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PENALISATION OF THE SYMMETRIC RANDOM

WALK

by several functions of the supremum

DEBS PIERRE

Abstract

Call (Ω,F∞,P, X,F) the canonical space for the standard random walk on Z. Thus, Ω
denotes the set of paths φ : N → Z such that |φ(n+ 1)− φ(n)| = 1, X = (Xn, n ≥ 0) is the
canonical coordinate process on Ω; F = (Fn, n ≥ 0) is the natural filtration of X, F∞ the
σ-field

∨
n≥0

Fn, and P0 the probability on (Ω,F∞) such that under P0, X is the standard

random walk started from 0, i.e., P0 (Xn+1 = j |Xn = i) = 1

2
when |j − i| = 1.

Let G : N × Ω → R
+ be a positive, adapted functional. For several types of functionals

G, we show the existence of a positive F-martingale (Mn, n ≥ 0) such that, for all n and all
Λn ∈ Fn,

E0[1ΛnGp]

E0[Gp]
−→ E0[1ΛnMn] when p → ∞ .

Thus, there exists a probability Q on (Ω,F∞) such that Q(Λn) = E0[1ΛnMn] for all Λn ∈ Fn.
We describe the behavior of the process (Ω, X,F) under Q.

We study here four kinds of G:
.Gp is a function of Sp where Sp is the unilateral supremum of X.
.Gp is a function of Sgp where gp is the last 0 at the left of p.
.Gp is a function of Sdp where dp is the first 0 at the right of p.
.Gp is a function of S∗

gp where S∗
p is the bilateral supremum of X.

.Gp is a function of S∗
p .

A similar study has been realized for other kinds of G (cf [Deb09]).

1 Introduction

Let
{

Ω, (Xt,Ft)t≥0,F∞,Px

}

be the canonical one-dimensional Brownian motion. For several

types of positive functionals Γ : R
+ × Ω → R

+, B. Roynette, P. Vallois and M. Yor show in
[RVY06] that, for fixed s and for all Λs ∈ Fs,

lim
t→∞

Ex[1Λs
Γt]

Ex[Γt]

exists and has the form Ex[1Λs
Mx

s ], where (Mx
s , s ≥ 0) is a positive martingale. This enables

them to define a probability Qx on (Ω,F∞) by:

∀Λs ∈ Fs Qx(Λs) = Ex[1Λs
Mx

s ] ;

moreover, they precisely describe the behavior of the canonical process X under Qx. They do
this for numerous functionals Γ, for instance a function of the one-sided maximum, or of the local
time, or of the age of the current excursion (cf. [RVY06], [RVY]).
We have already studied a discrete analogue of their results in [Deb09]. More precisely, let Ω
denote the set of all functions φ from N to Z such that |φ(n+ 1)− φ(n)| = 1, let X = (Xn, n ≥ 0)
be the process of coordinates on that space, F = (Fn, n ≥ 0) the canonical filtration, F∞ the
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σ-field
∨

n≥0 Fn, and Px (x ∈ N) the family of probabilities on (Ω,F∞) such that under Px, X is
the standard random walk started at x. For notational simplicity, we often write P for P0. Our
aim is to establish that for several types of positive, adapted functionals G : N× Ω → N,
i) for each n ≥ 0 and each Λn ∈ Fn,

E0[1Λn
Gp]

E0[Gp]
,

tends to a limit when p tends to infinity;
ii) this limit is equal to E0[1Λn

Mn], for some F -martingale M such that M0 = 1.

Call Q(Λn) this limit. Like the continuous case, Q describes a probability on (Ω,F∞) by :

∀n ≥ 0, ∀Λn ∈ Fn, Q(Λn) = E0[1Λn
Mn],

and we also study the process X under Q.
A better definition of the principle of penalisation, for instance proof of existence and unicity, can
be found in the introduction and the first part of [Deb09].

In this paper, G essentially depends on two functions ϕ : N → R
+ and φ : N → R

+ such that :

∑

k≥0

ϕ (k) = 1, φ (x) :=

∞
∑

k=x

ϕ (k) . (1.1)

The following result comes from [Deb09], and is not proved in the following paper. Here, G is a
function of the one-sided maximum, i.e. Gp = ϕ(Sp), where Sp := sup {Xk, k ≤ p}. We establish :

Theorem 1.1. 1. (a) For each n ≥ 0 and each Λn ∈ Fn, one has

lim
p→∞

E[1Λn
ϕ(Sp)]

E[ϕ(Sp)]
= E[1Λn

Mϕ
n ] ,

where Mϕ
n := ϕ(Sn)(Sn −Xn) + φ(Sn).

(b) (Mϕ
n , n ≥ 0) is a positive martingale, with Mϕ

0 = 1, non uniformly integrable; in fact,
Mϕ

n tends a.s. to 0 when n→ ∞.

2. Call Qϕ the probability on (Ω,F∞) characterized by

∀n ∈ N,Λn ∈ Fn, Qϕ(Λn) = E[1Λn
Mϕ

n ] .

Then

(a) S∞ is finite Qϕ-a.s. and satisfies for every k ∈ N:

Qϕ(S∞ = k) = ϕ(k) .

(b) Under Qϕ, the r.v. T∞ := inf {n ≥ 0, Xn = S∞} (which is not a stopping time in
general) is a.s. finite and

i. (Xn∧T∞ , n ≥ 0) and (S∞ −XT∞+n, n ≥ 0) are two independent processes;

ii. conditional on the r.v. S∞, the process (Xn∧T∞ , n ≥ 0) is a standard random walk
stopped when it first hits the level S∞;
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iii. (S∞ −XT∞+n, n ≥ 0) is a 3-Bessel walk started from 0.

3. Put Rn = 2Sn −Xn. Under Qϕ, (Rn, n ≥ 0) is a 3-Bessel walk independent of S∞.

The 3-Bessel walk is the Markov chain (Rn, n ≥ 0), with values in N = {0, 1, 2, . . .}, whose
transition probabilities from x ≥ 0 are given by

π(x, x + 1) =
x+ 2

2x+ 2
; π(x, x − 1) =

x

2x+ 2
. (1.2)

The 3-Bessel* walk is the Markov chain (R∗
n, n ≥ 0), valued in N

∗ = {1, 2, . . .}, such that R∗−1
is a 3-Bessel walk. So its transition probabilities from x ≥ 1 are

π∗(x, x + 1) =
x+ 1

2x
; π∗(x, x− 1) =

x− 1

2x
.

the 3-Bessel walk and the 3-Bessel* walk, will play a role in this work; they are identical up to a
one-step space shift.
This result and those of [Deb09] can let think that the process of penalization gives rather intuitive
results. Nevertheless, the following Theorems show that this intuition can be false and it is
necessary to lead the calculations to their terms.

1) In the first section, G is a function of the one-sided maximum till the last zero before p, i.e.
:

Gp = ϕ(Sgp)

where gp := sup {k ≤ p,Xk = 0} and where ϕ satisfies (1.1) and :

∞
∑

k=0

kϕ(k) <∞. (1.3)

To study this penalisation we have to introduce (γn, n ≥ 0) the number of 0 before n and we also
recall that for all real a, a+ := sup(a, 0). The result of this first section is summarized in the
following statement :

Theorem 1.2. 1. (a) For all n ≥ 0 et all Λn ∈ Fn:

lim
p→∞

E
[

1Λn
ϕ
(

Sgp

)]

E
[

ϕ
(

Sgp

)] = E [1Λn
Mn] , (1.4)

where Mn = 1
2ϕ (Sgn) |Xn|+ ϕ (Sn) (Sn −X+

n ) + φ (Sn).

(b) Moreover, (Mn, n ≥ 0) is a positive martingale, not uniformly integrable.

2. Let Q be the probability on (Ω,F∞), induces by:

∀n ≥ 0,Λn ∈ Fn, Q (Λn) := E [1Λn
Mn] .

Then under the probability Q:

(a) let g := sup {k ≥ 0, Xk = 0}. Then Q (0 ≤ g <∞) = 1.

(b) Q (S∞ = ∞) = 1
2 and, conditionally on S∞ <∞, ϕ is the density of S∞.

(c) (Sg, γg) admits as density:

f
γg,Sg

(a, k) :=







(

1
2

)a
ϕ(0) , for k = 0

1
2

{

(

1− 1
2(k+1)

)
a−1

−
(

1− 1
2k

)
a−1
}

ϕ(k) , otherwise.

In particular, Sg admits ϕ as density.
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3. Under Q:

(a) (Xn, n ≤ g) and (Xn, n > g) are two independent processes.

(b) With probability 1
2 , (Xg+n, n ≥ 0) (respectively to (−Xg+n, n ≥ 0)) is a 3-Bessel* walk.

(c) Conditionally on γg = a and Sg = b, the process (Xn, n ≤ g) is a symmetric random
walk stopped in τa and conditionally on Sτa = b.

2) In the second section, Gp = ϕ
(

Sdp

)

where dp := inf {k ≥ p,Xk = 0} the first zero after p
and ϕ satisfies (1.1) and (1.3). Let f : N× Z → R

+ such that:

f(b, a) := 1b=0ϕ(0) + 1b6=0

[

ϕ(b)

(

1− a+

b

)

+ a+
∞
∑

k=b

ϕ(k)

k(k + 1)

]

.

The main result of this section is :

Theorem 1.3. For all n ≥ 0 and all Λn ∈ Fn:

lim
p→∞

E
[

1Λn
ϕ
(

Sdp

)]

E
[

ϕ
(

Sdp

)] = lim
p→∞

E [1Λn
f (Sp, Xp)]

E [f (Sp, Xp)]
= lim

p→∞

E [1Λn
ϕ (Sp)]

E [ϕ (Sp)]
= E [1Λn

Mϕ
n ] ,

where Mϕ
n := ϕ (Sn) (Sn −Xn) + 1− φ (Sn).

We remark that we obtain the same martingale as the one obtained for the penalisation by a
function of the maximum( cf [Deb09]), i.e. that the penalisation by ϕ

(

Sdp

)

is the same as the
penalisation by ϕ (Sp).

3) In the third section, ϕ has to satisfy a stronger integrability condition :

∑

k≥0

k2ϕ(k) <∞ (1.5)

and Gp = ϕ
(

S∗
p

)

where S∗
p = supn≤p |Xn|, the bilateral supremum of (Xn)n≥0. The result of this

alinea is :

Theorem 1.4. 1. (a) Let n ∈ N, Λn ∈ Fn:

lim
p→∞

E
[

1Λn
ϕ
(

S∗
gp

)]

E
[

ϕ
(

S∗
gp

)] = E [1Λn
M∗

n] ,

where M∗
n = ϕ

(

S∗
gn

)

|Xn|+ ϕ (S∗
n) (S

∗
n − |Xn|) + φ (S∗

n).

(b) Moreover, (M∗
n, n ≥ 0) is a non uniformly, integrable positive Fn martingale .

2. Let Q∗ be the probability on (Ω,F∞) induced by:

∀n ∈ N,Λn ∈ Fn : Q∗ (Λn) := E [1Λn
M∗

n] .

So, under Q∗:

(a) Let g := sup {k ≥ 0, Xn = 0}. then g is finite and S∞ = ∞ a.s.

(b) The law of the couple (Sg, γg) is:

fγg ,Sg
(a, k) =

{

ϕ(0) , if a = k = 0
{(

1− 1
k+1

)a

−
(

1− 1
k

)a
}

ϕ(k) , for a ≥ 0, k > 0.

We deduced that ϕ is the density of Sg.

3. Under Q∗:
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(a) (Xn, n ≤ g) and (Xn, n > g) are two independent processes.

(b) With probability 1
2 , (Xg+n, n ≥ 0) (respectively (−Xg+n, n ≥ 0)) is a three dimensional

Bessel* walk.

(c) Conditionally on γg = a and S∗
g = b, (Xn, n ≤ g) is a symmetric random walk stopped

in τa and conditionally on S∗
τa

= b.

4) Finally, in order to be comprehensive, we fix an integer a > 0 and consider the penalisation
functional :

Gp = 1{S∗
p<a}.

We obtain :

Theorem 1.5. 1. For each n ≥ 0 and each Λn ∈ Fn :

lim
p→∞

E

[

1{Λn, S∗
p<a}

]

E

[

1{S∗
p<a}

] := E
[

1{Λn,S∗
n<a}Mn

]

,

where Mn := 1{Λn,S∗
n<a}

(

cos
(

π
2a

))−n
sin
(

π(a−Xn)
2a

)

is a positive martingale non uniformly

integrable.

2. Let us define a new probability Q on (Ω,F∞) characterized by :

∀n ∈ N, ∀Λn ∈ Fn, Q (Λn) := E [ΛnMn] .

Under this new probability Q, (Xn, n ≥ 0) has the following transition probabilities for
−b+ 1 ≤ k ≤ a− 1:

Q (Xn+1 = k + 1|Xn = k) =
sin
(

a−k−1
2a π

)

2 cos
(

π
2a

)

sin
(

a−k
2a π

) ,

Q (Xn+1 = k − 1|Xn = k) =
sin
(

a−k+1
2a π

)

2 cos
(

π
2a

)

sin
(

a−k
2a π

) .

2 Penalisation by a function of Sgp
, proof of Theorem 1.2

1) To establish the first point of the Theorem (formula 1.4), we need the following lemma :

Lemma 2.1. ∀x ∈ N, ∀a ∈ Z\]x,+∞[ :

Pa (Sgn = x, T0 < n)

2Pa(Sn = 0)

is bounded above by 1 for all n ≥ 0 and tends to 1 when n→ ∞.

Proof. We have to see that :

Pa (Sgn < x, T0 < n) = Pa (T0 < n, gn < Tx) = Pa (T0 < n < Tx + T0 ◦ θTx
) ,

where {θn}n denote the family of shifts operators. We split in two cases according to the sign of
a.
First, for a ≤ 0, according to the Desiré André’s principle :

Pa (Sgn < x, T0 < n) = Pa (0 ≤ Sn < 2x) = P (|a| ≤ Sn < 2x+ |a|) .
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Which implies :

Pa (Sgn = x, T0 < n) = P (|a| ≤ Sn < 2x+ 2 + |a|)− P (|a| ≤ Sn < 2x+ |a|)
= P (Sn = 2x+ |a|) + P (Sn = 2x+ 1 + |a|) .

And for a > 0 :

Pa (Sgn < x, T0 < n) = Pa (n < Tx + T0 ◦ θTx
, T0 < Tx)− Pa (n < Tx + T0 ◦ θTx

, n ≤ T0 < Tx)

= Pa (n < Tx + T0 ◦ θTx
, T0 < Tx)− Pa (n ≤ T0 < Tx)

= Pa (n < Tx + T0 ◦ θTx
)− Pa (n < Tx + T0 ◦ θTx

, Tx < T0)− Pa (n ≤ T0 < Tx)

= Pa (n < Tx + T0 ◦ θTx
)− Pa (n < T0, Tx < T0)− Pa (n ≤ T0 < Tx)

= Pa (n < Tx + T0 ◦ θTx
)− Pa (n < T0) + Pa (n < T0 < Tx)− Pa (n ≤ T0 < Tx)

= Pa (n < T2x)− Pa (n < T0)− Pa (n = T0 < Tx) .

And consequently :

Pa (Sgn = x, T0 < n) = Pa (2x ≤ Sn < 2x+ 2)− Pa (n = T0 < Tx+1) + Pa (n = T0 < Tx)

= Pa (2x ≤ Sn < 2x+ 2)− Pa (n = T0, Sn = x)

≤ P (2x− a ≤ Sn < 2x+ 2− a) .

In the ratio P(Sn=x)
P(Sn=0) , the denominator is bounded below by P(X1 = . . . = Xn = −1) = 2−n; so it

does not vanish. Observe that, for even n and even k ≥ 2,

P(Sn = k−1)

P(Sn = 0)
=

P(Sn = k)

P(Sn = 0)
=
pn,k
pn,0

=
(n−k+2

n+2

) (n−k+4

n+4

)

· · ·
( n

n+k

)

;

and for odd n and odd k ≥ 1,

P(Sn = k−1)

P(Sn = 0)
=

P(Sn = k)

P(Sn = 0)
=
pn,k
pn,1

=
(n−k+2

n+1

) (n−k+4

n+3

)

· · ·
(n+1

n+k

)

.

Clearly, these products are smaller than 1 and tend to 1 when n goes to infinity. This proves the
first point of the lemma. Obviously, when a ≤ 0, the ratio tends to 1 when n goes to infinity.
In the other case, it appears clearly that Pa (n = T0, Sn = x) ≤ Pa (In = 0, Sn = x) tends to zero
faster then the quantity P(Sn = 0) (we have explicitely the expression of Pa (In = 0, Sn = x) a
little bit further in this paper).

Remark 2.2. Remark that we have also proved that for each k ≥ 0 the ratio :

P(Sp = k)

P(Sp = 0)

is bounded above by 1 and tends to 1 when p→ +∞.

Lemma 2.3. For all x ∈ Z and a ∈ Z\]x,+∞[ :

Ea [ϕ (x ∨ Sgn)1T0<n]

2P(Sn = 0)

is bounded above by (x − a+)ϕ(x) + φ(x) and tends to (x − a+)ϕ(x) + φ(x) when n→ ∞.

Proof. Write :

Ea [ϕ (x ∨ Sgn)1T0<n]

2P(Sn = 0)
=

Pa (Sgn < x, T0 < n)

2P(Sn = 0)
ϕ(x)

+

∞
∑

k=x

Pa (Sgn = k, T0 < n)

2P(Sn = 0)
ϕ(k).

By lemma 2.1, this sum is bounded above by (x − a+)ϕ(x) + φ(x) and tends to this value by
dominated convergence.
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To prove point 1.a, we split:

E
[

ϕ
(

Sgp

)

| Fn

]

= E
[

ϕ
(

Sgp

)

1gp<n | Fn

]

+ E
[

ϕ
(

Sgp

)

1gp≥n | Fn

]

:= (1) + (2).

a) As 0 ≤ n ≤ p, we can write (X̃k, k ≥ 0) := (Xn+k −Xn, k ≥ 0), a standard random walk
independent of Fn. We denote by T̃a and S̃, the hitting time of the level a and the supremum
associated to X̃. Obviously on {gp < n}, {gp = gn}. Hence :

(1) = ϕ(Sgn)P̃Xn
(T̃0 > p− n) = ϕ(Sgn)P̃

(

S̃p−n ≤ |Xn|
)

,

where P̃ only integrates over S̃, Xn being kept fixed. Eventually, according to remark 2.2 :

E
[

1Λn,gp<nϕ
(

Sgp

)]

P(Sp−n = 0)
=

E

[

1Λn
ϕ (Sgn) P̃

(

S̃p−n ≤ |Xn|
)]

P(Sp−n = 0)

is bounded above by E [1Λn
ϕ(Sgn)|Xn|] which is integrable and tends to [1Λn

ϕ(Sgn)|Xn|] when p
goes to ∞.

b) We now study the behaviour of (2). We use the same notations as before, adding for all
p ≥ 0, g̃p the last zero before p associated to X̃. Hence :

(2) =
E
[

E
[

ϕ
(

Sn ∨ S[n,gp]

)

1gp≥n | Fn

]]

2P(Sp−n = 0)
= E





ẼXn

[

ϕ
(

Sn ∨ S̃g̃p−n

)

1T̃0≤p−n

]

2P(Sp−n = 0)



 ,

where Ẽ integrates on S̃, g̃ and T̃0, the variables Sn and Xn being kept fixed. When p tends to
infinity, Lemma 2.1 says that the ratio in the right hand side tends to (Sn −X+

n )ϕ(Sn) + φ(Sn)
and is dominated by the same quantity, which is integrable. As a result :

E
[

1Λn
ϕ(Sgp)

]

P(Sp−n = 0)

{

is bounded above by E [1Λn
Mn] forall p ≥ n.

and tends to E [1Λn
Mn] when p→ ∞.

Taking in particular Λn = Ω, one also has

E
[

ϕ
(

Sgp

)]

2P(Sp−n = 0)
→

p→∞
E [Mn] = 1,

and to establish point 1 of Theorem 1.2, it suffices to take the ratio of these two limits.
ii) Let us prove now that (Mn, n ≥ 0) is a (Fn)-martingale under P. For typographical simplicity,
we write :

Mn = An + Bn

where An := ϕ(Sn)(Sn −X+
n ) +

∑∞
k=Sn

ϕ(k) and Bn := 1
2ϕ(Sgn)|Xn|.

We suppose that n > 0, the case n = 0 being trivial.
On {Xn ≥ 1}, An+1 is in fact the martingale found in the Theorem 1.1, then conditional on Fn,
this quantity is equal to An.
On {Xn ≤ −1}, Sn+1 = Sn = Sgn and X+

n+1 = X+
n = 0, obviously on this event An+1 = An.

Eventually, on {Xn = 0}, as |Xn+1| = 1, we have Sn+1 = Sn. So, summing on the possible values
of Xn+1, 1 and −1, it is easy to check that :

E[1Xn=0An+1|Fn] = 1Xn=0

(

An − 1

2
ϕ(Sgn)

)

. (2.6)

It just remains the quantity Bn := 1
2ϕ(Sgn)|Xn|.

On {|Xn| ≥ 2}, Sgn+1 = Sgn and as the function x → |x| is harmonic for the symmetric random
walk, except in 0, consequently E[1|Xn|≥2Bn+1|Fn] = 1|Xn|≥2Bn.
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On {|Xn| = 1}, either |Xn+1| = 2 and in this case Sgn+1 = Sgn implies Bn+1 = ϕ(Sgn), ei-
ther |Xn+1| = 0 and in this case Bn+1 = 0. Then, immediately we have E[1|Xn|=1Bn+1|Fn] =

1|Xn|=1
1
2ϕ(Sgn) = 1|Xn|=1Bn.

At last, on {Xn = 0}, Sgn+1 = Sgn and consequently Bn+1 = 1
2ϕ(Sgn). So according to (2.6) :

E[1Xn=0Mn+1|Fn] = E[1Xn=0(An+1 + Bn+1)|Fn] = 1Xn=0An = 1Xn=0Mn.

2) For p and n in N, the event {Sn > p} is equal to {Tp < n}. Using the definition of Q and the
Doob’s stopping Theorem :

Q (Sn > p) = Q (Tp < n) = E[1Tp<nMTp
] = E

[

1Tp<n

{

1

2
ϕ
(

SgTp

)

p+ φ (p)

}]

.

Moreover according to [LeG85] p.457-458, under P, SgTp
is a uniformly distributed random variable

on {0, ..., p− 1}. As n→ ∞, the Lebesgue Theorem permits us to write:

Q (S∞ > p) = lim
n→∞

Q (Sn > p) = E

[{

1

2
ϕ
(

SgTp

)

p+ φ (p)

}]

=
p

2
E

[

ϕ
(

SgTp

)]

+ φ (p) =
p

2

p−1
∑

k=0

1

p
ϕ(k) + φ(p) =

1

2

p−1
∑

k=0

ϕ(k) + φ(p).

Consequently Q (S∞ = ∞) = limp→∞Q (S∞ > p) = 1
2 and the half of the point 2.b is proved.

In order to prove point 2.a, we need, for a > 0, the law under P of Sda
conditionally on Fp.

Lemma 2.4. Let k ≥ a > 0, then:

Pa (ST0 = k) =
a

k(k + 1)
.

Proof. A direct use of the stopping Theorem to the martingale (Xn, n ≥ 0) and the stopping time
T0 ∧ Tk gives us :

Pa (T0 > Tk) =
a

k
.

We just have to remark that Pa (ST0 = k) = Pa (Tk < T0)− Pa (Tk+1 < T0) to achieve the proof.

Lemma 2.5. Let ψ : N → R
+ be an integrable function. Then :

E
[

ψ
(

Sdp

)

| Fp

]

= 1Sp=0ψ(0) + 1Sp 6=0







ψ (Sp)

(

1−
X+

p

Sp

)

+X+
p

∑

k≥Sp

ψ(k)

k(k + 1)







.

Proof. We easily obtain :

E
[

ψ
(

Sdp

)

| Fp

]

= 1Sp=0ψ (0) + E
[

1Sp 6=0ψ
(

Sp ∨ S[p,dp]

)

| Fp

]

.

If Xp ≤ 0, then Xk ≤ 0 for all p ≤ k ≤ dp and consequently X+
p = S[p,dp] = 0. As a result, on

{Xp ≤ 0, Sp 6= 0} :

ψ
(

Sp ∨ S[p,dp]

)

= ψ(Sp) = ψ(Sp)

(

1−
X+

p

Sp

)

+X+
p

∑

k≥Sp

ψ(k)

k(k + 1)
.

Let (X̃q := Xq+p ≥ 0), a random walk starting from Xp and independent of Fp and we denote by

S̃ and T̃0 respectively the supremum and the hitting time of 0 associated to X̃. Then S[p,dp] = S̃T̃0
.
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In the following calculus, Ẽ only integrates S̃T̃0
, Xp and Sp being kept fixed. Consequently, on

{Xp > 0, Sp 6= 0}, according to lemma 2.4, E
[

ψ
(

Sdp

)

| Fp

]

equals to:

ẼXp

[

ψ
(

Sp ∨ S̃T̃0

)]

=

Sp−1
∑

k=Xp

P̃Xp

(

S̃T̃0
= k

)

ψ (Sp) +
∞
∑

k≥Sp

P̃Xp

(

S̃T̃0
= k

)

ψ (k)

=

Sp−1
∑

k=Xp

Xp

k(k + 1)
ψ (Sp) +

∞
∑

k≥Sp

Xp

k(k + 1)
ψ (k)

=

(

1− Xp

Sp

)

ψ (Sp) +

∞
∑

k≥Sp

Xp

k(k + 1)
ψ (k) .

Fixing a > 0, according to Doob’s stopping Theorem:

Q (gp > a) = Q (da < p) = E [1da<pMda
] = E [1da<p {ϕ (Sda

)Sda
+ φ (Sda

)}] .

The events {gp > a} form an increasing sequence with limit {g > a}. Hence :

Q (g > a) = lim
p→∞

Q (gp > a) = E [ϕ (Sda
)Sda

+ φ (Sda
)] = E [ϕ (Sda

)Sda
] + E [φ (Sda

)] .

To achieve the proof of the point 2.a, we have to prove that each term tends to zero as a → ∞.
According to the Lebesgue Theorem E [φ (Sda

)] →
a→∞

0. We use lemma 2.5 with ψ(x) := xϕ(x):

E [Sda
ϕ (Sda

)] = E



1Sa 6=0ϕ (Sa)
(

Sa −X+
a

)

+X+
a

∑

k≥Sa

ϕ(k)

k + 1





≤ E



1Sa 6=0ϕ (Sa)Sa +
X+

a

Sa + 1

∑

k≥Sa

ϕ(k)





≤ E [ϕ (Sa)Sa + φ (Sa)] = E [ϕ (Sa)Sa] + E [φ (Sa)] .

On the one hand, according to the Lebesgue Theorem E [φ (Sa)] →
a→∞

0.

On the other hand E [ϕ (Sa)Sa] =
∑∞

k=0 P (Sa = k)ϕ(k)k is bounded above by
∑∞

k=0 ϕ(k)k <∞
and P(Sa = k) tends to 0 when a→ ∞. Again, according to the Lebesgue Theorem, E [ϕ (Sa)Sa]
tends to 0 when a→ ∞.
3) First of all, let us establish preliminary results and remind that γn :=

∑n
k=0 1Xk=0 is the

number of visits to zero up to time n and denote τa := inf {p ≥ 0, γn = a}.
Lemma 2.6. For all c > 0 and a ≥ 1:

P (Sτa = c) =







(

1
2

)a−1
, if c = 0

(

1− 1
2(c+1)

)a−1

−
(

1− 1
2c

)a−1
, otherwise.

Lemma 2.7. For all n ≥ 0:

∞
∑

k=n

1

k(k + 1)
[kϕ(k) + φ(k)] =

1

n
(1− φ(n)) .

Proof of lemma 2.6. This is obvious for a = 1 so let us suppose that a ≥ 2. If c = 0, we have,
with an obvious recurrence :

P (Sτa = 0) = P (X1 = −1)P (Sτa = 0 | X1 = −1) =
1

2
P
(

Sτa−1 = 0
)

=

(

1

2

)a−1

.
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Now suppose that c > 0. With those notations, using the strong Markov property and an obvious
recurrence:

P (Sτa < c) = P (τa < Tc) = P(τa < Tc|τ2 < Tc)P(τ2 < Tc) = P(τa−1 < Tc)P(τ2 < Tc)

= P(τ2 < Tc)
a−1 =

[

1

2
(P1(τ1 < Tc) + P−1(τ1 < Tc))

]a−1

=

[

1

2
(P1(τ1 < Tc) + 1)

]a−1

.

We have already seen that P1 (Tc < T0) =
1
c
, then P (Sτa < c) =

(

1− 1
2c

)a−1
.

We can note that the law of γTc
is a geometric law of parameter 1

2c . Finally:

P (Sτa = c) = P (Sτa < c)− P (Sτa < c+ 1) =

(

1− 1

2(c+ 1)

)a

−
(

1− 1

2c

)a

.

Proof of lemma 2.7. We have :

∞
∑

k=n

φ(k)

k(k + 1)
=

∞
∑

k=n

∞
∑

l

ϕ(l)

k(k + 1)
=

∞
∑

l=n

l
∑

k=n

ϕ(l)

k(k + 1)
=

∞
∑

l=n

ϕ(l)

(

1

n
− 1

k + 1

)

,

hence :
∞
∑

k=n

1

k(k + 1)
[kϕ(k) + φ(k)] =

1

n

∞
∑

k=n

ϕ(k).

Let F be a functional, f1 and f2 be two functions from N to R
+.

A := E
Q [F (Xu, u ≤ g) f1 (γg) f2 (Sg)]

=
∑

a≥1

E
Q
[

F (Xu, u ≤ τa) f1 (γτa) f2 (Sτa)1τa<∞, τa+1=∞

]

=
∑

a≥1

E
Q
[

F (Xu, u ≤ τa) f1 (γτa) f2 (Sτa) (1τa<∞ − 1τa+1<∞)
]

=
∑

a≥1

E [F (Xu, u ≤ τa) f1 (γτa) f2 (Sτa)1τa<∞Mτa]

− E
[

F (Xu, u ≤ τa) f1 (γτa) f2 (Sτa)1τa+1<∞Mτa+1

]

=
∑

a≥1

E
[

F (Xu, u ≤ τa) f1 (γτa) f2 (Sτa)
(

Mτa −Mτa+1

)]

.

Since:
Mτa −Mτa+1 = ϕ (Sτa)Sτa + φ (Sτa)− ϕ

(

Sτa+1

)

Sτa+1 − φ
(

Sτa+1

)

.

One can write Sτa+1 = Sτa ∨ S̃τ̃2 where S̃ and τ̃2 are respectively the unilateral supremum and
the time of the return in 0 of the standard random walk (Xn+τa , n ≥ 0) which is independent of
Fτa . Hence :

Mτa −Mτa+1 = 1S̃τ̃2>Sτa



ϕ(Sτa)Sτa − ϕ(S̃τ̃2)S̃τ̃2 +

S̃τ̃2−1
∑

k=Sτa

ϕ(k)



 .
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Then, we condition this quantity by Fτa :

E
[

Mτa −Mτa+1 |Fτa

]

=
∑

l>Sτa

P(S̃τ̃1 = l)(ϕ(Sτa)Sτa − ϕ(l)l +

l−1
∑

k=l

ϕ(k))

=
∑

l>Sτa

1

2l(l+ 1)
(ϕ(Sτa)Sτa − ϕ(l)l +

l−1
∑

k=l

ϕ(k))

=
ϕ(Sτa)Sτa

2(Sτa + 1)
−
∑

l>Sτa

ϕ(l)

2(l+ 1)
+
∑

k≥Sτa

ϕ(k)
∑

l≥k+1

1

2l(l+ 1)

=
1

2





ϕ(Sτa)Sτa

Sτa + 1
−
∑

l>Sτa

ϕ(l)

l + 1
+
∑

k≥Sτa

ϕ(k)

k + 1



 =
ϕ(Sτa)

2
.

Consequently: A =
∑

a≥1
1
2E [F (Xu, u ≤ τa) f1 (a) f2 (Sτa)ϕ (Sτa)] and with F ≡ 1 :

A =
1

2

∑

a≥1

∑

k≥0

P (Sτa = k) f1(a)f2(k)ϕ(k) =
1

2

∑

a≥1

(

1

2

)a−1

f1(a)f2(0)ϕ(0)

+
1

2

∑

a≥1

∑

k≥1

{

(

1− 1

2(k + 1)

)a−1

−
(

1− 1

2k

)a−1
}

f1(a)f2(k)ϕ(k)

which gives us the density of (γg, Sg).
Now, summing over a we easily find that ϕ is the density of Sg under Q.
For proving 3.iii, we write the formula A in two different ways:

A =
∑

a≥1

∑

k≥0

fγg,Sg
(a, k)EQ [F (Xu, u ≤ g) | Sg = k, γg = a] f1 (a) f2 (k)

=
1

2

∑

a≥1

∑

k≥0

f1 (a) f2 (k)ϕ (k)P (Sτa = k)E [F (Xu, u ≤ τa) | Sτa = k]

The formulas that we obtained for Q (Sg = k, γg = a) and P (Sτa = k) imply obviously that for all
k, a ≥ 0:

EQ [F (Xu, u ≤ g) | Sg = k, γg = a] = E [F (Xu, u ≤ τa) | Sτa = k] .

3.ii) The study of the process (Xn, n ≥ 0) under Qh+,h−

starts with the next three lemmas.

Lemma 2.8. Under P1 and conditional on the event {Tp < T0}, the process (Xn, 0 ≤ n ≤ Tp) is
a 3-Bessel* walk started from 1 and stopped when it first hits the level p (cf. [LeG85]).

For typographical simplicity, call Tp,n := inf{k > n, Xk = p} the time of the first visit to p
after n, and Hl :=

{

Tp,τl < τl+1, Xτl+1=1

}

, the event that the l-th excursion is positive and reaches
level p.

Lemma 2.9. Under the law Q and conditional on the event Hl, the process (Xn+τl , 1 ≤ n ≤ Tp,τl − τl)
is a 3-Bessel* walk started from 1 and stopped when it first hits the level p.

Proof. Let G be a functional on Z
n :

D := Q
[

G (Xτl+1, ..., Xτl+n)1n+τl<Tp,τl
| Hl

]

=
Q
[

G (Xτl+1, ..., Xτl+n)1n+τl<Tp,τl
<τl+1,Xτl+1=1

]

Q (Hl)

=
E

[

G (Xτl+1, ..., Xτl+n)1n+τl<Tp,τl
<τl+1,Xτl+1=1Mτl+1

]

E
[

1Hl
Mτl+1

] .
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ObviouslyMτl+1
= ϕ(Sτl+1

)Sτl+1
+φ(Sτl+1

) and conditionning by FTp,τl
, we obtainE

[

Mτl+1
| FTp,τl

]

=

Ep [ϕ(ST0 )ST0 + φ(ST0 )], a constant. Conditioning by FTp,τl
the denominator and numerator of

D :

D =
E

[

G (Xτl+1, ..., Xτl+n)1n+τl<Tp,τl
<τl+1,Xτl+1=1E

[

Mτl+1
| FTp,τl

]]

E

[

1Hl
E

[

Mτl+1
| FTp,τl

]]

=
E

[

G (Xτl+1, ..., Xτl+n)1n+τl<Tp,τl
<τl+1,Xτl+1=1

]

E [1Hl
]

Using the conditionning by Fτl+1 and the Markov property :

D =
E1

[

G (X0, ..., Xn−1)1n−1<Tp<T0

]

P1 (Tp < T0)
= E1

[

G (X0, ..., Xn−1)1n−1<Tp
| Tp < T0

]

.

On the other part, according to [LeG85] conditionally on {Tp < T0}, the law of (Xn, n < Tp)
under P1 is the law of the 3-dimensional Bessel* walk. We deduce that, conditionally on {Tp < T0}
under Q1, (Xn, n < Tp) is a 3-dimensional Bessel* walk. Making p go to infinity, we obtain that
under Q1 conditionally on {T0 = ∞}, (Xn, n ≥ 0) is a 3-dimensional Bessel* walk.
Obviously, by symmetry, under Q−1, conditionally on {T0 = ∞}, (−Xn, n ≥ 0) is a three dimen-
sional Bessel* walk. We deduce that (Xn, n ≥ g) , is either a three dimensional Bessel* walk,
either a reversed three dimensional Bessel* walk. It remains to know with what probability we
have one or the other.
We have seen in 2.ii that S∞ under Q was finished with probability 1

2 . As a three dimensional
Bessel* walk goes to infinity in infinity, we deduce that (Xn, n ≥ g) is one or the other walk with
probability 1

2 .

3 Penalisation by a function of Sdp

We’ve already seen according to lemma 2.5 that E
[

ϕ
(

Sdp

)

| Fp

]

= f (Sp, Xp). Moreover :

E [f (Sp, Xp)1Λn
] = E [ϕ (Sp)1Λn

]− E

[

1Sp 6=0ϕ (Sp)
X+

p

Sp

1Λn

]

+ E



1Sp 6=0X
+
p

∑

k≥Sp

ϕ(k)

k(k + 1)
1Λn





= (1)− (2) + (3).

We already know (cf. [Deb09]) that ∀n ≥ 0 and Λn ∈ Fn :

E[1Λn
ϕ(Sp)]

P(Sp−n = 0)

{

is bounded above by E[1Λn
Mϕ

n ] for all p ≥ n

and tends to E[1Λn
Mϕ

n ] when p→ ∞ .
(3.1)

Then we just have to prove that :

E [(f(Sp, Xp)− ϕ(Sp))1Λn
]

P(Sp−n = 0)

goes to 0 when p→ ∞.
In particular, if we take Λn = Ω, we have :

E
[

ϕ(Sdp
)1Λn

]

P(Sp−n = 0)
→

p→∞
E [Mϕ

n ] = 1

12



and to establish Theorem 1.3, we take the ratio of the two limits.

ii) To study the behaviour of the last two terms, we need the following lemma:

Lemma 3.1. For b ≥ 0 and a ≤ b :

P (Sp = b,Xp = a)

P(Sp = 0)

is bounded above by 1 and tends to 0 when p→ ∞.

Proof. Remark that a and p must have the same parity, otherwise
P (Sp = b,Xp = a) is equal to zero and the lemma is obvious. According to remark 2.2 :

P(Sp = b,Xp = a)

P(Sp = 0)
≤ P(Sp = b)

P(Sp = 0)
≤ 1.

With these hypothesis, according to the Desiré André’s reflexion principle:

P (Sp = b,Xp = a) = P (Sp ≥ b,Xp = a)− P (Sp ≥ b+ 1, Xp = a)

= P (Xp = 2b− a)− P (Xp = 2b+ 2− a) =

(

1

2

)p [

C
p+2b−a

2
p − C

p+2b−a
2 +1

p

]

=

(

1

2

)p

C
p+2b−a

2
p

[

1− p− 2b+ a

p+ 2b− a+ 2

]

= P(Xp = 2b− a)
4b− 2a+ 2

p+ 2b− a+ 2
.

As P(Xp = 2b− a) = P(Sp = 2b− a) (see for instance [Fel50] p.75) and using the remark 2.2:

P(Sp = b,Xp = a)

P(Sp = 0)
=

P(Sp = 2b− a)

P(Sp = 0)

4b− 2a+ 2

p+ 2b− a+ 2
→

p→∞
0.

Lemma 3.2. Let y ∈ N and x ∈ Z. Then :

E

[

1y∨(x+Sp) 6=0ϕ (y ∨ (x+ Sp))
(x+Xp)

+

y∨(x+Sp)

]

P(Sp = 0)

is bounded above by 1y>0 {ϕ(y)
∑y

k=x k
+}+

∑∞
k=y+1 kϕ(k) and tends to 0 when p→ ∞.

Proof. To simplify, we consider two cases : {y > 0} and {y = 0}. For typographical simplicity we
denote respectively by B+ and B0 the first and the second cases. In the first case :

B+ :=
E

[

ϕ (y ∨ (x + Sp))
(x+Xp)

+

y∨(x+Sp)

]

P(Sp = 0)
=

∑

k≥0
−x<ℓ≤k

P(Sp = k,Xp = ℓ)

P(Sp = 0)
ϕ (y ∨ (x + k))

(x+ ℓ)+

y ∨ (x+ k)
.

According to lemma 3.1, we have :

B+ ≤
∑

k≥0,−x<ℓ≤k

ϕ (y ∨ (x+ k))
(x + ℓ)+

y ∨ (x+ k)
≤

∑

k≥0,−x<ℓ≤k

ϕ (y ∨ (x+ k))
(x + k)+

y ∨ (x+ k)

≤
∑

k≥0

ϕ (y ∨ (x + k))
(x+ k)+(x+ k)

y ∨ (x+ k)
.

Let us remark that we just consider cases where k > −x which implies 0 < x + k ≤ y ∨ (x + k).
Then :

B+ ≤
∑

k≥0

ϕ (y ∨ (x+ k)) (x+ k)+ = ϕ(y)

y
∑

k=x

k+ +
∞
∑

k=y+1

kϕ(k).
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In the second case, x ≤ 0 and {y ∨ (x+ Sp) 6= 0} = {Sp > −x}. Then :

B0 ≤
∑

k>−x,−x<ℓ≤k

ϕ(x+ k)
x+ ℓ

x+ k
≤
∑

k>x

ϕ(x+ k)(x + k) =
∑

k≥1

kϕ(k).

We can easily conclude using lemma 3.1 and the Lebesgue Theorem.

For 0 ≤ n ≤ p, one can write Sp = Sn ∨ (Xn + S̃p−n) where S̃ is the unilateral maximum of
the standard random walk (Xn+k −Xn)k≥0 which is independent from Fn. Hence :

E

[

1Sp 6=0ϕ(Sp)
X+

p

Sp

∣

∣

∣

∣

Fn

]

= Ẽ

[

1Sn∨(Xn+S̃p−n) 6=0ϕ(S̃p−n +Xn)
(Xn + X̃p−n)

+

(Xn + S̃p−n) ∨ Sn

]

,

where Ẽ only integrates over S̃p−n and X̃p−n, Sn and Xn being kept fixed. Then, for Λn ∈ Fn :

E

[

1{Λn,Sp 6=0}ϕ(Sp)
X+

p

Sp

]

P(Sp−n = 0)
=

E

[

1Λn
Ẽ

[

1Sn∨(Xn+S̃p−n) 6=0ϕ(S̃p−n +Xn)
(Xn+X̃p−n)

+

(Xn+S̃p−n)∨Sn

]]

P(Sp−n = 0)
.

Lemma 3.2 says that the ratio in the right hand side tends to 0 when p tends to infinity and is
dominated by ϕ(Sn)

∑Sn

k=Xn
k+ +

∑+∞
k=Sn+1 kϕ(k), which is integrable.

About the quantity (3), we have to remark that:

E



1y∨(Sp+x) 6=0(Xp + x)+
∑

k≥y∨(Sp+x)

ϕ(k)

k(k + 1)



 ≤ E



1y∨(Sp+x) 6=0
(Xp + x)+

y ∨ (Sp + x)

∑

k≥y∨(Sp+x)

ϕ(k)

k



 ,

and we apply the same reasoning as the one for the quantity (2) with the function h(x) =
∑

k≥x
ϕ(k)
k

and x > 0 instead of ϕ. We just have to check that
∑

x>0 xh(x) <∞. Easily :

∑

x̃>0

xh(x) =
∑

x
∑

k≥x

ϕ(k)

k
≤
∑

x>0

∑

k≥x

ϕ(k) ≤
∑

k≥0

∑

k≥x

ϕ(k) ≤
∑

k≥0

kϕ(k) <∞.

With the previous notations, we have :

E

[

1Λn,Sp 6=0X
+
p

∑

k≥Sp

ϕ(k)
k(k+1)

]

P(Sp−n = 0)
≤

E

[

1Λn
Ẽ

[

1Sn∨(Xn+S̃p−n) 6=0h(S̃p−n +Xn)
(Xn+X̃p−n)

+

(Xn+S̃p−n)∨Sn

]]

P(Sp−n = 0)
,

and we can easily conclude that the ratio in the right hand side tends to 0 when p tends to infinity
and is dominated by h(Sn)

∑Sn

k=Xn
k+ +

∑+∞
k=Sn+1 kh(k), which is integrable.

To conclude the proof of the Theorem, always with the same notations we have :

E [1Λn
f(Sp, Xp)]

P(Sp−n = 0)
=

E

[

1Λn
f((Sn ∨ (Xn + S̃p−n), X̃p−n +Xn)

]

P(Sp−n = 0)
,

and when p goes to infinity, the ratio in the right hand side tends to Mϕ
n and is dominated by

Mϕ
n + (ϕ(Sn) + h(Sn))

∑Sn

k=Xn
k+ +

∑+∞
k=Sn+1 k(h(k) + ϕ(k)) which is integrable.

4 Penalisation by a function S∗
gp

1) We start with the first point of Theorem 1.4. In order to prove this, we need :

Lemma 4.1. Let α > 0 and a ∈ [−α, α]. Then:

Pa

(

S∗
gp

= α, T0 < p
)

P(Sp = 0)

is bounded above by 2 and tends to 1 when p→ ∞.
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To obtain this, we use a Tauberian Theorem :

Theorem 4.2 (Cf. [Fel71] p. 447). Given qn ≥ 0, suppose that the series

S(s) =
∞
∑

n=0

qns
n

converges for 0 ≤ s < 1. If 0 < p < ∞ and if the sequence {qn} is monotone, then the two
relations:

S(s) ∼
s→1−

1

(1− s)p
C

and

qn ∼
n→∞

1

Γ(p)
np−1C,

where 0 < C <∞, are equivalent.

and the following :

Lemma 4.3. For a < 0 < b and λ ∈ R :

E

[

(coshλ)
−Ta∧Tb

]

=
coshλ

(

a+b
2

)

coshλ
(

a−b
2

)

Proof. Let’s recall that Xn =
∑n

k=1 Yk and define the process (Wn, n ≥ 0) by

Wn :=
coshλ (Xn + β)

(coshλ)n
,

where β ∈ R. Let’s prove that (Wn, n ≥ 0) is a Fn-martingale:

E [coshλ (Xn+1 + β) | Fn] = E [coshλ (Xn + Yn+1 + β) | Fn]

= coshλ (Xn + β)E [coshλYn+1] + sinhλ (Xn + β)E [sinλYn+1] = coshλ (Xn + β) coshλ

Clearly W is a martingale. Taking β = −a+b
2 and using the Doob’s Theorem with Ta ∧ Tb :

E [WTa∧Tb
] = E [W0] = coshλ

(

a+ b

2

)

. (4.1)

On the other hand, using Markov property :

E [WTa∧Tb
] = E

[

WTa
1{Ta<Tb} +WTb

1{Tb<Ta}

]

= E

[

coshλ
(

a−b
2

)

(coshλ)
Ta

1{Ta<Tb} +
coshλ

(

b−a
2

)

(coshλ)
Tb

1{Tb<Ta}

]

= coshλ

(

a− b

2

)

E

[

(coshλ)
−Ta∧Tb

]

. (4.2)

The formulas (4.1) and (4.2) permit to conclude.

Now, we are able to prove lemma 4.1 :

as Pa

(

S∗
gp

= α, T0 < p
)

≤ Pa

(

Sgp = α, T0 < p
)

, with lemma 2.1, the first point is trivial.

Let δβ a geometric r.v. with parameter 0 < β < 1 such that δβ is independent of X . Then:

Pa

(

S∗
gδβ

≤ α
)

=

∞
∑

k=1

Pa

(

S∗
gk

≤ α
)

P (δβ = k) =

∞
∑

k=1

Pa

(

S∗
gk

≤ α
)

(1− β)
k−1

β (4.3)
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Note that
{

S∗
gp

≤ α
}

= {gp ≤ T ∗
α} =

{

p ≤ dT∗
α

}

=
{

p ≤ T ∗
α + T0.θT∗

α

}

. Hence :

Pa

(

S∗
gδβ

≤ α
)

= Pa

(

δβ ≤ dT∗
α

)

= 1− Pa

(

δβ > dT∗
α

)

= 1− Ea

[

Ea

[

1δβ>dT∗
α
| FT∗

α

]]

= 1− Ea

[

(1− β)
dT∗

α

]

= 1− Ea

[

(1− β)
T∗
α (1− β)

T0.θT∗
α

]

= 1− Ea

[

(1− β)
T∗
α

]

E

[

(1− β)
Tα

]

.

We have already seen (cf. [Deb09] p.353 and [ALR04]):

E

[

(1− β)
Tα

]

=

(

1 +
√

2β − β2

1− β

)−α

.

The symmetry of the quantity Ea

[

(1− β)
T∗
α

]

permits us to assume that a ≥ 0, without a loss of

generality. Then, using the Markov property and lemma 4.3 with (coshλ)−1 = 1− β :

Ea

[

(1− β)
T∗
α

]

= E

[

(1− β)
T{−α−a}∧T{α−a}

]

=
coshaλ

coshαλ
.

When β goes to 0:

Pa

(

S∗
gδβ

≤ α
)

= 1−
(

1 +
√

2β − β2

1− β

)−α cosh
[

argch
(

1
1−β

)

a
]

cosh
[

argch
(

1
1−β

)

α
] ∼

β→0
α
√

2β. (4.4)

According to the formulas (4.3) and (4.4):

∞
∑

k=1

Pa

(

S∗
gk

≤ α
)

(1− β)
k ∼

β→0
α

√

2

β
(1− β) .

In order to apply Theorem 4.2, put β = 1− ω.This gives

∞
∑

k=1

Pa

(

S∗
gk

≤ α
)

ωk ∼
ω→1−

αω
√

2
(1−ω) ∼

ω→1−
α

√

2

(1− ω)

and this Tauberien Theorem with p = 1
2 et C = α

√
2 permits ut to obtain :

Pa

(

S∗
gp

≤ α
)

∼
p→∞

1

Γ
(

1
2

)p
1
2−1C =

(

2

πp

)
1
2

α,

and the proof can be easily finished, knowing the behaviour of P(Sp = 0) when p goes to ∞.
Thanks to this lemma, we have the following result:

Lemma 4.4. Let x ≥ 0 and a ∈ [−x, x]. Then:

Ea

[

ϕ(x ∨ S∗
gp
)1T0<p

]

P(Sp = 0)

is bounded above by 2(ϕ(x)(x − |a|) + φ(x)) and tends to ϕ(x)(x − |a|) + φ(x) when p goes to
infinity.

Proof. The proof is nearly the same as the one of lemma 2.3

With the same notations and arguments as inf Theorem 1.2 :

E

[

ϕ
(

S∗
gp

)

| Fn

]

= ϕ
(

S∗
gn

)

P̃

(

S̃p−n < |Xn|
)

+ E

[

ϕ
(

S∗
n ∨ S̃∗

g̃p−n

)

1T̃0≤p−n

]

= (1) + (2).
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The end of the proof is based on the proof of Theorem 1.2 and use lemma 2.3. The remaining
details are left to the reader.
Now, in order to prove that (M∗

n, n ≥ 0) is a martingale, we show that conditioned by Fn, M
∗
n+1−

M∗
n is zero. The case n = 0 being trivial, we just study n > 0.

First, observe that on {Xn = 0}, gn+1 = gn = n, S∗
n+1 = S∗

n and |Xn+1| = 1. Consequently, on
this event, M∗

n+1 −M∗
n = 0.

In the following, we suppose that Xn 6= 0, and we denote An := ϕ(S∗
gn+1

)|Xn+1|−ϕ(S∗
gn
)|Xn| and

Bn := ϕ(S∗
n+1)(S

∗
n+1 − |Xn+1|)− ϕ(S∗

n)(S
∗
n − |Xn|) + φ(S∗

n+1)− φ(S∗
n). We now treat separately

these two quantities :

• If {|Xn| ≥ 2}, g∗n+1 = g∗n and in this way An = ϕ(S∗
gn
)(|Xn+1| − |Xn|). Conditioning on Fn,

this quantity equals zero, the function x → |x| being harmonic for the symmetric random
walk except in 0.
If |Xn| = 1, An = 2ϕ(Sgn∗ )1Xn+1 6=0 − ϕ(Sgn∗ ) conditional on Fn is obviously zero.

• If {|Xn| ≤ S∗
n − 1}, then S∗

n+1 = S∗
n. In this case, Bn = ϕ(S∗

n)(|Xn+1| − |Xn|) and we
conclude with the harmonicity of x→ |x|.
Finally, on {S∗

n = |Xn|}, Bn = ϕ(S∗
n)(1S∗

n=S∗
n+1

− 1S∗
n+1=S∗

n+1
) and conditionned on Fn, it

is clear that this quantity equals zero.

Consequently M∗ is a martingale satisfying :

|M∗
n −M∗

0 | ≤ 3n,

and as M∗
0 = 1, one has E[M∗

n] = 1. Observe that the positivity of M∗ is obvious from the
definitions of ϕ and φ.
2) Now, we prove point 2 of Theorem 1.4. For a > 0:

Q∗ (gp > a) = E
Q∗

[1p>da
] = E

[

1p>da
M∗

da

]

= E
[

1p>da

{

ϕ
(

S∗
da

)

S∗
da

+ φ
(

S∗
da

)}]

.

As a is fixed, the sequence of positive random variables
(

1p>da

{

ϕ
(

S∗
da

)

S∗
da

+ φ
(

S∗
da

)})

p≥0
is

increasing and tends to ϕ
(

S∗
da

)

S∗
da

+ φ
(

S∗
da

)

, and the sequence of events {gp > a} is increasing
and tends to {g > a} when p tends to infinity . Hence, according to Lebesgue Theorem, when p
goes to +∞:

Q∗ (g > a) = E
[

ϕ
(

S∗
da

)

S∗
da

+ φ
(

S∗
da

)]

.

As φ(S∗
da
) ≤ 1, Lebesgue Theorem implies that E

[

φ
(

S∗
da

)]

→
a→∞

0.

It remains to prove E
[

ϕ
(

S∗
da

)

S∗
da

]

→
a→∞

0.

Lemma 4.5. Let ψ : N → R
+ such that

∑

k≥0 ϕ(k) < +∞. For a > 0 :

E
[

ψ
(

S∗
da

)

| Fa

]

= 1Xa=0ψ (S∗
a) + 1Xa 6=0

{

ψ (S∗
a)

(

1− |Xa|
S∗
a

)

+ |Xa|
∞
∑

k=Sa

ψ(k)

k(k + 1)

}

.

Proof. Let S̃∗
T̃0

be the bilateral maximum of a walk issued from Xa until the hitting time of the

level 0 and which is independent of Fa.

E
[

ψ
(

S∗
da

)

| Fa

]

= E

[

ψ
(

S∗
a ∨ S̃∗

T̃0

)

| Fa

]

= Ẽ|Xa|

[

ψ
(

S∗
a ∨ S̃∗

T̃0

)]

= 1Xa=0ψ (S∗
a) + 1Xa 6=0

∑

k≥|Xa|

PXa

(

S̃∗
T̃0

= k
)

ψ (S∗
a ∨ k) .

On {Xa > 0}, as the sign of X̃ does not change between 0 and T̃0,
{

S̃∗
T̃0

= k
}

=
{

S̃T̃0
= k

}

.

Moreover, thanks to the symmetry of X̃, on {Xa < 0},
{

S̃∗
T̃0

= k
}

=
{

S̃T̃0
= k

}

. So, according

to lemma 2.4:

1Xa 6=0PXa

(

S̃∗
T̃0

= k
)

= 1Xa 6=0PXa

(

S̃T̃0
= k

)

=
|Xa|

k(k + 1)
.
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Consequently on {Xa 6= 0} :

∑

k≥|Xa|

PXa

(

S̃∗
T̃0

= k
)

ψ (S∗
a ∨ k) =

∑

k≥|Xa|

ψ (S∗
a ∨ k) |Xa|

k(k + 1)

=

S∗
a−1
∑

k=|Xa|

ψ (S∗
a)

|Xa|
k(k + 1)

+
∑

k≥S∗
a

ψ (k)
|Xa|

k(k + 1)

= ψ (S∗
a) |Xa|

(

1

|Xa|
− 1

S∗
a

)

+
∑

k≥S∗
a

ψ (k)
|Xa|

k(k + 1)
.

Applying this lemma with ψ(x) = xϕ(x) :

E
[

ϕ
(

S∗
da

)

S∗
da

]

= E



1Xa=0ϕ (S∗
a)S

∗
a + 1Xa 6=0







ϕ (S∗
a) (S

∗
a − |Xa|) + |Xa|

∑

k≥S∗
a

ϕ(k)

k + 1











≤ E [ϕ (S∗
a)S

∗
a ] + E





|Xa|
S∗
a + 1

∑

k≥S∗
a

ϕ(k)



 ≤ E [ϕ (S∗
a)S

∗
a ] + E





∑

k≥S∗
a

ϕ(k)





≤ E [ϕ (S∗
a)S

∗
a ] + E [φ (S∗

a)] .

As φ(S∗
a) ≤ 1 and φ(S∗

a) tends to 0 a.s. when a tends to infinity, Lebesgue Theorem implies that
E[φ(S∗

a)] →
a→+∞

0 . On the other hand:

E [ϕ (S∗
a)S

∗
a ] =

∑

k≥0

ϕ(k)kP (S∗
a = k) ≤

∑

k≥0

ϕ(k)kP (Sa = k) ≤ E [ϕ (Sa)Sa] ,

and we have already proved that E[ϕ(Sa)Sa] tends to 0 when a tends to infinity (cf. point 2
Theorem 1.2). As a result g is Q-a.s. finite and :

Q∗ (g = ∞) = lim
a→∞

Q∗ (g > a) = 0.

3) We now prove the third and last point of the Theorem.

Lemma 4.6. For all a > 1:

P
(

S∗
τa

= k
)

=

{

0 , if k = 0
(

1− 1
k+1

)a−1

−
(

1− 1
k

)a−1
, otherwise.

Proof. Using Markov property and thanks to the symmetry of X :

P (τ2 < T ∗
k ) =

1

2
[P1 (T0 < T ∗

k ) + P−1 (T0 < T ∗
k )]

=
1

2
[P1 (T0 < Tk) + P−1 (T0 < T−k)] = P1 (T0 < Tk) .

Recall that P1(T0 < Tk) = 1 − 1
k
. Moreover using the strong Markov property and an obvious

recurrence :

P
(

S∗
τa
< k

)

= P (τa < T ∗
k ) = P (τa < T ∗

k |τ2 < T ∗
k )P (τ2 < T ∗

k )

= P (τa−1 < T ∗
k )P (τ2 < T ∗

k ) = P (τ2 < T ∗
k )

a−1
=

(

1− 1

k

)a−1

.
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Using a similar reasoning and notations as the one of ϕ(Sgp) :

M∗
τa

−M∗
τa+1

= 1S̃∗
τ̃2

>S∗
τa

(ϕ(S∗
τa
)S∗

τa
−ϕ(S̃∗

τ̃2
)S̃∗

τ̃2
+

S̃∗
τ̃2

−1
∑

k=S∗
τa

ϕ(k)) ⇒ E
[

Mτa −Mτa+1 |Fτa

]

= ϕ(S∗
τa
).

Let F be a positive functional, f1 and f2 be two functions from N to R
+. :

G := E
Q∗ [

F (Xu, u ≤ g) f1 (γg) f2
(

S∗
g

)]

=
∑

a≥1

E
[

F (Xu, u ≤ τa) f1 (a) f2
(

S∗
τa

)

ϕ
(

S∗
τa

)]

.

With F ≡ 1:

G =
∑

a≥0

∑

k≥0

f1(a)f2(k)ϕ(k)P
(

S∗
τa

= k
)

= 1k=0,a=1ϕ(0)f1(1)f2(0) +
∑

a>1,k>0

ϕ(k)

[

(

1− 1

k + 1

)a−1

−
(

1− 1

k

)a−1
]

f1(a)f2(k).

Then, the law of
(

γg, S
∗
g

)

is:

Q∗
(

γg = a, S∗
g = k

)

= 1k=0,a=1ϕ(0) + 1k>0,a>1ϕ(k)

[

(

1− 1

k + 1

)a−1

−
(

1− 1

k

)a−1
]

We easily find the density of S∗
g summing over a.

Writing G in two different ways :

G =
∑

a≥1

f1 (a) f2 (k)ϕ (k)Q∗(γg = a, S∗
g = k)EQ∗

[F (Xu, u ≤ τa)]

=
∑

a≥1

∑

k≥0

f1(a)f2(k)P
(

S∗
τa

= k
)

ϕ(k)E
[

F (Xu, u ≤ τa) | S∗
τa

= k
]

,

we conclude that :

E
Q
[

F (Xu, u ≤ g) | S∗
g = k, γg = a

]

= E
[

F (Xu, u ≤ τa) | S∗
τa

= k
]

.

This achieves the proof of point 3.iii.
3.iii) The study of the process (Xu, u ≤ g) under Q∗ is very close to the study of (Xn, n ≥ 0)
under Q in Theorem 1.2 :

Lemma 4.7. Under the law Q∗ and conditional on the event Hl, the process (Xn+τl , 1 ≤ n ≤ Tp,τl − τl)
is a 3-Bessel* walk started from 1 and stopped when it first hits the level p.

Proof. We just have to see that M∗
τl+1

= ϕ(S∗
τl+1

)S∗
τl+1

+ φ(S∗
τl+1

) and conditioning by FTp,τl
, we

obtain E

[

M∗
τl+1

|FTp,τl

]

= Ep

[

ϕ(S∗
T0
)S∗

T0
+ φ(S∗

T0
)
]

is a constant.

We can easily prove by symmetry that (Xn+g, n ≥ 0) is either a 3-dimensional Bessel* walk
either a reversed 3-Bessel* walk. It remains to know with what probability we have each case.
Nevertheless we can deduce from the previous result that under Q∗, S∗

∞ = ∞. It permits us to
obtain the following lemma :

Lemma 4.8. Under Q∗, S∗
gTa

is a uniformly distributed random variable on {0, 1, . . . , a− 1}.

Proof. According to Doob’s Theorem :

Q∗
(

S∗
p > a

)

= Q∗ (T ∗
a < p) = E

[

1T∗
a<pM

∗
T∗
a

]

= E

[

M∗
T∗
a

]

= E

[

1T∗
a<pϕ

(

S∗
gT∗

a

)

a+ φ (a)
]

.
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When p tends to infinity :

1 = Q∗ (S∗
∞ > a) = E

[

ϕ
(

S∗
gT∗

a

)

a+ φ (a)
]

⇔
a−1
∑

k=0

ϕ(k) = a

a−1
∑

k=0

P

(

S∗
gT∗

a

= k
)

ϕ(k).

The fact this equality is true for a family of function ϕ (for example ϕλ(x) = e−λx) permits us to

say that ∀k ∈ {0, 1, . . . , a− 1}, P
(

S∗
gT∗

a

= k
)

= a−1

Recall ∆+ := {Xn+g > 0, ∀n > 0} (resp. ∆− := {Xn+g < 0, ∀n > 0}). As g is Q∗-a.s. finite,

Q∗ (∆+) = limp→∞Q∗
(

XT∗
p
> 0
)

and with the definition of Q∗ :

Q∗
(

XT∗
p
> 0
)

= E

[

1XT∗
p
>0MT∗

p

]

= E

[

1XT∗
p
>0

{

ϕ
(

S∗
gT∗

p

)

p+ φ(p)
}]

.

Using the symmetry of X under P :

2E
[

1XT∗
p
>0ϕ

(

S∗
gT∗

p

)]

= E

[

1XT∗
p
>0ϕ

(

S∗
gT∗

p

)]

+E

[

1XT∗
p
<0ϕ

(

S∗
gT∗

p

)]

= E

[

ϕ
(

S∗
gT∗

p

)]

=

p−1
∑

k=0

ϕ(k)

p
.

Consequently Q∗
(

XT∗
p
> 0
)

= 1
2 and :

Q∗
(

∆+
)

= lim
p→∞

Q∗
(

XT∗
p
> 0
)

=
1

2
.

5 Penalisation by S∗
p

In fact, we have a better result :

Theorem 5.1. 1. Let a, b > 0, then :

lim
p→∞

E
[

1{Λn, Sp<a,Ip>−b}

]

E
[

1{Sp<a,Ip>−b}

] := E
[

1{Λn,Sn<a,In>−b}Mn

]

, (5.5)

where Mn :=
(

cos
(

π
a+b

))−n sin(π(a−Xn)
a+b )

sin( πa
a+b )

is a positive martingale non uniformly integrable.

2. Let us define a new probability Q on (Ω, F∞) characterized by :

∀n ∈ N, ∀Λn ∈ Fn, Q (Λn) := E [ΛnMn] . (5.6)

Then under Q, (Xn, n ≥ 0) have the following transition probabilities for −b+1 ≤ k ≤ a−1:

Q (Xn+1 = k + 1|Xn = k) =
sin
(

a−k−1
a+b

π
)

2 cos
(

π
a+b

)

sin
(

a−k
a+b

π
) ,

Q (Xn+1 = k − 1|Xn = k) =
sin
(

a−k+1
a+b

π
)

2 cos
(

π
a+b

)

sin
(

a−k
a+b

π
) .

1) To prove the first point of Theorem we need the following lemma :

Lemma 5.2. Let a, b > 0 and c ∈ [−b+ 1, a− 1], then:

P (Sn < a, In > −b) ∼
n→∞

4

a+ b

(

cos

(

π

a+ b

))n

sin

(

aπ

a+ b

) a−1
∑

c=−b+1
c≡n[2]

sin

(

π(a− c)

a+ b

)

. (5.7)
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Let us postpone the proof of this lemma and finish the proof of (5.5). As usual, let X̃k = Xk+n,
a random walk started from Xn and independent of Fn, and S̃n and Ĩn respectively the supremum
and infimum associated to X̃ . In the following steps P̃ is the measure associated to X̃, Xn, Sn

and In being kept fixed. Using the Markov property :

E
[

1{Λn, Sp<a,Ip>−b}

]

= E

[

1{Λn, Sn<a,In>−b}P̃

(

S̃p−n < a−Xn, Ĩp−n > −b−Xn

)]

.

Lemma 5.2 says:

P

(

S̃p−n < a−Xn, Ĩp−n > −b−Xn

)

∼
p→∞

a−Xn−1
∑

c=−b−Xn+1,c≡p−n [2]

4

a+ b

(

cos

(

π

a+ b

))p−n

sin

(

π(a−Xn)

a+ b

)

sin

(

π(a−Xn − c)

a+ b

)

∼
p→∞

4

a+ b

(

cos

(

π

a+ b

))p−n

sin

(

π(a−Xn)

a+ b

) a−1
∑

c=−b+1,c≡p [2]

sin

(

π(a− c)

a+ b

)

.

Dividing this formula by (5.7), we obtain (5.5).
Proof of lemma 5.2 :

To prove this lemma we need the following combinatory result :

Lemma 5.3. Let p ∈ N, 0 < u < p :

∑

k≥0

Ckp+u
n =

1

p

p−1
∑

ℓ=0

(

1 + e
ℓ2iπ
p

)n

e−
2iπℓu

u .

Proof of lemma 5.3:

p−1
∑

ℓ=0

(

1 + e
ℓ2iπ
p

)n

e−
2iπℓu

p =

p−1
∑

ℓ=0

n
∑

k=0

Ck
ne

2iπℓk
p e−

2iπℓu
p

n
∑

k=0

Ck
n

p−1
∑

ℓ=0

e
2iπℓ(k−u)

p .

Those sums can be easily simplifed if we note that :

p−1
∑

ℓ=0

e
2iπℓ(k−u)

p =







p , if k − u is a multiple of p
∑p−1

ℓ=0 e
2iπℓ(k−u)

p = 1−e2iπ(k−u)

1−e
2iπ(k−u)

p

= 0 , otherwise.

Then :
p−1
∑

ℓ=0

(

1 + e
ℓ2iπ
p

)n

e−
2iπℓu

p =

n
∑

k=0,k≡u[p]

pCk
n = p

∑

k≥0

Ckp+u
n .

According to [Fel50] p.79:

P (Sn < a,Xn = c, In > −b) =
(

1

2

)n
∑

k∈Z

C
n+c
2 +k(a+b)

n − C
n−c
2 +k(a+b)+a

n .

Clearly c and n must have the same parity and denote :

Ac
n = (n+c)/2 + k0(a+ b), Bc

n = (n−c)/2 + a+ k1(a+ b),
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where k0 (respectively k1) is the first k such as (n+c)/2+k(a+ b) (respectively (n−c)/2+k(a+ b)+a
) is positive. Then :

P (Sn < a,Xn = c, In > −b) = 2−n

a+ b

a+b−1
∑

ℓ=0

(

1 + e
2iπℓ
a+b

)n
[

e−
2iπℓAc

n
a+b − e−

2iπℓBc
n

a+b

]

=
2i

a+ b

a+b−1
∑

ℓ=1

cosn
(

πℓ

a+ b

)

e
iπℓ(n−(Ac

n+Bc
n))

a+b sin

(

πℓ(Bc
n −Ac

n)

a+ b

)

= − 2

a+ b

a+b−1
∑

ℓ=1

cosn
(

πℓ

a+ b

)

sin
πℓ(n− (Ac

n +Bc
n))

a+ b
sin

(

πℓ(Bc
n −Ac

n)

a+ b

)

.

Let us remark that:
{

Bc
n −Ac

n = −a− (k0 + k1)(a+ b)

n−Ac
n −Bc

n = a− c+ (k1 − k0)(a+ b)

Which implies :

P (Sn < a,Xn = c, In > −b) =

2

a+ b

a+b−1
∑

ℓ=1

(−1)(k0+k1)ℓ+(k1−k0)ℓ cosn
(

πℓ

a+ b

)

sin
πℓa

a+ b
sin

(

πℓ(a− c))

a+ b

)

=
2

a+ b

a+b−1
∑

ℓ=1

cosn
(

πℓ

a+ b

)

sin
πℓa

a+ b
sin

(

πℓ(a− c))

a+ b

)

.

Here, we have to notice that when n→ ∞, the leading terms are ℓ = 1 and ℓ = a+ b− 1. Hence :

cosn
(

π − π

a+ b

)

sin

(

πa− πa

a+ b

)

sin

(

π(a− c)− π(a− c))

a+ b

)

=

(−1)n+2a−c cosn
(

π

a+ b

)

sin

(

πa

a+ b

)

sin

(

π(a− c)

a+ b

)

= cosn
(

π

a+ b

)

sin

(

πa

a+ b

)

sin

(

π(a− c)

a+ b

)

,

n and c having the same parity. Hence:

P (Sn < a,Xn = c, In > −b) ∼
n→∞

4

a+ b
cosn

(

π

a+ b

)

sin

(

πa

a+ b

)

sin

(

π(a− c)

a+ b

)

and we can easily deduce :

P (Sn < a, In > −b) ∼
n→∞

4

a+ b
cosn

(

π

a+ b

)

sin

(

πa

a+ b

) a−1
∑

c≡n[2],c=−b+1

sin

(

π(a− c)

a+ b

)

.

We need to prove that M is a positive martingale. Positivity is obvious and for all n ≥ 0 :

Mn ≤

(

cos
(

π
a+b

))−n

sin
(

πa
a+b

)

E

[

sin

(

π(a−Xn+1)

a+ b

)∣

∣

∣

∣

Fn

]

= E

[

sin

(

π(a−Xn)

a+ b

)

cos

(

πYn+1

a+ b

)

+

∣

∣

∣

∣

Fn

]

+E

[

cos

(

π(a−Xn)

a+ b

)

sin

(

πYn+1

a+ b

)∣

∣

∣

∣

Fn

]

= sin

(

π(a−Xn)

a+ b

)

cos

(

π

a+ b

)

22



Hence M is a martingale stopped when it hits the boundary of the segment [−b, a].
2) For −b+ 1 ≤ k ≤ a− 1, using the Markov property and the defintion of Q :

Q (Xn+1 = k + 1|Xn = k) =
Q (Xn+1 = k + 1, Xn = k)

Q (Xn = k)
=

E
[

1{Xn+1=k+1, Xn=k}Mn+1

]

E
[

1{Xn=k}Mn

]

=

E

[

1{Xn+1=k+1, Xn=k,Sn+1<a,In+1>−b}

(

cos
(

π
a+b

))−n−1 sin(π(a−k−1)
a+b )

sin( πa
a+b )

]

E

[

1{Xn=k,Λn,Sn<a,In>−b}

(

cos
(

π
a+b

))−n sin(π(a−k)
a+b )

sin( πa
a+b )

]

=

(

cos
(

π
a+b

))−1

sin
(

π(a−k−1)
a+b

)

sin
(

π(a−k)
a+b

) P (Xn+1 = k + 1|Xn = k, Sn < a, In > −b)

=

(

cos
(

π
a+b

))−1

sin
(

π(a−k−1)
a+b

)

2 sin
(

π(a−k)
a+b

)

Remark 5.4. We can easily complete this study by a penalisation functional Gp = 1S∗
dp

<a. We

just have to see that this penalisation is the same as 1S∗
p<a.

References

[ALR04] C. Ackermann, G. Lorang, and B. Roynette, Independance of time and position for a
random walk, Revista Matematica Iberoamericana 20 (2004), no. 3, pp. 915–917.

[Deb09] Pierre Debs, Penalisation of the standard random walk by a function of the one-sided
maximum, of the local time, or of the duration of the excursions, Séminaire de proba-
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