ORDINARY VARIETIES AND THE COMPARISON BETWEEN MULTIPLIER IDEALS AND TEST IDEALS II

MIRCEA MUSTAŢĂ

Abstract

We consider the following conjecture: if X is a smooth n-dimensional projective variety over a field k of characteristic zero, then there is a dense set of reductions X_{s} to positive characteristic such that the action of the Frobenius morphism on $H^{n}\left(X_{s}, \mathcal{O}_{X_{s}}\right)$ is bijective. We also consider the conjecture relating the multiplier ideals of an ideal \mathfrak{a} on a nonsingular variety in characteristic zero, and the test ideals of the reductions of \mathfrak{a} to positive characteristic. We prove that the latter conjecture implies the former one.

1. Introduction

This note is motivated by the joint paper with V. Srinivas [MS], aimed at understanding the following conjecture relating invariants of singularities in characteristic zero with corresponding invariants in positive characteristic. For a discussion of the notions involved, see below.
Conjecture 1.1. Let Y be a nonsingular variety over an algebraically closed field k of characteristic zero, and \mathfrak{a} a nonzero ideal on Y. Given any model Y_{A} and \mathfrak{a}_{A} for Y and \mathfrak{a} over a subring A of k, finitely generated over \mathbf{Z}, there is a dense set of closed points $S \subset \operatorname{Spec} A$ such that

$$
\begin{equation*}
\mathcal{J}\left(Y, \mathfrak{a}^{\lambda}\right)_{s}=\tau\left(Y_{s}, \mathfrak{a}_{s}^{\lambda}\right) \tag{1}
\end{equation*}
$$

for every $\lambda \in \mathbf{R}_{\geq 0}$ and every $s \in S$.
In the conjecture, we denote by Y_{s} the fiber of Y_{A} over $s \in S$, and \mathfrak{a}_{s} is the ideal on Y_{s} induced by \mathfrak{a}_{A}. The ideals $\mathcal{J}\left(Y, \mathfrak{a}^{\lambda}\right)$ are the multiplier ideals of \mathfrak{a}. These are fundamental invariants of the singularities of \mathfrak{a}, that have seen a lot of recent applications due to their appearance in vanishing theorems (see [Laz, Chapter 9]). The ideals $\tau\left(Y_{s}, \mathfrak{a}_{s}^{\lambda}\right)$ are the (generalized) test ideals of Hara and Yoshida [HY], defined in positive characteristic using the Frobenius morphism. The above conjecture asserts therefore that for a dense set of closed points, we have the equality between the test ideals of \mathfrak{a} and the reductions of the multiplier ideals of \mathfrak{a} for all exponents. We note that it is shown in [HY] that if $\lambda \in \mathbf{R}_{\geq 0}$ is fixed, then the equality in (1) holds for every s is an open subset of the closed points in Spec A.

The following conjecture was proposed in [MS].

Conjecture 1.2. Let X be a smooth, irreducible n-dimensional projective variety defined over an algebraically closed field k of characteristic zero. If X_{A} is a model of X defined over a subring A of k, finitely generated over \mathbf{Z}, then there is a dense set of closed points $S \subseteq \operatorname{Spec} A$ such that the Frobenius action on $H^{n}\left(X_{s}, \mathcal{O}_{X_{s}}\right)$ is bijective for every $s \in S$.

It is expected, in fact, that there is a set S as in Conjecture 1.2 such that X_{s} is ordinary in the sense of Bloch and Kato [BK] for every $s \in S$. In particular, this would imply that the action of the Frobenius on each cohomology group $H^{i}\left(X_{s}, \mathcal{O}_{X_{s}}\right)$ is bijective (see [MS, Remark 5.1]). The main result of [MS] was that Conjecture 1.2 implies Conjecture 1.1. In this note we show that the converse is true:

Theorem 1.3. If Conjecture 1.1 holds, then so does Conjecture 1.2.
The following is an outline of the proof. Given a variety X as in Conjecture 1.2, we embed it in a projective space \mathbf{P}_{k}^{N} such that $r:=N-n \geq n+1$, and the ideal $\mathfrak{a} \subseteq k\left[x_{0}, \ldots, x_{N}\right]$ defining X is generated by quadrics. In this case it is easy to compute the multiplier ideals $\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)$ for $\lambda<r$, and in particular we see that $\left(x_{0}, \ldots, x_{N}\right)^{2 r-N-1} \subseteq$ $\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)$ for every $\lambda<r$. It follows from a general property of multiplier ideals that if g_{1}, \ldots, g_{r} are general linear combinations of a system of generators of \mathfrak{a}, and if $h=g_{1} \cdots g_{r}$, then $\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)=\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, h^{\lambda / r}\right)$ for every $\lambda<r$. In this case, Conjecture 1.1 implies that for a dense set of closed points $s \in \operatorname{Spec} A$, the ideal $\left(x_{0}, \ldots, x_{N}\right)^{2 r-N-1}$ is contained in $\tau\left(\mathbf{A}_{k(s)}^{N+1}, h_{s}^{\mu}\right)$ for every $\mu<1$. Using some basic properties of test ideals, we deduce that the Frobenius action on $H^{N-1}\left(D_{s}, \mathcal{O}_{D_{s}}\right)$ is bijective, where $D_{s} \subset \mathbf{P}_{k(s)}^{N}$ is the hypersurface defined by h_{s}. We show that this in turn implies the bijectivity of the Frobenius action on $H^{n}\left(X_{s}, \mathcal{O}_{X_{s}}\right)$, hence proves the theorem.

2. Proof of the main result

We start by recalling the definition of multiplier ideals and test ideals. Suppose first that Y is a nonsingular variety over an algebraically closed field k of characteristic zero, and \mathfrak{a} is a nonzero ideal on Y. A \log resolution of \mathfrak{a} is a projective, birational morphism $\pi: W \rightarrow Y$, with W nonsingular, such that $\mathfrak{a} \cdot \mathcal{O}_{W}$ is the ideal of a divisor D on W, with $D+K_{W / Y}$ having simple normal crossings (recall that $K_{W / Y}$ denotes the relative canonical divisor of W over Y). With this notation, for every $\lambda \in \mathbf{R}_{\geq 0}$ we have

$$
\begin{equation*}
\mathcal{J}\left(Y, \mathfrak{a}^{\lambda}\right)=\pi_{*} \mathcal{O}_{W}\left(K_{W / Y}-\lfloor\lambda D\rfloor\right) . \tag{2}
\end{equation*}
$$

Recall that if $E=\sum_{i} a_{i} E_{i}$ is a divisor with \mathbf{R}-coefficients, then $\lfloor E\rfloor=\sum_{i}\left\lfloor a_{i}\right\rfloor E_{i}$, where $\lfloor t\rfloor$ is the largest integer $\leq t$. It is a well-known fact that the above definition is independent of the choice of \log resolution. For this and other basic facts about multiplier ideals, see [Laz, Chapter 9].

Suppose now that $Y=\operatorname{Spec} R$ is an affine nonsingular scheme of finite type over a perfect field L of positive characteristic p (in the case of interest for us, L will be a finite field). Under these assumptions, the test ideals admit the following simpler description, that we will use, see [BMS2]. Recall that for an ideal J and for $e \geq 1$, one denotes by
$J^{\left[p^{e}\right]}$ the ideal $\left(h^{p^{e}} \mid h \in J\right)$. One can show that given an ideal \mathfrak{b} in R, there is a unique smallest ideal J such that $\mathfrak{b} \subseteq J^{\left[p^{e}\right]}$; this ideal is denoted by $\mathfrak{b}^{\left[1 / p^{e}\right]}$.

Suppose now that \mathfrak{a} is an ideal in R and $\lambda \in \mathbf{R}_{\geq 0}$. One can show that for every $e \geq 1$ we have the inclusion

$$
\left(\mathfrak{a}^{\left[\lambda p^{e}\right\rceil}\right)^{\left[1 / p^{e}\right]} \subseteq\left(\mathfrak{a}^{\left[\lambda p^{e+1}\right\rceil}\right)^{\left[1 / p^{e+1}\right]}
$$

where $\lceil t\rceil$ denotes the smallest integer $\geq t$. Since R is Noetherian, it follows that $\left(\mathfrak{a}^{\left\lceil\lambda p^{e}\right]}\right)^{\left[1 / p^{e}\right]}$ is constant for $e \gg 0$. This is the test ideal $\tau\left(Y, \mathfrak{a}^{\lambda}\right)$. For details and a discussion of basic properties of test ideals in this setting, we refer to [BMS2]. For a comparison of general properties of multiplier ideals and test ideals, see [HY] and [MY].

If \mathfrak{a} is an ideal in the polynomial ring $k\left[x_{0}, \ldots, x_{N}\right]$, where k is a field of characteristic zero, a model of \mathfrak{a} over a subring A of k, finitely generated over \mathbf{Z}, is an ideal \mathfrak{a}_{A} in $A\left[x_{0}, \ldots, x_{N}\right]$ such that $\mathfrak{a}_{A} \cdot k\left[x_{0}, \ldots, x_{N}\right]=\mathfrak{a}$. We can obtain such a model by simply taking A to contain all the coefficients of a finite system of generators of \mathfrak{a}. Of course, we may always replace A by a larger ring with the same properties; in particular, we may replace A by a localization A_{a} at a nonzero element $a \in A$. If $s \in \operatorname{Spec} A$ and if \mathfrak{a}_{A} is a model of \mathfrak{a}, then we obtain a corresponding ideal \mathfrak{a}_{s} in $k(s)\left[x_{0}, \ldots, x_{N}\right]$. Note that if s is a closed point, then the residue field $k(s)$ is a finite field.

Suppose now that $X \subseteq \mathbf{P}_{k}^{N}$ is a projective subscheme defined by the homogeneous ideal $\mathfrak{a} \subseteq k\left[x_{0}, \ldots, x_{N}\right]$. If $\mathfrak{a}_{A} \subseteq A\left[x_{0}, \ldots, x_{N}\right]$ is a model of \mathfrak{a} over A, which we may assume homogeneous, then the subscheme X_{A} of \mathbf{P}_{A}^{N} defined by \mathfrak{a}_{A} is a model of X over A. If $s \in \operatorname{Spec} A$, then the subscheme $X_{s} \subseteq \mathbf{P}_{k(s)}^{N}$ is defined by the ideal \mathfrak{a}_{s}. We refer to [MS, §2.2] for some of the standard facts about reduction to positive characteristic. We note that given \mathfrak{a} as above, we may consider simultaneously all the reductions $\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)_{s}$ for all $\lambda \in \mathbf{R}_{\geq 0}$. This is due to the fact that for bounded λ we only have to deal with finitely many ideals, while for $\lambda \gg 0$, the multiplier ideals are determined by the lower ones via a Skoda-type theorem (see [MS, §3.2] for details).

We can now give the proof of our main result stated in Introduction.

Proof of Theorem 1.3. Let X be a smooth, irreducible n-dimensional projective variety over an algebraically closed field k of characteristic zero, with $n \geq 1$. It is clear that the assertion we need is independent on the model X_{A} that we choose. Consider a closed embedding $X \hookrightarrow \mathbf{P}_{k}^{N}$. After replacing this by a composition with a d-uple Veronese embedding, for $d \gg 0$, we may assume that the saturated ideal $\mathfrak{a} \subset R=k\left[x_{0}, \ldots, x_{N}\right]$ defining X is generated by homogeneous polynomials of degree two (see [ERT, Proposition 5]). Furthermore, we may clearly assume that $r:=N-n \geq n+1$. Under these assumptions, it is easy to determine the multiplier ideals of \mathfrak{a} of exponent $<r$.

Lemma 2.1. With the above notation, if $\mathfrak{m}=\left(x_{0}, \ldots, x_{N}\right)$, then

$$
\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)=\left\{\begin{array}{cl}
R, & \text { if } 0 \leq \lambda<\frac{N+1}{2} \\
\mathfrak{m}^{\lfloor 2 \lambda\rfloor-N}, & \text { if } \frac{N+1}{2} \leq \lambda<r
\end{array}\right.
$$

Proof. Let us fix $\lambda \in \mathbf{R}_{\geq 0}$, with $\lambda<r$. We denote by Z the subscheme of \mathbf{A}_{k}^{N+1} defined by \mathfrak{a}. Let $\varphi: W \rightarrow \mathbf{A}_{k}^{N \mp 1}$ be the blow-up of the origin, with E the exceptional divisor. Since \mathfrak{a} is generated by homogeneous polynomials of degree two, it follows that $\mathfrak{a} \cdot \mathcal{O}_{W}=$ $\mathcal{O}_{W}(-2 E) \cdot \widetilde{\mathfrak{a}}$, where $\widetilde{\mathfrak{a}}$ is the ideal defining the strict transform \widetilde{Z} of Z on W. We have $K_{W / \mathbf{A}_{k}^{N+1}}=N E$, hence the change of variable formula for multiplier ideals (see [Laz, Theorem 9.2.33]) implies

$$
\begin{equation*}
\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)=\varphi_{*}\left(\mathcal{J}\left(W,\left(\mathfrak{a} \cdot \mathcal{O}_{W}\right)^{\lambda}\right) \otimes \mathcal{O}_{W}(N E)\right) \tag{3}
\end{equation*}
$$

It is clear that \widetilde{Z} is nonsingular over $\mathbf{A}_{k}^{N+1} \backslash\{0\}$. Since $\widetilde{Z} \cap E \subseteq E \simeq \mathbf{P}^{N}$ is isomorphic to the scheme X, hence it is nonsingular, it follows that \widetilde{Z} is nonsingular, and \widetilde{Z} and E have simple normal crossings. Let $\psi: \widetilde{W} \rightarrow W$ be the blow-up of W along \widetilde{Z}, with exceptional divisor F, and let \widetilde{E} be the strict transform of E. Note that \widetilde{W} is nonsingular, and $\widetilde{E}+F$ has simple normal crossings. We have $K_{\widetilde{W} / W}=(r-1) F$ and $\mathfrak{a} \cdot \mathcal{O}_{\widetilde{W}}=\mathcal{O}_{\widetilde{W}}(-2 \widetilde{E}-F)$. Therefore ψ is a log resolution of $\mathfrak{a} \cdot \mathcal{O}_{W}$, and by definition we have

$$
\begin{equation*}
\mathcal{J}\left(W,\left(\mathfrak{a} \cdot \mathcal{O}_{W}\right)^{\lambda}\right)=\psi_{*}\left(\mathcal{O}_{\widetilde{W}}(-(\lfloor\lambda\rfloor-r+1) F-\lfloor 2 \lambda\rfloor \widetilde{E})=\mathcal{O}_{W}(-\lfloor 2 \lambda\rfloor E)\right. \tag{4}
\end{equation*}
$$

(recall that $\lambda<r$). The formula in the lemma follows from (3), (4), and the fact that $\varphi_{*}\left(\mathcal{O}_{W}(-i E)\right)=\mathfrak{m}^{i}$ for every $i \in \mathbf{Z}_{\geq 0}$.

Let f_{1}, \ldots, f_{m} be a system of generators of \mathfrak{a}, with each f_{i} homogeneous of degree two. If g_{1}, \ldots, g_{r} are linear combinations of the f_{i} with coefficients in k, and if $h=g_{1} \cdots g_{r}$, then

$$
\begin{equation*}
\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, \mathfrak{a}^{\lambda}\right)=\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, h^{\lambda / r}\right) \tag{5}
\end{equation*}
$$

for every $\lambda<r$ (see [Laz, Proposition 9.2.28]).
Suppose now that \mathfrak{a}_{A} and h_{A} are homogeneous models of \mathfrak{a}, and respectively h, over A. Let $X_{A}, D_{A} \subset \mathbf{P}_{A}^{N}$ be the projective schemes defined by \mathfrak{a}_{A} and h_{A}, respectively. Note that g_{1}, \ldots, g_{r} being general linear combinations of the f_{i}, the subscheme $V\left(g_{1}, \ldots, g_{r}\right) \subset$ \mathbf{P}_{k}^{N} has pure codimension r. Therefore we may assume that for every $s \in \operatorname{Spec} A$, the scheme $V\left(\left(g_{1}\right)_{s}, \ldots,\left(g_{r}\right)_{s}\right)$ has pure codimension r in $\mathbf{P}_{k(s)}^{N}$. We need to show that given models as above, there is a dense set of closed points $S \subset$ Spec A such that the Frobenius action on $H^{n}\left(X_{s}, \mathcal{O}_{X_{s}}\right)$ is bijective for every $s \in S$. The next lemma shows that in fact, it is enough to find S as above such that the Frobenius action on $H^{N-1}\left(D_{s}, \mathcal{O}_{D_{s}}\right)$ is bijective for all $s \in S$.

Lemma 2.2. Let L be a finite field, and D_{1}, \ldots, D_{r} hypersurfaces in $\mathbf{P}^{N}=\mathbf{P}_{L}^{N}$ such that the intersection scheme $Y=D_{1} \cap \ldots \cap D_{r}$ has pure codimension r in \mathbf{P}^{N}. If the Frobenius acts bijectively on $H^{N-1}\left(D, \mathcal{O}_{D}\right)$, where $D=\sum_{i=1}^{r} D_{i}$, then for every closed subscheme X of Y, the Frobenius action on $H^{N-r}\left(X, \mathcal{O}_{X}\right)$ is bijective.

Proof. For every subset $J \subseteq\{1, \ldots, r\}$, let $D_{J}=\bigcap_{j \in J} D_{j}$. By assumption, Y is a complete intersection, hence there is an exact complex

$$
\mathcal{C}^{\bullet}: \quad 0 \rightarrow \mathcal{C}^{0} \xrightarrow{d^{0}} \mathcal{C}^{1} \xrightarrow{d^{1}} \ldots \xrightarrow{d^{r-1}} \mathcal{C}^{r} \rightarrow 0
$$

where $\mathcal{C}^{0}=\mathcal{O}_{D}$, and $\mathcal{C}^{m}=\bigoplus_{|J|=m} \mathcal{O}_{D_{J}}$ for $m \geq 1$. Note that we have a morphism of complexes $\mathcal{C}^{\bullet} \rightarrow F_{*}\left(\mathcal{C}^{\bullet}\right)$, where F is the absolute Frobenius morphism on X. It follows that if we break-up \mathcal{C}^{\bullet} into short exact sequences, the maps in the corresponding long exact sequences for cohomology are compatible with the Frobenius action.

Let $\mathcal{M}^{i}=\operatorname{Im}\left(d^{i}\right)$, hence $\mathcal{M}^{0} \simeq \mathcal{C}^{0}=\mathcal{O}_{D}$ and $\mathcal{M}^{r-1}=\mathcal{C}^{r}=\mathcal{O}_{Y}$. Since each D_{J} is a complete intersection in \mathbf{P}^{N}, it follows that $H^{i}\left(D_{J}, \mathcal{O}_{D_{J}}\right)=0$ for every i with $1 \leq i<\operatorname{dim}\left(D_{J}\right)=N-|J|$. We deduce that for every i with $0 \leq i \leq r-2$, the short exact sequence

$$
0 \rightarrow \mathcal{M}^{i} \rightarrow \mathcal{C}^{i+1} \rightarrow \mathcal{M}^{i+1} \rightarrow 0
$$

gives an exact sequence

$$
0=H^{N-i-2}\left(\mathbf{P}^{N}, \mathcal{C}^{i+1}\right) \rightarrow H^{N-i-2}\left(\mathbf{P}^{N}, \mathcal{M}^{i+1}\right) \rightarrow H^{N-i-1}\left(\mathbf{P}^{N}, \mathcal{M}^{i}\right)
$$

Therefore we have a sequence of injective maps

$$
H^{N-r}\left(Y, \mathcal{O}_{Y}\right) \hookrightarrow H^{N-r+1}\left(\mathbf{P}^{N}, \mathcal{M}^{r-2}\right) \hookrightarrow \ldots \hookrightarrow H^{N-2}\left(\mathbf{P}^{N}, \mathcal{M}^{1}\right) \hookrightarrow H^{N-1}\left(D, \mathcal{O}_{D}\right)
$$

compatible with the Frobenius action. Since this action is bijective on $H^{N-1}\left(D, \mathcal{O}_{D}\right)$ by hypothesis, it follows that it is bijective also on $H^{N-r}\left(Y, \mathcal{O}_{Y}\right)$ (see, for example, [MS, Lemma 2.4]).

On the other hand, since $\operatorname{dim}(Y)=N-r$, the surjection $\mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$ induces a surjection $H^{N-r}\left(Y, \mathcal{O}_{Y}\right) \rightarrow H^{N-r}\left(X, \mathcal{O}_{X}\right)$, compatible with the Frobenius action. As we have seen, the Frobenius action is bijective on $H^{N-r}\left(Y, \mathcal{O}_{Y}\right)$, hence on every quotient (see [MS, Lemma 2.4]). This completes the proof of the lemms.

Returning to the proof of Theorem 1.3, we see that it is enough to show that there is a dense set of closed points $S \subset$ Spec A such that Frobenius acts bijectively on $H^{N-1}\left(D_{s}, \mathcal{O}_{D_{s}}\right)$ for $s \in S$. We assume that Conjecture 1.1 holds, hence there is a dense set of closed points $S \subset$ Spec A such that $\tau\left(\mathbf{A}_{k(s)}^{N+1}, h_{s}^{\lambda}\right)=\mathcal{J}\left(\mathbf{A}_{k}^{N+1}, h^{\lambda}\right)_{s}$ for every $\lambda \in \mathbf{R}_{\geq 0}$ and every $s \in S$. In particular, it follows from Lemma 2.1 and (5) that $\left(x_{0}, \ldots, x_{N}\right)^{2 r-N-1} \subseteq \tau\left(\mathbf{A}_{k(s)}^{N+1}, h_{s}^{\lambda}\right)$ for every $\lambda<1$. Since $\operatorname{deg}\left(h_{s}\right)=2 r \geq(N+1)$, Proposition 2.3 below implies that the Frobenius action on $H^{N-1}\left(D_{s}, \mathcal{O}_{D_{s}}\right)$ is bijective for all $s \in S$. As we have seen, this completes the proof of Theorem 1.3.
Proposition 2.3. Let L be a perfect field of characteristic $p>0$, and $h \in R=L\left[x_{0}, \ldots, x_{N}\right]$ a homogeneous polynomial of degree $d \geq N+1$, with $N \geq 2$. If $\left(x_{0}, \ldots, x_{N}\right)^{d-N-1} \subseteq$ $\tau\left(\mathbf{A}_{L}^{N+1}, h^{1-\frac{1}{p}}\right)$, then the Frobenius action on $H^{N-1}\left(D, \mathcal{O}_{D}\right)$ is bijective, where $D \subset \mathbf{P}_{L}^{N}$ is the hypersurface defined by h.

Proof. In the case $d=N+1$, this is a reformulation of a well-known fact due to Fedder [Fe]. We follow the argument from [MTW, Proposition 2.16], that extends to our more general setting. It is enough to show that the Frobenius action on $H^{N-1}\left(D, \mathcal{O}_{D}\right)$ is injective (see [MS, §2.1]).

Note first that $\tau\left(\mathbf{A}_{L}^{N+1}, h^{1-\frac{1}{p}}\right)=\left(h^{p-1}\right)^{[1 / p]}$ (see [BMS1, Lemma 2.1]), hence by assumption $\mathfrak{m}^{d-N-1} \subseteq\left(h^{p-1}\right)^{[1 / p]}$, where $\mathfrak{m}=\left(x_{0}, \ldots, x_{N}\right)$. It is convenient to use the interpretation of the ideal $\left(g^{p-1}\right)^{[1 / p]}$ in terms of local cohomology. Let $E=H_{\mathfrak{m}}^{N+1}(R)$.

Recall that this is a graded R-module, carrying a natural action of the Frobenius, that we denote by F_{E}. There is an isomorphism

$$
E \simeq R_{x_{0} \cdots x_{N}} / \sum_{i=0}^{N} R_{x_{0} \cdots \widehat{x_{i} \cdots x_{N}}}
$$

Via this isomorphism, F_{E} is induced by the Frobenius morphism on $R_{x_{0} \cdots x_{N}}$.
The annihilator of $\left(h^{p-1}\right)^{[1 / p]}$ in E is equal to $\operatorname{Ker}\left(h^{p-1} F_{E}\right)$ (see, for example, [BMS2, $\S 2.3])$. Therefore we have

$$
\begin{equation*}
\operatorname{Ker}\left(h^{p-1} F_{E}\right) \subseteq \operatorname{Ann}_{E}\left(\mathfrak{m}^{d-N-1}\right)=\bigoplus_{i \geq-d+1} E_{i} \tag{6}
\end{equation*}
$$

On the other hand, the exact sequence

$$
0 \rightarrow R(-d) \xrightarrow{h} R \rightarrow R /(h) \rightarrow 0
$$

induces an isomorphism

$$
H_{\mathfrak{m}}^{N}(R /(h)) \simeq\{u \in E \mid h u=0\}(-d),
$$

such that the Frobenius action on $H_{\mathfrak{m}}^{N}(R /(h))$ is given by $h^{p-1} F_{E}$. Since $H^{N-1}\left(D, \mathcal{O}_{D}\right) \simeq$ $H_{\mathfrak{m}}^{N}(R /(h))_{0} \hookrightarrow E_{-d},(6)$ implies that the Frobenius action is injective on $H^{N-1}\left(D, \mathcal{O}_{D}\right)$. This completes the proof of the proposition.

Remark 2.4. In the proof of Theorem 1.3 we only used the inclusion " \subseteq " in Conjecture 1.1. However, this is the interesting inclusion: the reverse one is known, see [HY] or [MS, Proposition 4.2]. It is more interesting that we only used Conjecture 1.1 when $Y=\mathbf{A}_{k}^{N+1}, \mathfrak{a}$ is principal and homogeneous, and $\lambda=1-\frac{1}{p}$. By combining Theorem 1.3 with the main result in [MS], we see that in order to prove Conjecture 1.1 in general, it is enough to consider the case when $Y=\mathbf{A}_{k}^{n}, \mathfrak{a}=(f)$ is principal and homogeneous, and show the following: if $\mathfrak{b}=\mathcal{J}\left(Y, \mathfrak{a}^{1-\varepsilon}\right)$ for $0<\varepsilon \ll 1$, and if $f_{A} \in A\left[x_{1}, \ldots, x_{n}\right]$ is a model for f, then there is a dense set of closed points $S \subset \operatorname{Spec} A$ such that

$$
\mathfrak{b}_{s} \subseteq\left(f_{s}^{p-1}\right)^{[1 / p]}
$$

for every $s \in S$, where $p=\operatorname{char}(k(s))$.

References

[BMS1] M. Blickle, M. Mustaţă, and K. E. Smith, F-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), 6549-6565. 5
[BMS2] M. Blickle, M. Mustaţă, and K. E. Smith, Discreteness and rationality of F-thresholds, Michigan Math. J. 57 (2008), 463-483. 2, 3, 6
[BK] S. Bloch and K. Kato, p-adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. 63 (1986), 107-152. 2
[ERT] D. Eisenbud, A. Reeves, and B. Totaro, Initial ideals, Veronese subrings, and rates of algebras, Adv. Math. 109 (1994), 168-187. 3
[Fe] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), 461-480. 5
[HY] N. Hara and K.-i. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), 3143-3174. 1, 3, 6
[Laz] R. Lazarsfeld, Positivity in algebraic geometry II, Ergebnise der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 49, Springer-Verlag, Berlin, 2004. 1, 2, 4
[MS] M. Mustaţă and V. Srinivas, Ordinary varieties and the comparison between multiplier ideals and test ideals, arXiv:1012.2818. 1, 2, 3, 5, 6
[MTW] M. Mustaţă, S. Takagi, and K.-i. Watanabe, F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematic, 341-364, Eur. Math. Soc., Zürich, 2005. 5
[MY] M. Mustaţă and K.-i. Yoshida, Test ideals vs. multiplier ideals, Nagoya Math. J. 193 (2009), 111-128. 3

Department of Mathematics, University of Michigan, Ann Arbor, Mi 48109, USA
E-mail address: mmustata@umich.edu

