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ORDINARY VARIETIES AND THE COMPARISON BETWEEN

MULTIPLIER IDEALS AND TEST IDEALS II

MIRCEA MUSTAŢĂ

Abstract. We consider the following conjecture: if X is a smooth n-dimensional projec-
tive variety over a field k of characteristic zero, then there is a dense set of reductions Xs

to positive characteristic such that the action of the Frobenius morphism onHn(Xs,OXs
)

is bijective. We also consider the conjecture relating the multiplier ideals of an ideal a
on a nonsingular variety in characteristic zero, and the test ideals of the reductions of a
to positive characteristic. We prove that the latter conjecture implies the former one.

1. Introduction

This note is motivated by the joint paper with V. Srinivas [MS], aimed at under-
standing the following conjecture relating invariants of singularities in characteristic zero
with corresponding invariants in positive characteristic. For a discussion of the notions
involved, see below.

Conjecture 1.1. Let Y be a nonsingular variety over an algebraically closed field k of

characteristic zero, and a a nonzero ideal on Y . Given any model YA and aA for Y and

a over a subring A of k, finitely generated over Z, there is a dense set of closed points

S ⊂ Spec A such that

(1) J (Y, aλ)s = τ(Ys, a
λ
s )

for every λ ∈ R≥0 and every s ∈ S.

In the conjecture, we denote by Ys the fiber of YA over s ∈ S, and as is the ideal on Ys
induced by aA. The ideals J (Y, aλ) are the multiplier ideals of a. These are fundamental
invariants of the singularities of a, that have seen a lot of recent applications due to
their appearance in vanishing theorems (see [Laz, Chapter 9]). The ideals τ(Ys, a

λ
s ) are

the (generalized) test ideals of Hara and Yoshida [HY], defined in positive characteristic
using the Frobenius morphism. The above conjecture asserts therefore that for a dense
set of closed points, we have the equality between the test ideals of a and the reductions
of the multiplier ideals of a for all exponents. We note that it is shown in [HY] that if
λ ∈ R≥0 is fixed, then the equality in (1) holds for every s is an open subset of the closed
points in Spec A.

The following conjecture was proposed in [MS].
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Conjecture 1.2. Let X be a smooth, irreducible n-dimensional projective variety defined

over an algebraically closed field k of characteristic zero. If XA is a model of X defined

over a subring A of k, finitely generated over Z, then there is a dense set of closed points

S ⊆ Spec A such that the Frobenius action on Hn(Xs,OXs
) is bijective for every s ∈ S.

It is expected, in fact, that there is a set S as in Conjecture 1.2 such that Xs

is ordinary in the sense of Bloch and Kato [BK] for every s ∈ S. In particular, this
would imply that the action of the Frobenius on each cohomology group H i(Xs,OXs

) is
bijective (see [MS, Remark 5.1]). The main result of [MS] was that Conjecture 1.2 implies
Conjecture 1.1. In this note we show that the converse is true:

Theorem 1.3. If Conjecture 1.1 holds, then so does Conjecture 1.2.

The following is an outline of the proof. Given a variety X as in Conjecture 1.2,
we embed it in a projective space PN

k such that r := N − n ≥ n + 1, and the ideal
a ⊆ k[x0, . . . , xN ] defining X is generated by quadrics. In this case it is easy to compute the
multiplier ideals J (AN+1

k , aλ) for λ < r, and in particular we see that (x0, . . . , xN)
2r−N−1 ⊆

J (AN+1
k , aλ) for every λ < r. It follows from a general property of multiplier ideals that if

g1, . . . , gr are general linear combinations of a system of generators of a, and if h = g1 · · · gr,
then J (AN+1

k , aλ) = J (AN+1
k , hλ/r) for every λ < r. In this case, Conjecture 1.1 implies

that for a dense set of closed points s ∈ Spec A, the ideal (x0, . . . , xN )
2r−N−1 is contained

in τ(AN+1
k(s) , h

µ
s ) for every µ < 1. Using some basic properties of test ideals, we deduce that

the Frobenius action on HN−1(Ds,ODs
) is bijective, where Ds ⊂ PN

k(s) is the hypersurface
defined by hs. We show that this in turn implies the bijectivity of the Frobenius action
on Hn(Xs,OXs

), hence proves the theorem.

2. Proof of the main result

We start by recalling the definition of multiplier ideals and test ideals. Suppose first
that Y is a nonsingular variety over an algebraically closed field k of characteristic zero,
and a is a nonzero ideal on Y . A log resolution of a is a projective, birational morphism
π : W → Y , with W nonsingular, such that a · OW is the ideal of a divisor D on W ,
with D + KW/Y having simple normal crossings (recall that KW/Y denotes the relative
canonical divisor of W over Y ). With this notation, for every λ ∈ R≥0 we have

(2) J (Y, aλ) = π∗OW (KW/Y − ⌊λD⌋).

Recall that if E =
∑

i aiEi is a divisor with R-coefficients, then ⌊E⌋ =
∑

i⌊ai⌋Ei, where
⌊t⌋ is the largest integer≤ t. It is a well-known fact that the above definition is independent
of the choice of log resolution. For this and other basic facts about multiplier ideals, see
[Laz, Chapter 9].

Suppose now that Y = Spec R is an affine nonsingular scheme of finite type over a
perfect field L of positive characteristic p (in the case of interest for us, L will be a finite
field). Under these assumptions, the test ideals admit the following simpler description,
that we will use, see [BMS2]. Recall that for an ideal J and for e ≥ 1, one denotes by
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J [pe] the ideal (hp
e

| h ∈ J). One can show that given an ideal b in R, there is a unique
smallest ideal J such that b ⊆ J [pe]; this ideal is denoted by b

[1/pe].

Suppose now that a is an ideal in R and λ ∈ R≥0. One can show that for every
e ≥ 1 we have the inclusion

(a⌈λp
e⌉)[1/p

e] ⊆ (a⌈λp
e+1⌉)[1/p

e+1],

where ⌈t⌉ denotes the smallest integer≥ t. SinceR is Noetherian, it follows that (a⌈λp
e⌉)[1/p

e]

is constant for e≫ 0. This is the test ideal τ(Y, aλ). For details and a discussion of basic
properties of test ideals in this setting, we refer to [BMS2]. For a comparison of general
properties of multiplier ideals and test ideals, see [HY] and [MY].

If a is an ideal in the polynomial ring k[x0, . . . , xN ], where k is a field of characteristic
zero, a model of a over a subring A of k, finitely generated over Z, is an ideal aA in
A[x0, . . . , xN ] such that aA · k[x0, . . . , xN ] = a. We can obtain such a model by simply
taking A to contain all the coefficients of a finite system of generators of a. Of course, we
may always replace A by a larger ring with the same properties; in particular, we may
replace A by a localization Aa at a nonzero element a ∈ A. If s ∈ Spec A and if aA is a
model of a, then we obtain a corresponding ideal as in k(s)[x0, . . . , xN ]. Note that if s is
a closed point, then the residue field k(s) is a finite field.

Suppose now that X ⊆ PN
k is a projective subscheme defined by the homogeneous

ideal a ⊆ k[x0, . . . , xN ]. If aA ⊆ A[x0, . . . , xN ] is a model of a over A, which we may assume
homogeneous, then the subscheme XA of PN

A defined by aA is a model of X over A. If
s ∈ Spec A, then the subscheme Xs ⊆ PN

k(s) is defined by the ideal as. We refer to [MS,

§2.2] for some of the standard facts about reduction to positive characteristic. We note
that given a as above, we may consider simultaneously all the reductions J (AN+1

k , aλ)s
for all λ ∈ R≥0. This is due to the fact that for bounded λ we only have to deal with
finitely many ideals, while for λ ≫ 0, the multiplier ideals are determined by the lower
ones via a Skoda-type theorem (see [MS, §3.2] for details).

We can now give the proof of our main result stated in Introduction.

Proof of Theorem 1.3. Let X be a smooth, irreducible n-dimensional projective variety
over an algebraically closed field k of characteristic zero, with n ≥ 1. It is clear that
the assertion we need is independent on the model XA that we choose. Consider a closed
embedding X →֒ PN

k . After replacing this by a composition with a d-uple Veronese embed-
ding, for d ≫ 0, we may assume that the saturated ideal a ⊂ R = k[x0, . . . , xN ] defining
X is generated by homogeneous polynomials of degree two (see [ERT, Proposition 5]).
Furthermore, we may clearly assume that r := N − n ≥ n+ 1. Under these assumptions,
it is easy to determine the multiplier ideals of a of exponent < r.

Lemma 2.1. With the above notation, if m = (x0, . . . , xN ), then

J (AN+1
k , aλ) =

{
R, if 0 ≤ λ < N+1

2
;

m
⌊2λ⌋−N , if N+1

2
≤ λ < r.
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Proof. Let us fix λ ∈ R≥0, with λ < r. We denote by Z the subscheme of AN+1
k defined

by a. Let ϕ : W → AN+1
k be the blow-up of the origin, with E the exceptional divisor.

Since a is generated by homogeneous polynomials of degree two, it follows that a · OW =

OW (−2E) · ã, where ã is the ideal defining the strict transform Z̃ of Z on W . We have
KW/AN+1

k
= NE, hence the change of variable formula for multiplier ideals (see [Laz,

Theorem 9.2.33]) implies

(3) J (AN+1
k , aλ) = ϕ∗

(
J (W, (a · OW )λ)⊗OW (NE)

)
.

It is clear that Z̃ is nonsingular over AN+1
k r {0}. Since Z̃ ∩ E ⊆ E ≃ PN is

isomorphic to the scheme X , hence it is nonsingular, it follows that Z̃ is nonsingular,

and Z̃ and E have simple normal crossings. Let ψ : W̃ → W be the blow-up of W along

Z̃, with exceptional divisor F , and let Ẽ be the strict transform of E. Note that W̃ is

nonsingular, and Ẽ + F has simple normal crossings. We have KW̃/W = (r − 1)F and

a · OW̃ = OW̃ (−2Ẽ − F ). Therefore ψ is a log resolution of a · OW , and by definition we
have

(4) J (W, (a · OW )λ) = ψ∗(OW̃ (−(⌊λ⌋ − r + 1)F − ⌊2λ⌋Ẽ) = OW (−⌊2λ⌋E)

(recall that λ < r). The formula in the lemma follows from (3), (4), and the fact that
ϕ∗(OW (−iE)) = m

i for every i ∈ Z≥0. �

Let f1, . . . , fm be a system of generators of a, with each fi homogeneous of degree
two. If g1, . . . , gr are linear combinations of the fi with coefficients in k, and if h = g1 · · · gr,
then

(5) J (AN+1
k , aλ) = J (AN+1

k , hλ/r)

for every λ < r (see [Laz, Proposition 9.2.28]).

Suppose now that aA and hA are homogeneous models of a, and respectively h, over
A. Let XA, DA ⊂ PN

A be the projective schemes defined by aA and hA, respectively. Note
that g1, . . . , gr being general linear combinations of the fi, the subscheme V (g1, . . . , gr) ⊂
PN

k has pure codimension r. Therefore we may assume that for every s ∈ Spec A, the
scheme V ((g1)s, . . . , (gr)s) has pure codimension r in PN

k(s). We need to show that given
models as above, there is a dense set of closed points S ⊂ Spec A such that the Frobenius
action on Hn(Xs,OXs

) is bijective for every s ∈ S. The next lemma shows that in fact, it
is enough to find S as above such that the Frobenius action on HN−1(Ds,ODs

) is bijective
for all s ∈ S.

Lemma 2.2. Let L be a finite field, and D1, . . . , Dr hypersurfaces in PN = PN
L such that

the intersection scheme Y = D1∩ . . .∩Dr has pure codimension r in PN . If the Frobenius

acts bijectively on HN−1(D,OD), where D =
∑r

i=1Di, then for every closed subscheme

X of Y , the Frobenius action on HN−r(X,OX) is bijective.

Proof. For every subset J ⊆ {1, . . . , r}, let DJ =
⋂

j∈J Dj . By assumption, Y is a complete
intersection, hence there is an exact complex

C• : 0 → C0 d0
→ C1 d1

→ . . .
dr−1

→ Cr → 0,
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where C0 = OD, and Cm =
⊕

|J |=mODJ
for m ≥ 1. Note that we have a morphism of

complexes C• → F∗(C
•), where F is the absolute Frobenius morphism on X . It follows

that if we break-up C• into short exact sequences, the maps in the corresponding long
exact sequences for cohomology are compatible with the Frobenius action.

Let Mi = Im(di), hence M0 ≃ C0 = OD and Mr−1 = Cr = OY . Since each
DJ is a complete intersection in PN , it follows that H i(DJ ,ODJ

) = 0 for every i with
1 ≤ i < dim(DJ) = N − |J |. We deduce that for every i with 0 ≤ i ≤ r − 2, the short
exact sequence

0 → Mi → Ci+1 → Mi+1 → 0

gives an exact sequence

0 = HN−i−2(PN , Ci+1) → HN−i−2(PN ,Mi+1) → HN−i−1(PN ,Mi).

Therefore we have a sequence of injective maps

HN−r(Y,OY ) →֒ HN−r+1(PN ,Mr−2) →֒ . . . →֒ HN−2(PN ,M1) →֒ HN−1(D,OD),

compatible with the Frobenius action. Since this action is bijective on HN−1(D,OD) by
hypothesis, it follows that it is bijective also on HN−r(Y,OY ) (see, for example, [MS,
Lemma 2.4]).

On the other hand, since dim(Y ) = N − r, the surjection OY → OX induces a
surjection HN−r(Y,OY ) → HN−r(X,OX), compatible with the Frobenius action. As we
have seen, the Frobenius action is bijective on HN−r(Y,OY ), hence on every quotient (see
[MS, Lemma 2.4]). This completes the proof of the lemms. �

Returning to the proof of Theorem 1.3, we see that it is enough to show that
there is a dense set of closed points S ⊂ Spec A such that Frobenius acts bijectively
on HN−1(Ds,ODs

) for s ∈ S. We assume that Conjecture 1.1 holds, hence there is a
dense set of closed points S ⊂ Spec A such that τ(AN+1

k(s) , h
λ
s ) = J (AN+1

k , hλ)s for ev-

ery λ ∈ R≥0 and every s ∈ S. In particular, it follows from Lemma 2.1 and (5) that
(x0, . . . , xN)

2r−N−1 ⊆ τ(AN+1
k(s) , h

λ
s ) for every λ < 1. Since deg(hs) = 2r ≥ (N + 1), Propo-

sition 2.3 below implies that the Frobenius action on HN−1(Ds,ODs
) is bijective for all

s ∈ S. As we have seen, this completes the proof of Theorem 1.3. �

Proposition 2.3. Let L be a perfect field of characteristic p > 0, and h ∈ R = L[x0, . . . , xN ]
a homogeneous polynomial of degree d ≥ N + 1, with N ≥ 2. If (x0, . . . , xN)

d−N−1 ⊆

τ(AN+1
L , h1−

1

p ), then the Frobenius action on HN−1(D,OD) is bijective, where D ⊂ PN
L is

the hypersurface defined by h.

Proof. In the case d = N+1, this is a reformulation of a well-known fact due to Fedder [Fe].
We follow the argument from [MTW, Proposition 2.16], that extends to our more general
setting. It is enough to show that the Frobenius action on HN−1(D,OD) is injective (see
[MS, §2.1]).

Note first that τ(AN+1
L , h1−

1

p ) = (hp−1)[1/p] (see [BMS1, Lemma 2.1]), hence by
assumption m

d−N−1 ⊆ (hp−1)[1/p], where m = (x0, . . . , xN). It is convenient to use the
interpretation of the ideal (gp−1)[1/p] in terms of local cohomology. Let E = HN+1

m
(R).



6 M. MUSTAŢĂ

Recall that this is a graded R-module, carrying a natural action of the Frobenius, that
we denote by FE . There is an isomorphism

E ≃ Rx0···xN
/

N∑

i=0

Rx0···x̂i···xN
.

Via this isomorphism, FE is induced by the Frobenius morphism on Rx0···xN
.

The annihilator of (hp−1)[1/p] in E is equal to Ker(hp−1FE) (see, for example, [BMS2,
§2.3]). Therefore we have

(6) Ker(hp−1FE) ⊆ AnnE(m
d−N−1) =

⊕

i≥−d+1

Ei.

On the other hand, the exact sequence

0 → R(−d)
h
→ R → R/(h) → 0

induces an isomorphism

HN
m
(R/(h)) ≃ {u ∈ E | hu = 0}(−d),

such that the Frobenius action on HN
m
(R/(h)) is given by hp−1FE . Since H

N−1(D,OD) ≃
HN

m
(R/(h))0 →֒ E−d, (6) implies that the Frobenius action is injective on HN−1(D,OD).

This completes the proof of the proposition. �

Remark 2.4. In the proof of Theorem 1.3 we only used the inclusion “⊆” in Conjec-
ture 1.1. However, this is the interesting inclusion: the reverse one is known, see [HY]
or [MS, Proposition 4.2]. It is more interesting that we only used Conjecture 1.1 when
Y = AN+1

k , a is principal and homogeneous, and λ = 1 − 1
p
. By combining Theorem 1.3

with the main result in [MS], we see that in order to prove Conjecture 1.1 in general, it
is enough to consider the case when Y = An

k , a = (f) is principal and homogeneous, and
show the following: if b = J (Y, a1−ε) for 0 < ε ≪ 1, and if fA ∈ A[x1, . . . , xn] is a model
for f , then there is a dense set of closed points S ⊂ Spec A such that

bs ⊆ (f p−1
s )[1/p]

for every s ∈ S, where p = char(k(s)).
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