)−Dĝs+1f(z)z

= (f(z)I + (zi
∂f

∂zj
))ĝs+1(z)− (s+ 1)f(z)ĝs+1

= (−sf(z)I + (zi
∂f

∂zj
))ĝs+1(z)

= (−sf(z)I + (zi
∂f

∂zj
))g(z)z

Then the i-th component of this is

−sf(z)g(z)zi + g(z)zi∇f(z)z = −sf(z)g(z)zi + rf(z)g(z)zi

thus
Df̂r+1(z)ĝs+1(z)−Dĝs+1f̂r+1(z) = (r − s)f(z)g(z)z

therefore [f̂ , ĝ] ∈ D̂iffs+r+1(C
n, 0) and this is dicritic, given by

ĥ(z) = z + (r − s)g(z)f(z)z + · · ·
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Lemma 11. Let G < D̂iff(Cn, 0) be a solvable group, then G has no dicritic diffeomorphisms
of different orders.

Proof. Assume that there are f̂1, f̂2 ∈ G dicritic diffeomorphisms of different orders, we say
p1 + 1 and p2 + 1 respectively then by above lemma f̂3 = [f̂1, f̂2] is dicritic of order p3 =
p1 + p2 +1 > p2 +1, similarly, we have that f̂4 = [f̂3, f̂2] is dicritic of order p4 = p3 + p2 > p3
and recurrently f̂n = [f̂n−1, f̂n−2] is dicritic of order pn = pn−1 + pn−2 > pn−1, thus there is
no n ∈ N such that Gn = {Id} and this contradicts the fact G is solvable.

Proof of Theorem D. Let G ≤ D̂iff(Cn, 0) be a subgroup of diffeomorphisms tangent to the
identity containing a dicritic diffeomorphism f̂ with order of tangency k+1. It is immediate
to verify that (1) ⇒ (2). Let us now prove (2) ⇒ (3). Suppose that f̂(z) = z + f(z)z + · · · .
Suppose by contradiction that there is f̂ (1) ∈ G with order of tangency p1 > k+1 then obtain

f̂ (2) = [f̂ (1), f̂ ] = z + f̂
(2)
k2

+ · · · .

we affirm that f̂
(2)
k2

6= 0 and thus f̂ (2) has order of tangent k2 = k + k1 > k1 + 1. In fact,

as the j-th coordinate of f̂
(2)
k2

, is (k1 − 1)f.q
(j)
k1

− (∇f.Qk1)zj , where f̂
(1) = z +Qk1 + . . . and

Qk1 = (q
(1)
k1
, . . . , q

(n)
k1

), ( in consequence k2 = k + k1), now if f̂
(2)
k2

= 0, then (k1 − 1)f.q
(j)
k1

=
(∇f.Qk1)zj , for j = 1, . . . , n. So following the same argument of Lemma 7 we have that
Qk1 = (g.z1, . . . , g.zn), with g homogeneous polinomial of degree p, thus Qk1 has degree
k + 1, but this is impossible. Repeating this process we can define:

f̂ (n) = [f̂ (n−1), f̂ ] = z + f̂
(n)
kn

+ · · · .

Analogously f̂
(n)
kn

6= 0 and thus f̂ (n) we has order of tangency kn = k+kn−1 > kn−1+1 > n,
thus there is no n ∈ N, such that γn(Λ) = {Id}, what contradicts the fact that Λ is nilpotent.

Therefore, we have Λ ⊆ D̂iffk+1(C
n, 0).

Now we prove (3) ⇒ (1). From Lemma 9 we have that for ĥ, ĝ ∈ G, [ĥ, ĝ] = {Id} or
[ĥ, ĝ] ∈ D̂iffℓ(C

n, 0), ℓ ≥ 2k + 1 thus [ĥ, ĝ] = {Id} and therefore G is abelian.

Proof of Corollary 2. Let G < D̂iff(Cn, 0) be a subgroup such that [G,G] is a flat group
containing a dicritic element f̂ ∈ G. Suppose that [G,G] is nilpotent. Then, since by
hypothesis the group [G,G] contains a dicritic element, Theorem D implies that [G,G] is
abelian. Therefore G is metabelian.
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