ORDINARY VARIETIES AND THE COMPARISON BETWEEN MULTIPLIER IDEALS AND TEST IDEALS II

MIRCEA MUSTAŢĂ

ABSTRACT. We consider the following conjecture: if X is a smooth n-dimensional projective variety over a field k of characteristic zero, then there is a dense set of reductions X_s to positive characteristic such that the action of the Frobenius morphism on $H^n(X_s, \mathcal{O}_{X_s})$ is bijective. We also consider the conjecture relating the multiplier ideals of an ideal \mathfrak{a} on a nonsingular variety in characteristic zero, and the test ideals of the reductions of \mathfrak{a} to positive characteristic. We prove that the latter conjecture implies the former one.

1. INTRODUCTION

This note is motivated by the joint paper with V. Srinivas [MS], aimed at understanding the following conjecture relating invariants of singularities in characteristic zero with corresponding invariants in positive characteristic. For a discussion of the notions involved, see below.

Conjecture 1.1. Let Y be a nonsingular variety over an algebraically closed field k of characteristic zero, and \mathfrak{a} a nonzero ideal on Y. Given any model Y_A and \mathfrak{a}_A for Y and \mathfrak{a} over a subring A of k, finitely generated over \mathbf{Z} , there is a dense set of closed points $S \subset \text{Spec } A$ such that

(1) $\mathcal{J}(Y,\mathfrak{a}^{\lambda})_{s} = \tau(Y_{s},\mathfrak{a}_{s}^{\lambda})$

for every $\lambda \in \mathbf{R}_{\geq 0}$ and every $s \in S$.

In the conjecture, we denote by Y_s the fiber of Y_A over $s \in S$, and \mathfrak{a}_s is the ideal on Y_s induced by \mathfrak{a}_A . The ideals $\mathcal{J}(Y, \mathfrak{a}^{\lambda})$ are the multiplier ideals of \mathfrak{a} . These are fundamental invariants of the singularities of \mathfrak{a} , that have seen a lot of recent applications due to their appearance in vanishing theorems (see [Laz, Chapter 9]). The ideals $\tau(Y_s, \mathfrak{a}_s^{\lambda})$ are the (generalized) test ideals of Hara and Yoshida [HY], defined in positive characteristic using the Frobenius morphism. The above conjecture asserts therefore that for a dense set of closed points, we have the equality between the test ideals of \mathfrak{a} and the reductions of the multiplier ideals of \mathfrak{a} for all exponents. We note that it is shown in [HY] that if $\lambda \in \mathbb{R}_{\geq 0}$ is fixed, then the equality in (1) holds for every s is an open subset of the closed points in Spec A.

The following conjecture was proposed in [MS].

Key words and phrases. Test ideals, multiplier ideals, ordinary variety.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13A35; Secondary 14F18, 14F30.

The author was partially supported by NSF grant DMS-0758454 and a Packard Fellowship.

M. MUSTAŢĂ

Conjecture 1.2. Let X be a smooth, irreducible n-dimensional projective variety defined over an algebraically closed field k of characteristic zero. If X_A is a model of X defined over a subring A of k, finitely generated over Z, then there is a dense set of closed points $S \subseteq$ Spec A such that the Frobenius action on $H^n(X_s, \mathcal{O}_{X_s})$ is bijective for every $s \in S$.

It is expected, in fact, that there is a set S as in Conjecture 1.2 such that X_s is ordinary in the sense of Bloch and Kato [BK] for every $s \in S$. In particular, this would imply that the action of the Frobenius on each cohomology group $H^i(X_s, \mathcal{O}_{X_s})$ is bijective (see [MS, Remark 5.1]). The main result of [MS] was that Conjecture 1.2 implies Conjecture 1.1. In this note we show that the converse is true:

Theorem 1.3. If Conjecture 1.1 holds, then so does Conjecture 1.2.

The following is an outline of the proof. Given a variety X as in Conjecture 1.2, we embed it in a projective space \mathbf{P}_k^N such that $r := N - n \ge n + 1$, and the ideal $\mathfrak{a} \subseteq k[x_0, \ldots, x_N]$ defining X is generated by quadrics. In this case it is easy to compute the multiplier ideals $\mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda})$ for $\lambda < r$, and in particular we see that $(x_0, \ldots, x_N)^{2r-N-1} \subseteq \mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda})$ for every $\lambda < r$. It follows from a general property of multiplier ideals that if g_1, \ldots, g_r are general linear combinations of a system of generators of \mathfrak{a} , and if $h = g_1 \cdots g_r$, then $\mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda}) = \mathcal{J}(\mathbf{A}_k^{N+1}, h^{\lambda/r})$ for every $\lambda < r$. In this case, Conjecture 1.1 implies that for a dense set of closed points $s \in \text{Spec } A$, the ideal $(x_0, \ldots, x_N)^{2r-N-1}$ is contained in $\tau(\mathbf{A}_{k(s)}^{N+1}, h_s^{\mu})$ for every $\mu < 1$. Using some basic properties of test ideals, we deduce that the Frobenius action on $H^{N-1}(D_s, \mathcal{O}_{D_s})$ is bijective, where $D_s \subset \mathbf{P}_{k(s)}^N$ is the hypersurface defined by h_s . We show that this in turn implies the bijectivity of the Frobenius action on $H^n(X_s, \mathcal{O}_{X_s})$, hence proves the theorem.

2. Proof of the main result

We start by recalling the definition of multiplier ideals and test ideals. Suppose first that Y is a nonsingular variety over an algebraically closed field k of characteristic zero, and \mathfrak{a} is a nonzero ideal on Y. A log resolution of \mathfrak{a} is a projective, birational morphism $\pi: W \to Y$, with W nonsingular, such that $\mathfrak{a} \cdot \mathcal{O}_W$ is the ideal of a divisor D on W, with $D + K_{W/Y}$ having simple normal crossings (recall that $K_{W/Y}$ denotes the relative canonical divisor of W over Y). With this notation, for every $\lambda \in \mathbf{R}_{\geq 0}$ we have

(2)
$$\mathcal{J}(Y,\mathfrak{a}^{\lambda}) = \pi_* \mathcal{O}_W(K_{W/Y} - \lfloor \lambda D \rfloor).$$

Recall that if $E = \sum_{i} a_i E_i$ is a divisor with **R**-coefficients, then $\lfloor E \rfloor = \sum_{i} \lfloor a_i \rfloor E_i$, where $\lfloor t \rfloor$ is the largest integer $\leq t$. It is a well-known fact that the above definition is independent of the choice of log resolution. For this and other basic facts about multiplier ideals, see [Laz, Chapter 9].

Suppose now that Y = Spec R is an affine nonsingular scheme of finite type over a perfect field L of positive characteristic p (in the case of interest for us, L will be a finite field). Under these assumptions, the test ideals admit the following simpler description, that we will use, see [BMS2]. Recall that for an ideal J and for $e \geq 1$, one denotes by

 $J^{[p^e]}$ the ideal $(h^{p^e} \mid h \in J)$. One can show that given an ideal \mathfrak{b} in R, there is a unique smallest ideal J such that $\mathfrak{b} \subseteq J^{[p^e]}$; this ideal is denoted by $\mathfrak{b}^{[1/p^e]}$.

Suppose now that \mathfrak{a} is an ideal in R and $\lambda \in \mathbf{R}_{\geq 0}$. One can show that for every $e \geq 1$ we have the inclusion

$$(\mathfrak{a}^{\lceil \lambda p^e \rceil})^{[1/p^e]} \subseteq (\mathfrak{a}^{\lceil \lambda p^{e+1} \rceil})^{[1/p^{e+1}]},$$

where $\lceil t \rceil$ denotes the smallest integer $\geq t$. Since R is Noetherian, it follows that $(\mathfrak{a}^{\lceil \lambda p^e \rceil})^{\lceil 1/p^e \rceil}$ is constant for $e \gg 0$. This is the test ideal $\tau(Y, \mathfrak{a}^{\lambda})$. For details and a discussion of basic properties of test ideals in this setting, we refer to [BMS2]. For a comparison of general properties of multiplier ideals and test ideals, see [HY] and [MY].

If \mathfrak{a} is an ideal in the polynomial ring $k[x_0, \ldots, x_N]$, where k is a field of characteristic zero, a model of \mathfrak{a} over a subring A of k, finitely generated over \mathbb{Z} , is an ideal \mathfrak{a}_A in $A[x_0, \ldots, x_N]$ such that $\mathfrak{a}_A \cdot k[x_0, \ldots, x_N] = \mathfrak{a}$. We can obtain such a model by simply taking A to contain all the coefficients of a finite system of generators of \mathfrak{a} . Of course, we may always replace A by a larger ring with the same properties; in particular, we may replace A by a localization A_a at a nonzero element $a \in A$. If $s \in$ Spec A and if \mathfrak{a}_A is a model of \mathfrak{a} , then we obtain a corresponding ideal \mathfrak{a}_s in $k(s)[x_0, \ldots, x_N]$. Note that if s is a closed point, then the residue field k(s) is a finite field.

Suppose now that $X \subseteq \mathbf{P}_k^N$ is a projective subscheme defined by the homogeneous ideal $\mathfrak{a} \subseteq k[x_0, \ldots, x_N]$. If $\mathfrak{a}_A \subseteq A[x_0, \ldots, x_N]$ is a model of \mathfrak{a} over A, which we may assume homogeneous, then the subscheme X_A of \mathbf{P}_A^N defined by \mathfrak{a}_A is a model of X over A. If $s \in \text{Spec } A$, then the subscheme $X_s \subseteq \mathbf{P}_{k(s)}^N$ is defined by the ideal \mathfrak{a}_s . We refer to [MS, §2.2] for some of the standard facts about reduction to positive characteristic. We note that given \mathfrak{a} as above, we may consider simultaneously all the reductions $\mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda})_s$ for all $\lambda \in \mathbf{R}_{\geq 0}$. This is due to the fact that for bounded λ we only have to deal with finitely many ideals, while for $\lambda \gg 0$, the multiplier ideals are determined by the lower ones via a Skoda-type theorem (see [MS, §3.2] for details).

We can now give the proof of our main result stated in Introduction.

Proof of Theorem 1.3. Let X be a smooth, irreducible n-dimensional projective variety over an algebraically closed field k of characteristic zero, with $n \ge 1$. It is clear that the assertion we need is independent on the model X_A that we choose. Consider a closed embedding $X \hookrightarrow \mathbf{P}_k^N$. After replacing this by a composition with a d-uple Veronese embedding, for $d \gg 0$, we may assume that the saturated ideal $\mathfrak{a} \subset R = k[x_0, \ldots, x_N]$ defining X is generated by homogeneous polynomials of degree two (see [ERT, Proposition 5]). Furthermore, we may clearly assume that $r := N - n \ge n + 1$. Under these assumptions, it is easy to determine the multiplier ideals of \mathfrak{a} of exponent < r.

Lemma 2.1. With the above notation, if $\mathfrak{m} = (x_0, \ldots, x_N)$, then

$$\mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda}) = \begin{cases} R, & \text{if } 0 \leq \lambda < \frac{N+1}{2};\\ \mathfrak{m}^{\lfloor 2\lambda \rfloor - N}, & \text{if } \frac{N+1}{2} \leq \lambda < r. \end{cases}$$

M. MUSTAŢĂ

Proof. Let us fix $\lambda \in \mathbf{R}_{\geq 0}$, with $\lambda < r$. We denote by Z the subscheme of \mathbf{A}_{k}^{N+1} defined by \mathfrak{a} . Let $\varphi \colon W \to \mathbf{A}_{k}^{N+1}$ be the blow-up of the origin, with E the exceptional divisor. Since \mathfrak{a} is generated by homogeneous polynomials of degree two, it follows that $\mathfrak{a} \cdot \mathcal{O}_{W} = \mathcal{O}_{W}(-2E) \cdot \tilde{\mathfrak{a}}$, where $\tilde{\mathfrak{a}}$ is the ideal defining the strict transform \tilde{Z} of Z on W. We have $K_{W/\mathbf{A}_{k}^{N+1}} = NE$, hence the change of variable formula for multiplier ideals (see [Laz, Theorem 9.2.33]) implies

(3)
$$\mathcal{J}(\mathbf{A}_{k}^{N+1},\mathfrak{a}^{\lambda})=\varphi_{*}\left(\mathcal{J}(W,(\mathfrak{a}\cdot\mathcal{O}_{W})^{\lambda})\otimes\mathcal{O}_{W}(NE)\right).$$

It is clear that \widetilde{Z} is nonsingular over $\mathbf{A}_k^{N+1} \smallsetminus \{0\}$. Since $\widetilde{Z} \cap E \subseteq E \simeq \mathbf{P}^N$ is isomorphic to the scheme X, hence it is nonsingular, it follows that \widetilde{Z} is nonsingular, and \widetilde{Z} and E have simple normal crossings. Let $\psi \colon \widetilde{W} \to W$ be the blow-up of W along \widetilde{Z} , with exceptional divisor F, and let \widetilde{E} be the strict transform of E. Note that \widetilde{W} is nonsingular, and $\widetilde{E} + F$ has simple normal crossings. We have $K_{\widetilde{W}/W} = (r-1)F$ and $\mathfrak{a} \cdot \mathcal{O}_{\widetilde{W}} = \mathcal{O}_{\widetilde{W}}(-2\widetilde{E} - F)$. Therefore ψ is a log resolution of $\mathfrak{a} \cdot \mathcal{O}_W$, and by definition we have

(4)
$$\mathcal{J}(W, (\mathfrak{a} \cdot \mathcal{O}_W)^{\lambda}) = \psi_*(\mathcal{O}_{\widetilde{W}}(-(\lfloor \lambda \rfloor - r + 1)F - \lfloor 2\lambda \rfloor \widetilde{E}) = \mathcal{O}_W(-\lfloor 2\lambda \rfloor E)$$

(recall that $\lambda < r$). The formula in the lemma follows from (3), (4), and the fact that $\varphi_*(\mathcal{O}_W(-iE)) = \mathfrak{m}^i$ for every $i \in \mathbb{Z}_{\geq 0}$.

Let f_1, \ldots, f_m be a system of generators of \mathfrak{a} , with each f_i homogeneous of degree two. If g_1, \ldots, g_r are linear combinations of the f_i with coefficients in k, and if $h = g_1 \cdots g_r$, then

(5)
$$\mathcal{J}(\mathbf{A}_k^{N+1}, \mathfrak{a}^{\lambda}) = \mathcal{J}(\mathbf{A}_k^{N+1}, h^{\lambda/r})$$

for every $\lambda < r$ (see [Laz, Proposition 9.2.28]).

Suppose now that \mathfrak{a}_A and h_A are homogeneous models of \mathfrak{a} , and respectively h, over A. Let $X_A, D_A \subset \mathbf{P}_A^N$ be the projective schemes defined by \mathfrak{a}_A and h_A , respectively. Note that g_1, \ldots, g_r being general linear combinations of the f_i , the subscheme $V(g_1, \ldots, g_r) \subset \mathbf{P}_k^N$ has pure codimension r. Therefore we may assume that for every $s \in \text{Spec } A$, the scheme $V((g_1)_s, \ldots, (g_r)_s)$ has pure codimension r in $\mathbf{P}_{k(s)}^N$. We need to show that given models as above, there is a dense set of closed points $S \subset \text{Spec } A$ such that the Frobenius action on $H^n(X_s, \mathcal{O}_{X_s})$ is bijective for every $s \in S$. The next lemma shows that in fact, it is enough to find S as above such that the Frobenius action on $H^{N-1}(D_s, \mathcal{O}_{D_s})$ is bijective for all $s \in S$.

Lemma 2.2. Let L be a finite field, and D_1, \ldots, D_r hypersurfaces in $\mathbf{P}^N = \mathbf{P}_L^N$ such that the intersection scheme $Y = D_1 \cap \ldots \cap D_r$ has pure codimension r in \mathbf{P}^N . If the Frobenius acts bijectively on $H^{N-1}(D, \mathcal{O}_D)$, where $D = \sum_{i=1}^r D_i$, then for every closed subscheme X of Y, the Frobenius action on $H^{N-r}(X, \mathcal{O}_X)$ is bijective.

Proof. For every subset $J \subseteq \{1, \ldots, r\}$, let $D_J = \bigcap_{j \in J} D_j$. By assumption, Y is a complete intersection, hence there is an exact complex

$$\mathcal{C}^{\bullet}: \quad 0 \to \mathcal{C}^0 \xrightarrow{d^0} \mathcal{C}^1 \xrightarrow{d^1} \dots \xrightarrow{d^{r-1}} \mathcal{C}^r \to 0,$$

where $\mathcal{C}^0 = \mathcal{O}_D$, and $\mathcal{C}^m = \bigoplus_{|J|=m} \mathcal{O}_{D_J}$ for $m \geq 1$. Note that we have a morphism of complexes $\mathcal{C}^{\bullet} \to F_*(\mathcal{C}^{\bullet})$, where F is the absolute Frobenius morphism on X. It follows that if we break-up \mathcal{C}^{\bullet} into short exact sequences, the maps in the corresponding long exact sequences for cohomology are compatible with the Frobenius action.

Let $\mathcal{M}^i = \operatorname{Im}(d^i)$, hence $\mathcal{M}^0 \simeq \mathcal{C}^0 = \mathcal{O}_D$ and $\mathcal{M}^{r-1} = \mathcal{C}^r = \mathcal{O}_Y$. Since each D_J is a complete intersection in \mathbf{P}^N , it follows that $H^i(D_J, \mathcal{O}_{D_J}) = 0$ for every i with $1 \leq i < \dim(D_J) = N - |J|$. We deduce that for every i with $0 \leq i \leq r-2$, the short exact sequence

$$0 \to \mathcal{M}^i \to \mathcal{C}^{i+1} \to \mathcal{M}^{i+1} \to 0$$

gives an exact sequence

$$0 = H^{N-i-2}(\mathbf{P}^N, \mathcal{C}^{i+1}) \to H^{N-i-2}(\mathbf{P}^N, \mathcal{M}^{i+1}) \to H^{N-i-1}(\mathbf{P}^N, \mathcal{M}^i).$$

Therefore we have a sequence of injective maps

$$H^{N-r}(Y, \mathcal{O}_Y) \hookrightarrow H^{N-r+1}(\mathbf{P}^N, \mathcal{M}^{r-2}) \hookrightarrow \ldots \hookrightarrow H^{N-2}(\mathbf{P}^N, \mathcal{M}^1) \hookrightarrow H^{N-1}(D, \mathcal{O}_D),$$

compatible with the Frobenius action. Since this action is bijective on $H^{N-1}(D, \mathcal{O}_D)$ by hypothesis, it follows that it is bijective also on $H^{N-r}(Y, \mathcal{O}_Y)$ (see, for example, [MS, Lemma 2.4]).

On the other hand, since dim(Y) = N - r, the surjection $\mathcal{O}_Y \to \mathcal{O}_X$ induces a surjection $H^{N-r}(Y, \mathcal{O}_Y) \to H^{N-r}(X, \mathcal{O}_X)$, compatible with the Frobenius action. As we have seen, the Frobenius action is bijective on $H^{N-r}(Y, \mathcal{O}_Y)$, hence on every quotient (see [MS, Lemma 2.4]). This completes the proof of the lemms.

Returning to the proof of Theorem 1.3, we see that it is enough to show that there is a dense set of closed points $S \subset \text{Spec } A$ such that Frobenius acts bijectively on $H^{N-1}(D_s, \mathcal{O}_{D_s})$ for $s \in S$. We assume that Conjecture 1.1 holds, hence there is a dense set of closed points $S \subset \text{Spec } A$ such that $\tau(\mathbf{A}_{k(s)}^{N+1}, h_s^{\lambda}) = \mathcal{J}(\mathbf{A}_k^{N+1}, h^{\lambda})_s$ for every $\lambda \in \mathbf{R}_{\geq 0}$ and every $s \in S$. In particular, it follows from Lemma 2.1 and (5) that $(x_0, \ldots, x_N)^{2r-N-1} \subseteq \tau(\mathbf{A}_{k(s)}^{N+1}, h_s^{\lambda})$ for every $\lambda < 1$. Since deg $(h_s) = 2r \geq (N+1)$, Proposition 2.3 below implies that the Frobenius action on $H^{N-1}(D_s, \mathcal{O}_{D_s})$ is bijective for all $s \in S$. As we have seen, this completes the proof of Theorem 1.3.

Proposition 2.3. Let *L* be a perfect field of characteristic p > 0, and $h \in R = L[x_0, \ldots, x_N]$ a homogeneous polynomial of degree $d \ge N + 1$, with $N \ge 2$. If $(x_0, \ldots, x_N)^{d-N-1} \subseteq \tau(\mathbf{A}_L^{N+1}, h^{1-\frac{1}{p}})$, then the Frobenius action on $H^{N-1}(D, \mathcal{O}_D)$ is bijective, where $D \subset \mathbf{P}_L^N$ is the hypersurface defined by h.

Proof. In the case d = N+1, this is a reformulation of a well-known fact due to Fedder [Fe]. We follow the argument from [MTW, Proposition 2.16], that extends to our more general setting. It is enough to show that the Frobenius action on $H^{N-1}(D, \mathcal{O}_D)$ is injective (see [MS, §2.1]).

Note first that $\tau(\mathbf{A}_L^{N+1}, h^{1-\frac{1}{p}}) = (h^{p-1})^{[1/p]}$ (see [BMS1, Lemma 2.1]), hence by assumption $\mathfrak{m}^{d-N-1} \subseteq (h^{p-1})^{[1/p]}$, where $\mathfrak{m} = (x_0, \ldots, x_N)$. It is convenient to use the interpretation of the ideal $(g^{p-1})^{[1/p]}$ in terms of local cohomology. Let $E = H_{\mathfrak{m}}^{N+1}(R)$.

M. MUSTAŢĂ

Recall that this is a graded *R*-module, carrying a natural action of the Frobenius, that we denote by F_E . There is an isomorphism

$$E \simeq R_{x_0 \cdots x_N} / \sum_{i=0}^{N} R_{x_0 \cdots \widehat{x_i} \cdots x_N}.$$

Via this isomorphism, F_E is induced by the Frobenius morphism on $R_{x_0 \cdots x_N}$.

The annihilator of $(h^{p-1})^{[1/p]}$ in E is equal to $\operatorname{Ker}(h^{p-1}F_E)$ (see, for example, [BMS2, §2.3]). Therefore we have

(6)
$$\operatorname{Ker}(h^{p-1}F_E) \subseteq \operatorname{Ann}_E(\mathfrak{m}^{d-N-1}) = \bigoplus_{i \ge -d+1} E_i$$

On the other hand, the exact sequence

$$0 \to R(-d) \stackrel{h}{\to} R \to R/(h) \to 0$$

induces an isomorphism

$$H^N_{\mathfrak{m}}(R/(h)) \simeq \{ u \in E \mid hu = 0 \} (-d),$$

such that the Frobenius action on $H^N_{\mathfrak{m}}(R/(h))$ is given by $h^{p-1}F_E$. Since $H^{N-1}(D, \mathcal{O}_D) \simeq H^N_{\mathfrak{m}}(R/(h))_0 \hookrightarrow E_{-d}$, (6) implies that the Frobenius action is injective on $H^{N-1}(D, \mathcal{O}_D)$. This completes the proof of the proposition.

Remark 2.4. In the proof of Theorem 1.3 we only used the inclusion " \subseteq " in Conjecture 1.1. However, this is the interesting inclusion: the reverse one is known, see [HY] or [MS, Proposition 4.2]. It is more interesting that we only used Conjecture 1.1 when $Y = \mathbf{A}_k^{N+1}$, \mathfrak{a} is principal and homogeneous, and $\lambda = 1 - \frac{1}{p}$. By combining Theorem 1.3 with the main result in [MS], we see that in order to prove Conjecture 1.1 in general, it is enough to consider the case when $Y = \mathbf{A}_k^n$, $\mathfrak{a} = (f)$ is principal and homogeneous, and show the following: if $\mathfrak{b} = \mathcal{J}(Y, \mathfrak{a}^{1-\varepsilon})$ for $0 < \varepsilon \ll 1$, and if $f_A \in A[x_1, \ldots, x_n]$ is a model for f, then there is a dense set of closed points $S \subset$ Spec A such that

$$\mathfrak{b}_s \subseteq (f_s^{p-1})^{[1/p]}$$

for every $s \in S$, where p = char(k(s)).

References

- [BMS1] M. Blickle, M. Mustață, and K. E. Smith, F-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), 6549–6565. 5
- [BMS2] M. Blickle, M. Mustaţă, and K. E. Smith, Discreteness and rationality of F-thresholds, Michigan Math. J. 57 (2008), 463–483. 2, 3, 6
- [BK] S. Bloch and K. Kato, p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107–152. 2
- [ERT] D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv. Math. 109 (1994), 168–187. 3
- [Fe] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), 461–480. 5
- [HY] N. Hara and K.-i. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 3143–3174. 1, 3, 6

- [Laz] R. Lazarsfeld, Positivity in algebraic geometry II, Ergebnise der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 49, Springer-Verlag, Berlin, 2004. 1, 2, 4
- [MS] M. Mustață and V. Srinivas, Ordinary varieties and the comparison between multiplier ideals and test ideals, arXiv:1012.2818. 1, 2, 3, 5, 6
- [MTW] M. Mustață, S. Takagi, and K.-i. Watanabe, F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematic, 341–364, Eur. Math. Soc., Zürich, 2005. 5
- [MY] M. Mustață and K.-i. Yoshida, Test ideals vs. multiplier ideals, Nagoya Math. J. **193** (2009), 111-128. **3**

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109, USA

E-mail address: mmustata@umich.edu