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Abstract

We propose a network protocol similar to tkéree protocol of Itai and Rodeh
[Inform. and Comput79 (1988), 43-59]. To do this, we define amcovering-by-
basedor a connected grap to be a collectionu of spanning trees fo such that
anyt-subset of edges d& is disjoint from at least one tree in, wheret is some
integer strictly less than the edge connectivitgzofWe construct examples of these for
some infinite families of graphs. Many of these infinite faeslutilise factorisations
or decompositions of graphs. In every case the size of theuaming-by-bases is no
larger than the number of edges in the graph and we conjatiatrthis may be true in
general.
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1 Introduction

In [11], Itai and Rodeh proposed a communication protocdlictv we shall call the-tree
protocol which allows all nodes of a network to communicate througlistinguished root
node, even when some settof 1 or fewer edges are removed from the network. (In their
paper, they used rather thart; we have changed the notation to be consistent with the
conventions of design theory, because of the connectiotimtsubject in this paper.) The
protocol requires the gragbmodelling the network to have two properties. First, theobra

G, must remain connected when any 1 edges are removed, sgan be at most thedge
connectivityof G. Second, for any vertex, it requires a collection df spanning trees for

G, {T1,..., T}, with the following property (the-tree condition for edggs for any vertex
vand anyi, j, where 1<i < j <t, the paths infl; andT; from vto r are internally disjoint.
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A set oft disjoint spanning trees clearly satisfies this conditiod so can be used in the
protocol for robust communicationl[5].

Of course, for a given, an arbitrary graplc may not meet theé-tree condition. An
alternative solution for robust communications is to useléection of s (which may be
greater than) spanning trees (which need not necessarily be edgeatlsgpanning trees,
such that if anyt — 1 edges ofG are removed, at least one of the spanning trees remains
intact. ldeally, we would want this collection to be as snaalpossible (or of bounded
size), and for the value @fto be as large as possible. The purpose of this article isitty st
such collections of spanning trees. We begin with some lBinitions.

An edge cuin Gis a partition(Vy, V) of the vertex set o& into two non-empty subsets.

In other words, an edge cut is a set where the removal of thesedgtweery; andV,
disconnectss; if the number of such edgestiswe call it at-edge cut Therefore the edge-
connectivity ofG is the least value dffor which there exists &edge cut infG. We note that
sometimes we will refer to &edge cut by the set of edges whose removal disconnects the
graph, rather than the partition Wf Also, we say tha6 is t-edge connecteif A(G) > t.

Definition 1. Letn, k andt be positive integers satisfying> k andr < n—Kk, and letX
be a set of siza. An (n,k,t)-uncoveringis a collectionu of k-subsets oK such that any
t-subset oiX is disjoint from at least onk-subset inu .

An (n,kt)-uncovering is equivalent to afm,n —k,t) covering designwhich is a set
of (n—k)-subsets, called blocks, such that @rsubset is contained in at least one block.
So results on coverings, such as those in the survey by MilisMullin [16], also give
us results on uncoverings. In both cases, the problem is doafin(un)covering of least
possible size. The most general bound isSkcdnheim boungdwhich gives a lower bound
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on the size of such afm, k,t)-uncovering. Uncoverings were introduced and studied by th
first author in([2| 3|, 4]; they were later introduced indepamttl by Kroll and Vincenti[[14]
by the namantiblocking systems

In this paper, we are concerned with the case wheiethe edge-set of a gragh and
where each member of the uncovering is a spanning tree. hateihave the following.

Definition 2. LetG = (V,E) be a connected graph ahd positive integer. A-uncovering-
by-basedor G is a collectionu of spanning trees fos such that any-subset ofE is
disjoint from at least one spanning treetin

The name “uncovering-by-bases” (or UBB for short) comesifthe fact that the span-
ning trees of a connected graghare precisely the bases of the cycle matiditic) (see
Oxley [17] for further details). It is possible to define UBRs arbitrary matroids, as is
done in [3]. Note that for #UBB to exist, we require that the graph obtained by deleting
an arbitraryt-subset of edges frof® must have a spanning tree, which happens if and only
if it is connected. In other words, we require that the edgeneotivity, A(G), must be



strictly greater than, sot < A(G) — 1. In this paper, we only consider the case where this
maximum is achieved, i.e. wheén=A(G) — 1.

If G happens to havet+ 1 = A(G) edge-disjoint spanning trees, then we can use these as
at-UBB. We call such graphsmaximum spanning tree-packabt@ max-STRyraphs; these
are described ir [5]. In a max-STP gra@hthet-UBB formed of the collection oh(G)
edge-dsjoint spanning trees is therefore optimal in twoswdiyst, because the number of
egded which can be uncovered is as large as possible; second,dsettaispanning trees
are all edge-disjoint, the size of th&JBB is as small as possible.

2 A collection of examples

In this section, we present some constructions of UBBs faatefamilies or classes of
graphs. In each case, our constructions have the highesbvaring” ability: we are able
to taket = A(G) — 1.

2.1 Complete bipartite graphs

Consider the complete bipartite graldh.n. Suppose that  m < n, and that the vertex set
is XUY, where|X| = mand|Y| = n. Now, the edge connectivity &€y is min{m,n} =m.
We show how to constructtaUBB for Ky, wheret = m— 1 (i.e. the largest possible t).

Fixanm-subseSC Y. LetAbe an arbitrary-subset of edges. Now, sinpd < m, there
exists a vertexi € X incident with no edge of. Similarly, sincelA| < |S = m, there exists
v € Sincident with no edge oA. Now we construct a spanning trég, which contains
the edgeuv, and all other edges incident with eachuondv. By construction, the set of
spanning trees! = {T,, | u€ X,ve S} is at-UBB for Kyn, of sizen?. A typical spanning
treeTyy is shown in Figuré]l.

Figure 1: An example of a spanning tr&g for Km .

We remark that this construction gives a minimal UBB: thia ba seen by considering
a matching inKyp of sizem— 1. However, we do not claim that it is minimum. We also
notice that the number of spanning treeaiiris bounded above by the number of edges of
Kmn; the bound is sharp, as it is achieved wines- n.



2.2 Graphs with Hamiltonian decompositions

We now consider graphs witHamiltonian decompositionse. graphs which admit a parti-
tion of the edge set into Hamilton cycles. In particular, wéerthat ifn is odd, the complete
graphK, admits a Hamiltonian decomposition; this was known to Walegcthe 1890s (see
Bryant [6] for details). A survey of more general results @hidamiltonian decompositions
can be found in Section 4 of Gould [10].

To construct uncoverings-by-bases for these graphs, we todenow their edge con-
nectivity.

Proposition 3. Let G be a graph with a Hamiltonian decomposition into ¢ cgclehen the
edge-connectivity of G i5(G) = 2c.

Proof. BecauseG has a Hamiltonian decomposition intocycles, G must be 2-regular,
SOA(G) < 2c. Also, any edge-cut o6 must contain at least two edges from each ofdhe
Hamilton cycles, sa(G) > 2c. HenceA(G) = 2c. O

The construction works as follows.

Construction 4. Let » = {Cy,...,C.} be a Hamiltonian decomposition &. For each
Ci € » and for eacle € C;, form a pathC; \ e, which is a spanning tree. We claim that the
set of all such paths istaUBB for G, wheret = 2c— 1.

Proof of correctness. Let A be an arbitraryt-subset ofE(G). Now, if there exists a cycle
Ci such thaC; N A = @, then any path ii€; is disjoint fromA. So suppose not. Then the
t = 2c— 1 edges iMA are spread across allcycles. By counting, there must exist a cycle
C; containing just one edgeec A, so the patiC; \ eis disjoint fromA. O

By construction, this UBB is minimal: if thec2- 1 “bad” edges are arranged so that
there is one bad edgsn C; and two bad edges in each@y, ... ,C., then the only spanning
tree avoiding these edgesGs \ e. As in the previous subsection, however, we don't claim
that this UBB is minimum.

Example 5. Consider the graph shown in Figlide 2 (an example @failant graph. This
is the union of two Hamilton cycles of length 7, so is 4-edgernaxted and we have= 3.
In each cycle we obtain 7 paths, and a total of 14 paths in ou8.UB

We note that the number of spanning trees inttéBB is precisely the number of
edges ofG; so as in the previous subsectif(G)| is an upper bound on the size ot-a
UBB. We also remark that this construction is very similathte construction of a UBB for
the permutation grouf, in its action on 2-subsets: see [4] for details.

2.3 Using 1-factorisations of graphs

In the previous subsection, we were able to construct UBBsdmplete graphs with an
odd number of vertices by virtue of the fact that they have Htaman decompositions. In
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Figure 2: A circulant graph on 7 vertices.

order to consider a class of graphs which includes comptaighg with an even number of
vertices, we will consider 1-factorisations with some fgaitarly useful properties.

A 1-factorin a graphG is a spanning, 1-regular subgraph @f(i.e. a collection of
vertex-disjoint edges o& incident with every vertex). Al-factorisationof G is a parti-
tion of the edge set of into edge-disjoint 1-factors. Aerfect 1-factorisatiorof G is a
1-factorisationF = {Fy,...,F} of Gwhere# (G, 7 ) is a complete digraph; & possesses
a perfect 1-factorisation it is calledirongly Hamiltonian (See Andersen [1] for more detail
on these topics.) This notion of strong Hamiltonicity wasoduced by Kotzig and La-
belle in 1978[[13], where they consider in detail cubic (B&egular) strongly Hamiltonian
graphs.

In general, it is difficult to determine if a graph has a perfe¢actorisation. It is con-
jectured, but not known, that the complete grafh, on an even number of verticesn2
always has such a 1-factorisation (see Andersen [1] or Warhle3]). However, this prop-
erty is often much stronger than we require, and so we intedhe following idea. To
every 1-factorisatiorr of a graphG, we can build an auxiliary digrapty (G, # ), with the
1-factors as vertices and an arc between two 1-factors, FdmF’, if F UF’ is a Hamil-
ton cycle. We note that whenevgF,F') is an arc, then so iF’,F). We have chosen to
express the adjacences by directed edges for two reasosis:séirthat 2-cycles are well
defined; second, so that we have a good notion of the succafsseertex along an arc.

We are especially interested in grafghwith n vertices and which have a 1-factorisation
¥ where the auxiliary digraph (G, 7 ) has a directed 2-factor (i.e. a spanning subgraph
formed of directed cycles). If this directed 2-factor is antiléon cycle, then the 1-factorisation
¥ is said to besequentially perfectas studied by Dinitz, Dukes and Stinson [7]. It is easy
to see that a perfect 1-factorisation is sequentially jpérfe

Also, we define atHKL decompositidﬂl of a graphG to be a partition of the edges of
G into Hamilton cycles (om vertices) and a cubic strongly Hamiltonian graph (alsaon
vertices). In other words/ (G, 7 ) has a 2-factor with all components of size 2 except for
one of size 3. Such decompositions arise in the context afomnregular graphs, which
we will discuss in Sectionl 3. The following is an example ofragh of odd degree with an

1 The initials HKL were chosen in honour of W. R. Hamilton, A.titi and J. Labelle.



HKL decomposition.

Example 6. Consider the graph in Figuté 3(a), which has an HKL decontiposinto a
single Hamilton cycle and a cubic strongly Hamiltonian drag@s shown in Figurlel 3(b).

(a) A graph with an HKL decomposition

STETa

(b) The decomposition into a cubic strongly Hamiltonianpiréleft) and
a Hamilton cycle (right).

Figure 3: An example of an HKL decomposition.

While it is unknown whether the complete gralghy, has a perfect 1-factorisation, it is
possible to show that it has a 1-factorisatipnsuch that the auxiliary digraph (Kom, 7 )
contains 2-factors, as demonstrated in the following lemma

Lemma 7. The complete graphds on an even number of verticgs has a 1-factorisation,
¥ such that# (Kom, 7 ) contains at least the ard$, K1) and(F, F.2) and their reverses,
forO<i<2m-2.

Proof. There is a well-known 1-factorisation &bm, known as GKq, (see[1]), which is as
follows. Regard the vertices &by, asZym-1U {0}, and define thetarter 1-factor to be

Fo={{i,—i} :i=1,....m—1}U{{0,00}}.

The remaining 1-factork; wherei = 1,...,2m— 2) are obtained by addinigto each entry
of Fp (modulo 2n— 1, and withoo 4 i = o).

Now, it is straightforward to show that the union of any twmsecutive 1-factors,
F UF.1, is a Hamilton cycle. This establishes the existence of the af first kind. To
show that(F,F.2) is an arc, we will show this is true far= —1 and the result follows
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from the cyclic automorphism of the 1-factorisation. By siiering which vertices are
adjacent to 0, we have the following path insidgef;, F;):

t1=F(2m-2) - 8 —6 4 -2 0 2 -4 6 -8 .- +(2m—2)=F1,

which can easily be seen to contain allaf,_1. (Since we are working modulan2— 1,
which is odd, the even negative numbers account for theipegitld numbers.) Since 1
and—1 are both adjacent to, this does indeed yield a Hamilton cycle. O

The auxiliary digraph (Kom, 7 ) contains a Hamilton cycle ariby, has a sequentially
perfect 1-factorisation (see Dinitz, Dukes and Stinso, [@hd it also possesses an HKL
decompositionK = F_; UFRyUF; gives a cubic strongly Hamiltonian graph, while

D ={RUR,RUFs,... . FacsUFx-2}

forms a Hamiltonian decomposition Kf, \ K.

The following construction gives UBBs for grahwith a 1-factorisation for which the
auxiliary digraph# (G, 7 ) contains a directed 2-factor. It is similar to that in theyiwas
subsection for Hamilton-decomposable graphs.

Construction 8. Let G bek-regular and have 1-factorisatiorr, = {Fo,Fy,...,F}, for
which # (G, 7 ) contains a directed 2-factor. Suppose that in that 2-father head of
the arc whose tail is 1-factdt is denotech(F).
For each edges € F C G, let P. be the pati+ Uh(F) \ {e}. Lett =k—1. We claim
that this set of paths,
{Pe ’ ec G}7

is a minimalt-UBB for G with the number of bases equal to the number of edg€s of

Proof of correctness. Let A be an arbitraryt-subset of edges @b, which we think of as
“bad” edges we wish to avoid. Sin¢g | = k > t there is at least one 1-factor that contains
no bad edges. For any 1-factor that contains no bad eddes! (i) contains one or zero
bad edges then we clearly have at least one base which isntifsjum A. Thus if our set

is not at-UBB we must have at least two bad edge$i(F) wheneverF contains zero
bad edges. Letbe the number of 1-factors that contain no bad edge. Thettherefore at
leastz 1-factors that contain at least two bad edges and all theingmgal-factors contain
at least one bad edge. This gives at least

0-z+1-(k—22+2-z=k
bad edges which is a contradiction. O

Note that this proves that suchkaegular graph must have edge connectivity at least
k. Since ak-regular graph must have edge connectivity at nkost obtain the following
lemma.



Lemma 9. Let G be a graph of valency k and with a 1-factorisatterfor which #1 (G, # )
contains a directed 2-factor. Then the edge connectivity f equal to k.

Proof of minimality. Let T be a spanning tree from our UBB that we remove from the
collection. From Constructionl 8, we know there exists aneaglg F such thafl = (FuU
h(F)) \ e. Then there exists a setbf= k— 1 edges which is not uncoverable, consisting of
e, and any edge from every other 1-factor exdg(bt). O

As in the previous two subsections, we don't claim that tlisstruction isminimum

Example 10. Consider the graph shown in Figure 3. The cubic strongly Haman sub-
graph indicated in Figuriel 3(b) possesses three Hamiltolesys shown in Figurg 4. In
each cycle we take every other Hamilton path, as describ€dmstructio B, and include it
in our UBB. We also must take all spanning trees from the dttamilton cycles in the HKL
decomposition. Our UBB contains44+ 4+ 8= 20= |[E(G)| spanning trees. In contrast,
the Schonheim lower bound for(20,13,4) covering design is 11, while the best-known
such covering design of size 16 [9].

Figure 4: Three Hamilton cycles in a cubic strongly Hamiigangraph.

We note again that the number of spanning trees in4dBB is precisely the number
of edges ofG; so as in the previous subsectidigG)| is an upper bound on the size of a
t-UBB.
2.4 Wheels
Thewheel W is the graph om+ 1 vertices, formed from a cycle of length(the “rim”)
and an additional vertex (the “hub”) adjacent to thethers (by means of the “spokes”).
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SinceW, has minimum degree 3, we hax@\,) < 3; furthermore, it is easy to see that
the removal of any two edges leawdg connected. Henck(W,) = 3, and so we wish to
construct a 2-UBB for these graphs.

SinceW, has 2 edges, and a spanning tree for it lmasdges, the complements of the
spanning trees in a 2-UBB fax, will form the blocks of a(2n, n, 2)-covering design. Now,
the Schonheim bound for covering designs (seé [16]) giviesvar bound of 6 (indepen-
dent ofn) for the size of a2n,n,2)-covering design, and a construction due to Stanton,
Kalbfleisch and Mullin (see Mills [15, Theorem 3.2]) showattkthis bound can always be
attained. Thus there is a lower bound of 6 for the size of ammum 2-UBB forW,,. Our
construction was inspired by theirs.

We label the vertices o\, as follows: the vertices on the rim awg,...,v,_1 (with
subscripts modulm), while the hub is labelled as,. Also, we label the edges as follows:
those on the rim are labelled ggjoining v; to v;, 1, while the spokes are labelled(joining
v; 10 V). We consider the cases wheré even and odd separately.

First, suppose is even. Partition the edges ¥, into four sets, each of siz%n, as
follows:

= {s1,%,...,51}
= {%,%,...,%-2,l0}
= {ry,rs,...,Mm-1}
D = {rar4,...,Mn-2,%}

O m >

Letu = {AUB,AUC,AUD,BUC,BUD,CuUD}. We notice that each member afforms
a spanning tree fan,. Also, it is straightforward to see that any pair of edge¥\pimust
be disjoint from one member af. So u is a 2-UBB forW,. (We remark that since! is
self-complementary, it is also a 2-covering-by-bases.)

Now, suppose is odd. This time, we consider the following subsets of thgesdi,:

A = {s;,8,..,%2}
B = {s2,%,....,5-1}
C = {ri,r3...,rm-2}
D = {rar4,...,f-3}

Then form the set’ as follows:

AUBU {I’()}7
AUCU{rn-1},

AUDU {rn_1} U{so},
BUCU{so},
BUDU{rn_1}U{ro},
CUDU{ro}U{so} |

Once again, we can verify that each memben/ofs a spanning tree foA},. Clearly any
pair of edges fromAUBUCUD is disjoint from at least one member of because there
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is some member that disjoint from the union of any twoAoB, C or D. A pair of edges,
one fromAUBUCUD and the other fron{ro,rn-1,%} can be avoided because for any
Se {A/B,C,D} and anye € {ro,rn—1,%} there is an element af which avoidsSu {e}.
Finally it is easy to check that for any pair of edges frérg,rn—1,%}, there exists some
element ofy disjoint from the pair. Thug’ must be a 2-UBB fow,. (This time, although

it is not self-complementary, it is still a 2-covering-bgdes.) Since this construction meets
the Schdnheim bound, we are guaranteed that it definitelynmimum UBB, unlike those
in the previous subsections.

Example 11. Consider the wheél;. The six spanning trees in a 2-UBB M# are shown
in Figure[5.

0 O
KKK

Figure 5: A 2-UBB for the whedl\;.

3 UBBs for random regular graphs

Random regular graphs are an important model for networe:Goerdt and Molloy 8],
for example. In this model, each node in the network has a fixesber of neighbours, but
the network is otherwise random. Let 4 denote a random regular graph withrertices of
degreed. Now, if the degreel of G, g4 is even, it is known that as — o, G4 possesses a
Hamiltonian decomposition, asymptotically almost sugly. the probability ohot having
such a decomposition approaches zero); this is a resultodkigrt and Wormald([12] (see
also [19]). Furthermore, where the degieés odd, it is conjectured that as— o, Gng
possesses a perfect 1-factorisation asymptotically dlsusly. (The reader should consult
the survey by Wormald [19] for full details.) However, to shthat g has an HKL
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decomposition, applying the principle obntiguity arithmetig(see [19, Theorem 4.15(i)])

it would suffice to show that;, 3 has a perfect 1-factorisation; this would likely be easier
to prove. Consequently, the constructions of UBBs in suimes[2.2 and_2]3 are very
relevant to networks, as they would allow (asymptoticallyjeast) our t-UBB protocol” to

be applied to this particular network model.

4 A conjecture

In all the cases we have considered, the number of spaneiegitr th¢-UBB was bounded
above by the number of edges®f In the constructions in subsectidns|?.112.3, the spanning
trees in our UBB were parameterised by the edge set, whileanstruction for wheels (in
subsection _2]4 had constant size. Also, for max-STP graphs;UBB consisted of + 1
edge-disjoint spanning trees, whereas the number of edgdsairly at leasft + 1)(n— 1)
(wheren is the number of vertices).

In view of all this evidence, we make the following conjeetur

Conjecture. Let G be a graph with edge-connectivkyG) = k. Then there exists&— 1)-
UBB for G with cardinality equal toE(G)|.
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