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COARSE TYPES OF TROPICAL MATROID POLYTOPES

KATJA KULAS

Abstract. Describing the combinatorial structure of the tropical complex C of a tropical ma-
troid polytope, we obtain a formula for the coarse types of the maximal cells of C. Due to
the connection between tropical complexes and resolutions of monomial ideals, this yields the
generators for the corresponding coarse type ideal introduced in [7]. Furthermore, a complete
description of the minimal tropical halfspaces of the uniform tropical matroid polytopes, i.e.
the tropical hypersimplices, is given.

1. Introduction

Tropical matroid polytopes have been introduced in [4] as the tropical convex hull of the
cocircuits, or dually, of the bases of a matroid. The arrangement of finitely many points V in
the tropical torus Td has a natural decomposition CV of Td into (ordinary) polytopes, the tropical
complex, equipped with a (fine) type T , which encodes the relative position to the generating
points. The coarse types only count the cardinalities of T . In [5], Develin and Sturmfels showed
that the bounded cells of CV yield the tropical convex hull of V , which is dual to the regular
subdivision Σ of a product of two simplices (or equivalently—due to the Cayley Trick—to the
regular mixed subdivisions of a dilated simplex). The authors of [3] and [7] use the connection
of the cellular structure of CV or rather of Σ to minimal cellular resolutions of certain monomial
ideals to provide an algorithm for determining the facial structure of the bounded subcomplex of
CV . A main result of [7] says that the labeled complex CV supports a minimal cellular resolution
of the ideal I generated by monomials corresponding to the set of all (coarse) types.

The main theme of this paper is the study of the tropical complex of tropical convex polytopes
associated with matroids arising from graphs—the tropical matroid polytopes. Recall that a
matroid M is a finite collection F of subsets of [n] = 1, 2, . . . , n, called independent sets, such
that three properties are satisfied: (i) ∅ ∈ F , (ii) if X ∈ F and Y ⊆ X then Y ∈ F , (iii) if
U, V ∈ F and |U | = |V | + 1 there exists x ∈ U \ V such that V ∪ x ∈ F . The last one is also
called the exchange property. The maximal independent sets are the bases of M . A matroid
can also be defined by specifying its non-bases, i.e. the subsets of E with cardinality k that
are not bases. For more details on matroids see the survey of Oxley [15] and the books of
White([16], [17], [18]). An important class of matroids are the graphic or cycle matroids proven
to be regular, that is, they are representable over every field. A graphic matroid is associated
with a simple undirected graph G by letting E be the set of edges of G and taking as the
bases the edges of the spanning forests. Matroid polytopes were first studied in connection
with optimization and linear programming, introduced by Jack Edmonds [8]. A nice polytopal
characterization for a matroid polytope was given by Gelfand et al. [10] stating that each of its
edges is a parallel translate of ei − ej for some i and j.

In the case of tropical matroid polytopes the coarse types display the number bI,J of bases B
of the associated matroid with subsets I, J , where all elements of I but none of J are contained
in B.
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Theorem 1. Let C be the tropical complex of a tropical matroid polytope with d + 1 elements
and rank k. The set of all coarse types of the maximal cells arising in C is given by the tuples
(t1, . . . , td+1) with

tj =







b{i1},∅ + b ∅,{i1,i2,...,id′+1}
if j = i1 ,

b{il},{i1,...,il−1} if j = il ∈ {i2, . . . id′+1} ,

0 otherwise .

where d′ ∈ [d − k + 1] and {i1, i2, . . . , id′+1} is a sequence of elements such that [d + 1] \
{i1, i2, . . . , id′} contains a basis of the associated matroid.

Subsequently, we relate our combinatorial result to commutative algebra. For the coarse type

t(p) of p and xt(p) = x1
t(p)1x2

t(p)2 · · · xd+1
t(p)d+1 the monomial ideal

I = 〈xt(p) : p ∈ Td〉 ⊂ K[x1, . . . , xd+1]

is called the coarse type ideal. In [7], Corollary 3.5, it was shown that I is generated by the
monomials, which are assigned to the coarse types of the inclusion-maximal cells of the tropical
complex. As a direct consequence of Theorem 3.6 in [7], we obtain the generators of I.

Corollary 2. The coarse type ideal I for the tropical complex of a tropical matroid polytope with
d+ 1 elements and rank k is equal to

〈x
ti1
i1

x
ti2
i2

· · · x
ti
d′+1

id′+1
: [d+ 1] \ {i1, . . . , id′} contains a basis 〉

where (ti1 , ti2 , . . . , tid′+1
) =

(
b{i1},∅ + b ∅,{i1,i2,...,id′+1}

, b{i2},{i1}, . . . , b{id′+1},{i1,...,id′}

)
.

Furthermore, we apply these results to the special case of uniform matroids, introduced and
studied in [11]. We close this work by stating the minimal tropical halfspaces containing a
uniform tropical matroid polytope by using the characterization of Proposition 1 in [9].

2. Basics of tropical convexity

We start with collecting basic facts about tropical convexity and fixing the notation. Defining
tropical addition by x⊕ y := min(x, y) and tropical multiplication by x⊙ y := x + y yields the
tropical semi-ring (R,⊕,⊙). Component-wise tropical addition and tropical scalar multiplication

λ⊙ (ξ0, . . . , ξd) := (λ⊙ ξ1, . . . , λ⊙ ξd) = (λ+ ξ0, . . . , λ+ ξd)

equips Rd+1 with a semi-module structure. For x, y ∈ Rd+1 the set

[x, y]trop := {(λ⊙ x)⊕ (µ⊙ y) | λ, µ ∈ R}

defines the tropical line segment between x and y. A subset of Rd+1 is tropically convex if it
contains the tropical line segment between any two of its points. A direct computation shows
that if S ⊂ Rd+1 is tropically convex then S is closed under tropical scalar multiplication. This
leads to the definition of the tropical torus as the quotient semi-module

Td := Rd+1/(R ⊙ (1, . . . , 1)).

Note that Td was called “tropical projective space” in [5], [11], [6], and [14]. Tropical convexity
gives rise to the hull operator tconv. A tropical polytope is the tropical convex hull of finitely
many points in Td.

Like an ordinary polytope each tropical polytope P has a unique set of generators which is
minimal with respect to inclusion; these are the tropical vertices of P .

There are several natural ways to choose a representative coordinate vector for a point in
Td. For instance, in the coset x + (R ⊙ (1, . . . , 1)) there is a unique vector c(x) ∈ Rd+1 with
non-negative coordinates such that at least one of them is zero; we refer to c(x) as the canonical
coordinates of x ∈ Td. Moreover, in the same coset there is also a unique vector (ξ0, . . . , ξd) such
that ξ0 = 0. Hence, the map

c0 : T
d → Rd, (ξ1, . . . , ξd+1) 7→ (ξ2 − ξ1, . . . , ξd+1 − ξ1)
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is a bijection. Often we will identify Td with Rd via this map.
The tropical hyperplane Ha defined by the tropical linear form a = (α1, . . . , αd+1) ∈ Rd+1 is

the set of points (ξ1, . . . , ξd+1) ∈ Td such that the minimum

(α1 ⊙ ξ1)⊕ · · · ⊕ (αd+1 ⊙ ξd+1)

is attained at least twice. For d = 3 the tropical hyperplane is shown in Figure 1(b). The
complement of a tropical hyperplane in Td has exactly d + 1 connected components, each of
which is an open sector. A closed sector is the topological closure of an open sector. The set

Sk :=
{
(ξ1, . . . , ξd+1) ∈ Td | ξk = 0 and ξi > 0 for i 6= k

}
,

for 1 ≤ k ≤ d+1, is the k-th open sector of the tropical hyperplane Z in Td defined by the zero
tropical linear form. Its closure is

S̄k :=
{
(ξ1, . . . , ξd+1) ∈ Td | ξk = 0 and ξi ≥ 0 for i 6= k

}
.

We also use the notation S̄I :=
⋃
{S̄i | i ∈ I} for any set I ⊂ [d+ 1] := {1, . . . , d+ 1}.

If a = (α1, . . . , αd+1) is an arbitrary tropical linear form then the translates −a + Sk for
1 ≤ k ≤ d + 1 are the open sectors of the tropical hyperplane Ha. The point −a is the unique
point contained in all closed sectors of Ha, and it is called the apex of Ha. For each I ⊂ [d+ 1]
with 1 ≤ #I ≤ d the set −a + S̄I is the closed tropical halfspace of Ha of type I. A tropical
halfspace H(−a, I) can also be written in the form

H(−a, I) = {x ∈ Td | the minimum of

d+1⊕

i=1

αi ⊙ ξi is attained

at a coordinate i ∈ I}

= {x ∈ Td |
⊕

i∈I

(αi ⊙ ξi) ≤
⊕

j∈J

(αj ⊙ ξj)}

where I and J are disjoint subsets of [d+1] and I ∪J = [d+1]. The tropical polytopes in Td are
exactly the bounded intersections of finitely many closed tropical halfspaces; see [9] and [11].

We concentrate on the combinatorial structure of tropical polytopes. Let V := (v1, . . . , vn)
be a sequence of points in Td. The (fine) type of x ∈ Td with respect to V is the ordered
(d+ 1)-tuple typeV (x) := (T1, . . . , Td+1) where

Tk := {i ∈ {1, . . . , n} | vi ∈ x+ S̄k}.

For a given type T with respect to V the set

X◦
V (T ) :=

{
x ∈ Td | typeV (x) = T

}

is a relatively open subset of Td and is called the cell of type T with respect to V . The set X◦
V (T )

as well as its topological closure are tropically and ordinary convex; in [13], these were called
polytropes. With respect to inclusion the types with respect to V form a partially ordered set.
The intersection of two cells XV (S) and XV (T ) with type S and T is equal to the polyhedron
XV (S ∪ T ). The collection of all (closed) cells induces a polyhedral subdivision CV of Td. A
min-tropical polytope P = tconv(V ) is the union of cells in the bounded subcomplex BV of CV
induced by the arrangement AV of max-tropical hyperplanes with apices v ∈ V . A cell of CV is
unbounded if and only if one of its type components is the empty set. The type of x equals the
union of the types of the (maximal) cells that contain x in their closure. The dimension of a
cell XT can be calculated as the number of the connected components of the undirected graph
G =

(
{1, 2, . . . , d + 1}, {(j, k) | Tj ∩ Tk 6= ∅}

)
minus one. The zero-dimensional cells are called

pseudovertices of P .
Replacing the (fine) type entries Tk ⊆ [n] for k ∈ [d+1] of a point p ∈ Td by their cardinalities

tk := |Tk| we get the coarse type tV (p) = (t1, . . . , td+1) ∈ Nd+1 of p. A coarse type entry tk
displays how many generating points lie in the k-th closed sector p + Sk. In [7], the authors
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associate the tropical complex of a tropical polytope with a monomial ideal, the coarse type
ideal

I := 〈x1
t1x2

t2 · · · xd+1
td+1 : p ∈ Td〉 ⊂ K[x1, . . . , xd+1].

By Corollary 3.5 of [7], I is generated by the monomials assigned to the coarse types of the
inclusion-maximal cells of the tropical complex. The tropical complex CV gives rise to minimal
cellular resolutions of I.

Theorem 3 ( [7], Theorem 3.6 ). The labeled complex CV supports a minimal cellular resolution
of the ideal I generated by monomials corresponding to the set of all (coarse) types.

Considering cellular resolutions of monomial ideals, introduced in [1] and [2], is a natural tech-
nique to construct resolutions of monomial ideals using labeled cellular complexes and provide
an important interface between topological constructions, combinatorics and algebraic ideas.
The authors of [3] and [7] use this to give an algorithm for determining the facial structure of
a tropical complex. More precisely, they associate a squarefree monomial ideal I with a trop-
ical polytope and calculate a minimal cellular resolution of I, where the i-th syzygies of I are
encoded by the i-dimensional faces of a polyhedral complex.

A tropical halfspace is called minimal for a tropical polytope P if it is minimal with respect to
inclusion among all tropical halfspaces containing P . Consider a tropical halfspace H(a, I) ⊂ Td

with I ⊂ [d+1] and apex a ∈ Td, and a tropical polytope P = tconv{v1, . . . , vn} ⊆ Td. To show
that H(a, I) is minimal for P , it suffices to prove, by Proposition 1 of [9], that the following
three criteria hold for the type (T1, T2, . . . , Td+1) = typeV (a) of the apex a:

(i)
⋃

i∈I

Ti = [n],

(ii) for each j ∈ IC there exists an i ∈ I such that Ti ∩ Tj 6= ∅,

(iii) for each i ∈ I there exists j ∈ IC such that Ti ∩ Tj 6⊂
⋃

k∈I\{i}

Tk.

Here, we denote the complement of a set I ⊆ [d+ 1] as IC = [d+ 1] \ I.
Obvious minimal tropical halfspaces of a tropical polytope P = tconv(V ) ⊆ Td are its cornered
halfspaces, see [12]. The k-th corner of P is defined as

ck(V ) := (−v1,k)⊙ v1 ⊕ (−v2,k)⊙ v2 ⊕ · · · ⊕ (−vn,k)⊙ vn.

The tropical halfspace Hk := ck(V ) + Sk is called the k-th cornered tropical halfspace of P and
the intersection of all d+ 1 cornered halfspaces is the cornered hull of P .

3. Tropical Matroid Polytopes

The tropical matroid polytope of a matroid M is defined in [4] as the tropical convex hull of
the negative incidence vectors of the bases of M. In this paper, we restrict ourselves to matroids
arising from graphs.

The graphic matroid of a simple undirected graph G = (V,E) is M(G) = (E,I = {F ⊆
E : F is acyclic}). While the forests of G form the system of independent sets of M(G) its
bases are the spanning forests. We will assume that G is connected, so the bases of M(G) are
the spanning trees of G. Furthermore, we exclude bridges, i.e. edges whose deletion increases
the number of connected components of G, leading to elements that are contained in every
basis. Let d+ 1 be the number of elements and n be the number of bases of M := M(G) and
B := {B1, . . . , Bn} its bases. It follows from the exchange property of matroids that all bases of
M have the same number of elements, which is called the rank of M. Consider the 0/1-matrix

M ∈ R(d+1)×n with rows indexed by the elements of the ground set E and columns indexed by
the bases of M which has a 0 in entry (i, j) if the i-th element is in the j-th basis. The tropical
matroid polytope P of M is the tropical convex hull of the columns of M . Let

(1) V =

{

−eB :=
∑

i∈B

−ei
∣
∣B ∈ B

}
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be the set of generators of P . It turns out that these are just the tropical vertices of P , see
Lemma 8. If the underlying matroid has rank k, then the canonical coordinate vectors of V
have exactly k zeros and d + 1 − k ones and will be denoted as vBi

or for short vi if the
corresponding basis is Bi ∈ B. Note that with ⊕ as max instead of min the generators of a
tropical matroid polytope are the positive incidence vectors of the bases of the corresponding
matroid. Throughout this paper we write Pk,d for the set of all tropical matroid polytopes
arising from a graphic matroid with d+ 1 elements and rank k.

Example 4. The tropical hypersimplex ∆d
k in Td studied in [11] is a tropical matroid polytope

of a uniform matroid of rank k with d+1 elements and
(
d+1
k

)
bases. It is defined as the tropical

convex hull of all points −eI :=
∑

i∈I

−ei where ei is the i-th unit vector of Rd+1 and I is a

k-element subset of [d+ 1]. The tropical vertices of ∆d
k are

Vert(∆d
k) =

{

−eI
∣
∣I ∈

(
[d+ 1]

k

)}

for all k > 0.

In [11], it is shown that ∆d
k+1 ( ∆d

k implying that the first tropical hypersimplex contains all

other tropical hypersimplices in Td. The first tropical hypersimplex ∆d = ∆d
1 in Td is the d-

dimensional tropical standard simplex which is also a polytrope. Clearly, we have for a tropical
matroid polytope P ∈ Pk,d the chain P ⊆ ∆d

k ( · · · ( ∆d
1 = ∆d. For d = 3 the three tropical

hypersimplices are shown in Figure 1.

(a) k = 3 (b) k = 2 (c) k = 1

Figure 1. The three 3-dimensional tropical hypersimplices with ∆3
3 ⊂ ∆3

2 ⊂ ∆3
1.

The origin 0 ∈ Td and its fine type are crucial for the calculation of the fine and the coarse
types of the maximal cells in the cell complex of P .

Lemma 5. A tropical matroid polytope P ∈ Pk,d with generators V contains the origin 0 ∈ Td.

Its type is typeV (0) = (T
(0)
1 , T

(0)
2 , . . . , T

(0)
d+1) with T

(0)
i = {j | i ∈ Bj}.

Proof. By Proposition 3 of [5] about the shape of a tropical line segment, the only pseudovertex
of the tropical line segment between two distinct 0-1-vectors u and v in Td is the point w with
wl = 0 if ul = 0 or vl = 0 and wl = 1 otherwise. Since every element of E is contained in any
basis of M(G) (apply any spanning-tree-greedy-algorithm for the connected components of G
starting from this element) and by using the previous argument, the origin must be contained
in P .

An index j is contained in the i-th type coordinate T
(0)
i if vj,i = min{vj,1, vj,2, . . . , vj,d+1},

which is satisfied by all indices i ∈ Bj. �

The i-th type entry T
(0)
i of 0 contains all bases of M with element i, and |T

(0)
i | is the number

of bases of M containing i.
Now it is time to introduce our running example.



6 KULAS

Example 6. The graphical matroid given by the following graph G has d + 1 = 5 elements
(edges with bold indices), rank k = 3, n = 8 bases B1 = {1,2,4}, B2 = {1,2,5}, B3 =
{1,3,4}, B4 = {1,3,5}, B5 = {1,4,5}, B6 = {2,3,4}, B7 = {2,3,5}, B8 = {3,4,5} and
the non-bases {1,2,3}, {2,4,5}.

ements

1
G :

2

3

4 5

(12345 )

(1267 )

(34678 )

(13568 ) (24578 )

Let P be the corresponding tropical matroid polytope with its gen-
erators

V = {vB1 , . . . , vB8}

=












0
0
1
0
1




 ,






0
0
1
1
0




 ,






0
1
0
0
1




 ,






0
1
0
1
0




 ,






0
1
1
0
0




 ,






1
0
0
0
1




 ,






1
0
0
1
0




 ,






1
1
0
0
0












.

The type of the origin 0 of P is (12345, 1267, 34678, 13568, 24578)
where the i-th type entry contains all bases using the edge i (italic
edge attributes).

In the next lemma we will show that the tropical standard simplex ∆d is the cornered hull of
all tropical matroid polytopes in Pk,d.

Lemma 7. The cornered hull of a tropical matroid polytope P ∈ Pk,d with generators V is the

d-dimensional tropical standard simplex ∆d. The i-th corner of P is the vector ei. The type of
ei with respect to V is typeV (ei) = (T1, . . . , Td+1) with

Tj =

{

[d+ 1] if j = i ,

{l | j ∈ Bl and i /∈ Bl} otherwise .

Proof. For B ∈ B the i-th (canonical) coordinate of vB is

vB,i =

{

0 if i ∈ B ,

1 otherwise .

The j-th coordinate of the i-th corner ci(V ) of P is

ci(V )j = min
J∈B

(vJ,j − vJ,i) =

{

0 if i = j ,

−1 otherwise .

In canonical coordinates we get ci(V ) = ei, which at the same time is the i-th apex vertex of the
tropical standard simplex ∆d. The type of ei is typeV (ei) = (T1, T2, . . . , Td+1), where some index
l is contained in the j-th coordinate Tj for j 6= i if vl,j = min{vl,1, vl,2, . . . , vl,i − 1, . . . , vl,d+1}.
This is satisfied by all bases Bl ∈ B with j ∈ Bl and i /∈ Bl. For j = i all indices l ∈ [d + 1]
are contained in Ti since the right hand side of vl,i − 1 = min{vl,1, vl,2, . . . , vl,i − 1, . . . , vl,d+1} is
smaller or equal than the left hand side in every case. �

Besides the point 0, the other pseudovertices of a tropical matroid polytope correspond to
unions of its bases.

Lemma 8. The pseudovertices of P ∈ Pk,d are

PV(P ) =

{

−eJ
∣
∣J =

⋃

i∈I

Bi for some I ⊆ [n]

}

.

The pseudovertices of the first tropical hypersimplex are

PV(∆d) =






−eJ

∣
∣J ∈

d⋃

j=1

(
[d+ 1]

j

)





.

Let (T
(0)
1 , . . . , T

(0)
d+1) be the type of the pseudovertex 0 with respect to V and consider a point

−eJ ∈ PV(P ). If the complement JC of J is equal to {i1, . . . , ir}, then the type (T1, . . . , Td+1)
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of −eJ with respect to V is given by

Tj =

{

T
(0)
j \ (T

(0)
i1

∪ · · · ∪ T
(0)
ir

) if j ∈ J ,

T
(0)
j ∪ (T

(0)
i1

C
∩ · · · ∩ T

(0)
ir

C
) otherwise .

Proof. Consider the point vJ := c(−eJ ) = eJC with canonical coordinates

vJ,i =

{

0 if i ∈ J ,

1 otherwise .

and typeV (vJ) = (T1, . . . , Td+1).
Since the union of the elements of one or more bases of M consists of at least k elements, the

index set J has at least k elements and thus we have r ≤ d− k + 1 for the cardinality r of JC .
We can assume that JC = {1, 2, . . . , r}. Then some index l occurs in the j-th coordinate Tj if
and only if

vl,j − vJ,j = min{vl,1 − 1, . . . , vl,r − 1, vl,r+1, . . . , vl,d+1}(2)

= min{vl,1 − 1, . . . , vl,r − 1} ∈ {−1, 0}.

For j ∈ J the left hand side of equation (2) is vl,j−0 ∈ {0, 1}. If j ∈ Bl, we get vl,j−vJ,j = 0−0

and this is minimal in (2) if the coordinates vl,i are equal to one for all i ∈ JC , i.e. i /∈ Bl. If
j /∈ Bl, we get vl,j−vJ,j = 1 /∈ {−1, 0}. Therefore, Tj is equal to {(l | j ∈ Bl) ∧(i /∈ Bl for all i ∈

JC)} = T
(0)
j \ (T

(0)
i1

∪ · · · ∪ T
(0)
ir

).

For j ∈ JC the left hand side is vl,j − 1 ∈ {0,−1}. If j ∈ Bl, we get vl,j − vJ,j = −1 =
min{vl,1−1, . . . , vl,j −1, . . . , vl,r−1}. If j /∈ Bl, we get vl,j−vJ,j = 1−1 = 0 and this is minimal

in (2) if the coordinates vl,i are equal to one for all i ∈ JC , i.e. i /∈ Bl. Therefore, Tj is equal to

{l | j ∈ Bl or (i /∈ Bl for all i ∈ JC)} = T
(0)
j ∪ (T

(0)
i1

C
∩ · · · ∩ T

(0)
ir

C
).

If r = d − k + 1, the pseudovertex v := c(−eJ ) is a generator of P . Each of its type
entries contains the index, which is assigned to a basis B ∈ B. Since B is the only basis with

i1, . . . , id−k+1 /∈ B, its index is the only element of Tj = T
(0)
j \ (T

(0)
i1

∪ · · · ∪ T
(0)
id−k+1

) for j ∈ B.

For this reason, the generators as defined in (1) are exactly the tropical vertices of P .
Now we consider the other points of PV(V ), i.e. r < d− k + 1. The intersection of two type

entries Tj1 ∩ Tj2 is equal to

(3) Tj1 ∩ Tj2 =

{

(T
(0)
j1

∩ T
(0)
j2

) \ (T
(0)
i1

∪ · · · ∪ T
(0)
ir

) if j1, j2 ∈ J ,

(T
(0)
j1

∩ T
(0)
j2

) ∪ (T
(0)
i1

C
∩ · · · ∩ T

(0)
ir

C
) otherwise .

In the first case of 3, Tj1 ∩ Tj2 consists of at least one tropical vertex vl with vl,j1 = vl,j2 = 0

and vl,i = 1 for all i ∈ JC . In the second case there are even more tropical vertices allowed and
Tj1∩Tj2 6= ∅. Hence, Proposition 17 of [5] tells us that the cell XT has dimension 0, i.e. the given
points really are pseudovertices of P . For J =

⋃

i∈I Bi and J ′ =
⋃

i∈I′ Bi with I 6= I ′ ⊆ [n] the
tropical line segment between vJ and vJ ′ is the concatenation of the two ordinary line segments
[vJ , vJ∪J̃ ] and [vJ∪J̃ , vJ ′ ]. The point vJ∪J̃ is again a point of PV(P ). Therefore, there are no
other pseudovertices as the given points in PV(P ).

Now we consider the tropical standard simplex ∆d. If the tropical vertex vl := vBl
, Bl ∈

(
[d+1]
1

)
, of ∆d is given by the vector vBl

= −el (l = 1, . . . , d + 1), then the type of the origin

0 with respect to ∆d is T 0 = (1, 2, . . . , d + 1). Therefore, this is an interior point of ∆d. Let

vJ with J ∈
⋃d

j=1

([d+1]
j

)
be any pseudovertex of ∆d. Since for i ∈ J and i /∈ J , we have

vi,i − vJ,i = 0 = min{vl,1 − 1, . . . , vl,r − 1, vl,r+1, . . . , vl,i, . . . , vl,d+1} and
vi,i − vJ,i = −1 = min{vl,1 − 1, . . . , vl,i − 1, . . . , vl,r − 1}, respectively, it follows that the index

i is contained in the i-th entry of T for all i = 1, . . . , d + 1, i.e. T 0 ⊂ T . Hence, ∆d is a
polytrope. �

Let vJ =
∑

i∈J −ei = −eJ be a pseudovertex of P with J =
⋃

i∈I Bi for I ⊆ [n]. If the

complement JC of J is equal to {i1, i2, . . . , ir} with r ≤ d− k+1, we will denote vJ as ei1,i2,...,ir
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and its type with respect to P as

typeV (vJ) = T (vJ) =
(
T1(vJ ), . . . , Td+1(vJ)

)
.

Because of the previous lemma, the i-th entry of T (vJ) contains all bases using edge i ∈ J that
are possible after deleting the edges of JC in the corresponding graph G or, equivalently, all
bases that are possible after (re-)inserting edge i ∈ JC into (V (G), E(G) \ {JC}).

We call a sequence of pseudovertices e∅, ei1 , ei1,i2 , . . . , ei1,i2,...,id−k+1
, or rather the set

{i1, . . . , id−k+1} ⊂ [d+ 1], valid if the edge set E \ {i1, . . . , id−k+1} contains a spanning tree of
the underlying graph G. The first point e∅ = 0 is assigned to the total edge set E of G. Then we
delete edge after edge such that the graph is still connected until the edge set forms a connected
graph without cycles. So the last point of a valid sequence is the tropical vertex vB of P with
B = [d+ 1] \ {i1, i2, . . . , id−k+1}.

It turns out that the pseudovertices of the valid sequences and subsequences of them play a
major role in the calculation of the maximal bounded und unbounded cells of P .

Lemma 9. The maximal bounded cells of P ∈ Pk,d are of dimension d− k + 1. They form the
tropical convex hull of the pseudovertices of a valid sequence 0, ei1 , ei1,i2 , . . . , ei1,i2,...,id−k+1

, where
the last pseudovertex is a tropical vertex vB according to the basis B = [d+1]\{i1, i2, . . . , id−k+1} ∈
B of M.

Let T (0) = (T
(0)
1 , . . . , T

(0)
d+1) be the type of the pseudovertex 0 with respect to P . Then the type

T = (T1, . . . , Td+1) of the interior of the bounded cell XT = tconv(0, ei1 , ei1,i2 , . . . , ei1,i2,...,id−k+1
)

is given by Ti1 = T
(0)
i1

, Ti2 = T
(0)
i2

\ T
(0)
i1

, . . . , Tid−k+1
= T

(0)
id−k+1

\ (T
(0)
i1

∪ T
(0)
i2

∪ T
(0)
id−k

) and Tj =

T
(0)
j \ (T

(0)
i1

∪ T
(0)
i2

∪ T
(0)
id−k+1

) for all j ∈ B.

Proof. First, we will show that this sequence really defines a bounded cell of P , i.e. Tj 6= ∅ for
all j ∈ [d+ 1]. So consider the type entry at some coordinate ij ∈ BC

Tij = Tij (0) ∩ Tij (ei1) ∩ . . . ∩

Tij (ei1,...,ij−1) ∩

Tij (ei1,...,ij) ∩ . . . ∩

Tij (ei1,...,id−k+1
)

= {l | ij ∈ Bl} ∩ {l | ij ∈ Bl and i1 /∈ Bl} ∩ . . . ∩

{l | ij ∈ Bl and (i1, . . . , ij−1 /∈ Bl)} ∩

{l | ij ∈ Bl or (i1, . . . , ij /∈ Bl)} ∩ . . . ∩

{l | ij ∈ Bl or (i1, . . . , id−k+1 /∈ Bl)}

= {l | ij ∈ Bl and (i1, . . . , ij−1 /∈ Bl)}

= T
(0)
ij

\ (T
(0)
i1

∪ . . . ∪ T
(0)
ij−1

).

The cardinality of Tij = T
(0)
ij

∩ T
(0)
i1

C
∩ . . . ∩ T

(0)
ij−1

C
is equal to the number of tropical vertices

v of P with vij = 0 and vi1 = . . . = vij−1 = 1 (in canonical coordinates) respectively to the
number of bases B with ij ∈ B and i1, . . . , ij−1 /∈ B, which is greater than 0 since we consider
only valid sequences. So every type coordinate Tij contains at least one entry. In the case of
uniform matroids we have the choice of d + 1 − j free coordinates from which k − 1 must be
equal to 0, i.e. the cardinality of Tij is equal to

(
d+1−j
k−1

)
.

Analogously, the other type entries Tj = T
(0)
j \ (T

(0)
i1

∪ T
(0)
i2

∪ T
(0)
id−k+1

) = {vB} for j ∈ B and

their cardinality |Tj | = 1 can be verified. Furthermore, we have T1 ∪ · · · ∪ Td+1 = [n], because

T
(0)
1 ∪· · ·∪T

(0)
d+1 = [n]. Since no type entry of T is empty, the cell XT is bounded. More precisely,

Ti1 , . . . , Tid−k+1
is a partition of the indices of Vert(P ) \ {vB}, and the other type coordinates

each contain the index of the tropical vertex vB ; we call this a pre-partition. By Proposition 17
in [5], the dimension of XT is d− k + 1.
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Removing one pseudovertex ei1,...,ir with r ∈ [d − k + 1] from a valid sequence, we obtain

Tir+1 = T
(0)
ir+1

\ (T
(0)
i1

∪ · · · ∪ T
(0)
ir−1

) and Tir ∩ Tir+1 6= ∅. This yields a bounded cell with lower

dimension than d− k + 1.
Adding a pseudovertex eJ to XT , J 6= B with JC = {j1, . . . , jr} (1 ≤ r ≤ d − k + 1) and

(j1, . . . , jl) 6= (i1, . . . , il) for all l = 1, . . . , r, we consider T ′ = T ∩ typeP (eJ). To keep the status
of a maximal bounded cell, the type of the cell still has to be a pre-partition of [n] without
empty type entries. There are three different cases (1)-(3).

(1) For JC 6⊆ BC and J ∩ B 6= ∅, there is an index j ∈ J ∩ B. We consider the j-th type

entry of T ′ that is equal to Tj ∩ T
(0)
j (eJ) = T

(0)
j ∩ T

(0)
i1

C
∩ · · · ∩ T

(0)
id−k+1

C
∩ T

(0)
j1

C
∩ · · · ∩ T

(0)
jr

C
.

This is an empty set since there are no tropical vertices of P with d− k+ 1+ r entries equal to
one. The cells with empty type entries are not bounded.

(2) For JC 6⊆ BC and J ∩ B = ∅, we consider an index j ∈ J ∩ BC that corresponds to
a valid sequence with it = j, t ∈ {1, . . . , d − k + 1}. The j-th type entry of T ′ is equal to

T
(0)
j (eJ ) ∩ Tj = T

(0)
j ∩ T

(0)
j1

C
∩ · · · ∩ T

(0)
jr

C
∩ T (0)C

i1
∩ · · · ∩ T (0)C

it−1
. Since JC 6⊆ {i1, . . . , it−1}, the

cardinality of T ′
j is less than |T

(0)
j |, and we get no valid partition of [n].

(3) For JC ⊂ BC we have r < d+1−k (otherwise J = B). We choose the smallest index j such
that ij ∈ J ∩ BC . That means i1, . . . , ij−1 ∈ JC ⊂ BC . Since we have (i1, . . . , il) 6= (j1, . . . jl)

for all l = 1, . . . , r, we know that (i1, . . . , ij−1) 6= (j1, . . . , jr) leading to |Tij | = |T
(0)
ij

∩ T
(0)
i1

C
∩

· · · ∩ T
(0)
ij−1

C
| > |T ′

ij
| = |T

(0)
ij

∩ T
(0)
j1

C
∩ · · · ∩ T

(0)
jr

C
|. As in the other two cases this is no valid

pre-partition of [n].
In every case the adding of a pseudovertex from another sequence leads to unfeasible types

of bounded cells.
Similarly, it is not difficult to see that removing a pseudovertex and adding a new one from

another sequence leads to unfeasible types or lower dimensional bounded cells, i.e. mixing of
valid sequences is not possible. Altogether, we get the desired maximal bounded cells of P . �

There are n · (d+ 1− k)! maximal bounded cells of P since we have (d+ 1− k)! possibilities
to add edges to a spanning tree until we get the whole graph.

Example 10. The tropical matroid polytope P from Example 6 is contained in the 4-dimensional
tropical hyperplane with apex 0. It is shown in Figure 2 as the abstract graph of the vertices and
edges of its bounded subcomplex. Its maximal bounded cells are ordinary simplices of dimension
d−k+1 = 2, whose pseudovertices are the tropical vertices V = {vB1 , . . . , vB8} (dark), the origin
0 (the centered point) and the five corners ci = ei (light). The four tropical vertices with indices
3, 4, 5 and 8 correspond to the bases that are possible after deleting edge 1 in the underlying graph
and therefore adjacent to the point e1. One valid sequence i1, i2 leading to a maxim bounded cell
is for example the (tropical/ordinary) convex hull of e∅ = (0, 0, 0, 0, 0), e4 = (0, 0, 0, 0, 1) and
e4,2 = vB1 = (0, 0, 1, 0, 1), i.e. i1 = 4 and i2 = 2, with interior cell type (1, 1, 36, 1, 24578),
representing the basis B1 = {1, 2, 4}.

All cells in the tropical complex CV , bounded or not, are pointed, i.e. they do not contain an
affine line. So each cell of CV must contain a bounded cell as an ordinary face.

We now state the main theorem about the coarse types of maximal cells in the cell complex
of a tropical matroid polytope. Let bI,J denote the number of bases B ∈ B with I ⊆ B and
J ⊆ BC .

Theorem 11. Let C be the tropical complex induced by the tropical vertices of a tropical matroid
polytope P ∈ Pk,d. The set of all coarse types of the maximal cells arising in C is given by those
tuples (t1, . . . , td+1) with

(4) tj =







b{i1},∅ + b ∅,{i1,i2,...,id′+1}
if j = i1 ,

b{il},{i1,...,il−1} if j = il ∈ {i2, . . . id′+1} ,

0 otherwise .
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e0

e1
e2

e3

e4

1

2

3

4

5

6

7

8

Figure 2. The abstract 1-skeleton of the bounded subcomplex of the tropical
matroid polytope of Example 6.

where ei1 , . . . , ei1,i2,...,id′ form a subsequence of a valid sequence of P .

Proof. Depending on the maximal bounded (ordinary) face in the boundary, there are three
types of maximal unbounded cells in CV .

The first one, XT , contains a maximal bounded cell of dimension d−k+1, which is the tropical
convex hull of the pseudovertices of a complete valid sequence 0, ei1 , ei1,i2 , . . . , ei1,i2,...,id−k+1

where

BC = {i1, . . . , id−k+1} is the complement of a basis of M. To get full-dimensional we have the
choice between k−1 of k free directions −ei, i ∈ B. So let −e∞j1 , . . . ,−e∞jk−1

be the extreme rays of

XT , and (T
(0)
1 , . . . , T

(0)
d+1) be the type of the pseudovertex 0 with respect to P . Then the type T =

(T1, . . . , Td+1) of the interior of this unbounded cell XT is given by the intersection of the types of

its vertices and therefore Ti1 = T
(0)
i1

, Ti2 = T
(0)
i2

\T
(0)
i1

, . . . , Tid−k+1
= T

(0)
id−k+1

\(T
(0)
i1

∪T
(0)
i2

∪T
(0)
id−k

),

Ti = T
(0)
i \(T

(0)
i1

∪T
(0)
i2

∪T
(0)
id−k+1

) for i /∈ BC ∪{j1, . . . , jk−1} and Tj1 = . . . = Tjk−1
= ∅. Choosing

d′ = d− k + 1 and id′+1 = i, we get the coarse type entries of equation (4).
The second type, XT , of maximal unbounded cells contains a bounded cell of lower dimension

d′ ∈ {0, . . . , d− k}, which is the tropical convex hull of the pseudovertices of some subsequence
ei1 , ei1,i2 , . . . , ei1,i2,...,id′+1

. To get full-dimensional we still need the extreme rays ei1,i2,...,id′+1
−e∞l

for all directions l /∈ {i1, . . . , id′+1}. Then the type T = (T1, . . . , Td+1) of the interior of this

unbounded cell XT is given by Ti1 = T
(0)
i1

∪ (T
(0)
i1

C
∩ · · · ∩ T

(0)
id′+1

C
), Ti2 = T

(0)
i2

\ T
(0)
i1

, . . . , Tid′+1
=

T
(0)
id′+1

\ (T
(0)
i1

∪ T
(0)
i2

∪ T
(0)
id′

), Tj = ∅ for j /∈ {i1, . . . , id′+1} with the coarse type as given in

equation (4).
The third and last type of maximal unbounded cells contains a bounded cell of dimension

d − k and is assigned to the non-bases of M, i.e. to the subsets of E with cardinality k
that are not bases. Let i1, . . . , id−k+1 be the complement of a non-basis N and i1, . . . , id−k a
valid subsequence. Then there is an unbounded cell XT that is the tropical convex hull of the
pseudovertices 0, ei1 , . . . , eid−k

and the extreme rays 0−e∞l for all directions l /∈ {i1, . . . , id−k+1}

and with type entries Ti1 = T
(0)
i1

, Ti2 = T
(0)
i2

\ T
(0)
i1

, . . . , Tid−k+1
= T

(0)
id−k+1

\ (T
(0)
i1

∪ T
(0)
i2

∪ T
(0)
id−k

),

Tj = ∅ for j /∈ {i1, . . . , id−k+1}. Choosing d′ = d − k and observing that b ∅,{i1,i2,...,id′+1}
= 0 for

the non-basis {i1, i2, . . . , id′+1}
C we get the desired result. �

Restricting ourselves to the uniform case, we get the following result.

Corollary 12. The coarse types of the maximal cells in the tropical complex induced by the
tropical vertices of the tropical hypersimplex ∆d

k in Td with 2 ≤ k < d+1 are up to symmetry of
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Sym(d+ 1) given by




(
d+ 1− α

k

)

+

(
d

k − 1

)

,

(
d− 1

k − 1

)

, . . . ,

(
d− (α− 1)

k − 1

)

, 0, . . . , 0
︸ ︷︷ ︸

d+1−α





where 0 ≤ α ≤ d+ 2− k correlates to the maximal dimension of a bounded cell of its boundary.

Now we relate the combinatorial properties of the tropical complex C of a tropical matroid
polytope to algebraic properties of a monomial ideal which is assigned to C. As a direct con-
sequence of Theorem 3 and Corollary 3.5 in [7], we can state the generators of the coarse type
ideal

I = 〈xt(p) : p ∈ Td〉 ⊂ K[x1, . . . , xd+1],

where t(p) is the coarse type of p and xt(p) = x1
t(p)1x2

t(p)2 · · · xd+1
t(p)d+1 .

Corollary 13. The coarse type ideal I is equal to

〈x
ti1
i1

x
ti2
i2

· · · x
ti
d′+1

id′+1
: [d+ 1] \ {i1, . . . , id′} contains a basis 〉

with (ti1 , ti2 , . . . , tid′+1
) =

(
b{i1},∅ + b ∅,{i1,i2,...,id′+1}

, b{i2},{i1}, . . . , b{id′+1},{i1,...,id′}

)
.

Example 14. The tropical complex C of the tropical matroid polytope of Example 6 has 73
maximal cells. There are five maximal cells for the case d′ = 0 with tid′+1

= 8 and tj = 0 for

j 6= id′+1, and 48 for the case d′ = 2 according to the 8 bases. Finally, there are 20 maximal cells
for the case d′ = 1, where [d+1] \ {i1} contains a basis, but [d+1] \ {i1, i2} does not necessarily
contain a basis.

The coarse type ideal of C is given by

I = 〈 x1
1x2

2x3
5, x1

1x2
5x3

2, x1
2x2

1x3
5, x1

4x2
1x3

3, x1
4x2

3x3
1, x1

2x2
5x3

1, x2
2x3

6, x2
6x3

2,

x2
2x3

5x4
1, x2

5x3
2x4

1, x1
2x3

6, x1
5x3

3, x1
2x3

5x4
1, x1

4x3
3x4

1, x3
8, x3

5x4
3, x1

8, x1
5x2

3,

x1
5x4

3, x1
4x3

1x4
3, x1

4x2
3x4

1, x1
4x2

1x4
3, x0

2x4
6, x4

8, x0
2x1

1x4
5, x0

1x1
2x4

5, x1
2x4

6,

x0
1x2

2x4
5, x2

2x4
6, x0

2x2
1x4

5, x1
1x2

2x4
5, x1

2x2
1x4

5, x0
2x3

1x4
5, x3

3x4
5, x2

2x3
1x4

5,

x1
2x3

1x4
5, x0

1x2
5x4

2, x2
6x4

2, x2
5x3

1x4
2, x1

1x2
5x4

2, x0
2x3

6, x0
1x2

2x3
5, x0

2x2
1x3

5,

x0
2x1

1x3
5, x0

1x1
2x3

5, x0
2x3

5x4
1, x0

1x2
5x3

2, x0
3x2

5, x2
8, x0

1x1
2x2

5, x1
2x2

6, x1
2x2

5x4
1,

x0
1x1

4x2
3, x0

6x4
2, x0

5x1
1x4

2, x0
5x1

2x4
1, x0

3x1
4x4

1, x0
1x1

4x4
3, x0

5x2
1x4

2, x0
5x2

3,

x0
5x1

2x2
1, x0

3x1
4x2

1, x0
5x3

1x4
2, x0

5x2
1x3

2, x0
5x3

2x4
1, x0

6x3
2, x0

5x1
1x3

2, x0
6x1

2,

x0
3x1

5, x0
5x1

2x3
1, x0

3x1
4x3

1, x0
8, x0

1x1
4x3

3 〉 ⊆ R := R[x0, x1, x2, x3, x4]

We obtain its minimal free resolution, which is induced by C

FC
• : 0 → R14 → R78 → R172 → R180 → R73 → I → 0,

where the exponents i of the free graded R-modules Ri correspond to the entries of the f -vector
f(C) = (1, 14, 78, 172, 180, 73) of C.

In (ordinary) convexity swapping between interior and exterior description of a polytope is
a famous problem known as the convex hull problem. For a uniform matroid it is possible to
indicate the minimal tropical halfspaces of its tropical matroid polytope.

Theorem 15. The tropical hypersimplex ∆d
k in Td is the intersection of its cornered halfspaces

and the tropical halfspaces H(0, I), where I is a (d− k + 2)-element subset of [d+ 1].

Proof. For k = 1 the tropical standard simplex is a polytrope and coincides with its cornered
hull. For k ≥ 2 we want to verify the three conditions of Gaubert and Katz in Proposition 1
of [9].

Let T = (T1, . . . , Td+1) be the type of the apex 0 of H(0, I). If a vertex v ∈ Vert(∆d
k) appears

in some type entry Ti, then the i-th (canonical) coordinate of v is equal to zero. Hence, exactly
k entries of T contain the index of v. Since the cardinality of IC = [d+1] \ I is only k− 1, every
tropical vertex of ∆d

k is contained in some sector Si with i ∈ I, i.e. ∆d
k ⊆ H(0, I).
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Consider the complement IC of I. For all i ∈ IC there is a tropical vertex v with vi = 0, i.e.
v ∈ Ti. Since the cardinality of IC is equal to k−1 and v has k entries equal to zero, there must
be an index j ∈ I such that vj = 0. We can conclude that Ti ∩ Tj 6= ∅.

The intersection Ti ∩ Tj is not empty for arbitrary i, j ∈ [d + 1], because its cardinality is

equal to the number of tropical vertices v with vi = vj = 0, which is
(

d
k−1

)
with k > 1. For i ∈ I

and j ∈ IC , the set Ti∩Tj consists of all tropical vertices v with vi = 0 and vj = 1 (in canonical
coordinates). On the other hand, the set

⋃

k∈I\{i} Tk contains all tropical vertices v with vi = 1.

So we get Ti ∩ Tj 6⊂
⋃

k∈I\{i} Tk.

Hence, we obtain that H(0, I) is a minimal tropical halfspace, and ∆d
k is contained in the

intersection of its cornered hull
⋂

i∈[d+1]

H(ei, {i}) with
⋂

I∈( [d+1]
d−k+2)

H(0, I).

We still have to prove that the intersection of the given minimal tropical halfspaces is contained
in ∆d

k. Let us assume that there is a point x ∈ Td \ ∆d
k with type∆d

k
(x)i = ∅. Then for any

tropical halfspace H(0, I), I ∈
( [d+1]
d−k+2

)
, with i ∈ IC we obtain x /∈ H(0, I).

Consequently, the tropical hypersimplex ∆d
k is the set of all points x ∈ Td satisfying

⊕

i∈I

xi ≤
⊕

j∈IC

xj for all I ⊆ [d+ 1] with |I| = d− k + 2

and (−1)⊙ xi ≤
⊕

j 6=i

xj for all i ∈ [d+ 1].

�

Example 16. The second tropical hypersimplex ∆3
2 in T3 is the intersection of the 4 cor-

nered halfspaces (ci, {i}) for i = 1, . . . , 4 and the tropical halfspaces (0, {1, 2, 3}), (0, {1, 2, 4}),
(0, {1, 3, 4}) and (0, {2, 3, 4}) with apex 0 ∈ Td. The second tropical hypersimplex ∆2

2 in T2 is the
intersection of the three cornered halfspaces (ci, {i}) for i = 1, . . . , 3 and the tropical halfspaces
(0, {1, 2}), (0, {1, 3}) and (0, {2, 3}) with apex 0 ∈ T2, see Figure 3.

(0,−1,−1)

(−1, 0,−1)

(−1,−1, 0)

(a)

(0,−1,−1)

(−1, 0,−1)

(−1,−1, 0)

(b)

Figure 3. The tropical hypersimplex ∆2
2 (dark) is given as the intersection of

its cornered halfspaces (light coloured in Figure 3(a)) and the minimal tropical
halfspaces (0, {1, 2}), (0, {1, 3}) (light coloured in Figure 3(b)).
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