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Iterative imputation, in which variables are imputed one at a time each
given a model predicting from all the others, is a popular technique that can
be convenient and flexible, as it replaces a potentially difficult multivariate
modeling problem with relatively simple univariate regressions.

In this paper, we begin to characterize the stationary distributions of
iterative imputations and their statistical properties. More precisely, when
the conditional models are compatible (defined in the text), we give a set
of sufficient conditions under which the imputation distribution converges
in total variation to the posterior distribution of a Bayesian model. When
the conditional models are incompatible but are valid, we show that the
combined imputation estimator is consistent.

1. Introduction. Iterative imputation is a widely used algorithm for multi-
variate missing data which proceeds as follows. First, missing values are randomly
imputed using some simple stochastic algorithm. Second, the missing values for
each variable are updated conditionally on all the others using a model fit to the
completed data. The second step is performed on all the variables repeatedly un-
til approximate convergence (as measured, for example, by the mixing of multiple
chains). The detailed imputation scheme is given in Section 2.3.

Iterative imputation is an easy way to model uncertainty in missing data. There
is no need to explicitly construct a joint multivariate model of all types of variables:
continuous, ordinal, categorical, and so forth. Instead, one only needs to specify a
sequence of conditional regression models to predict each variable given the others
to impute the missing data iteratively from the posterior predictive distributions of
the corresponding conditional models. The imputation distribution is then the in-
variant (stationary) distribution of the corresponding Markov chain. Provided that
regression models for univariate response have been well studied in the literature,
iterative imputation is much easier to implement, especially for statistical software
package development than constructing a joint Bayesian model. We call the im-
putation from the posterior distribution of a joint Bayesian model joint Bayesian
imputation.

Due to its convenience and flexibility, the iterative, or chained, imputation is
popular and it has been implemented in various statistical software packages, in-
cluding mice [27] and mi [26] in R, IVEware [16] in SAS, and ice in STATA [19, 20].
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Nonetheless, its theoretical properties have not yet been established. In this paper,
we aim to fill this void. The key questions, then, are: (1) Under what conditions does
the algorithm converge to a stationary distribution? (2) What statistical properties
does the procedure admit given that a unique stationary distribution exists?

Regarding the first question, researchers have long known that the Markov chain
may be non-recurrent (drifting or “blowing up” to infinity), even if each of the
conditional models is fitted using a proper prior distribution. There is a wealth of
literature on Markov chain stability (standard textbook [15]) that one can employ
for this analysis. A brief review is given in Section 5.

In this paper, we focus mostly on the second question – the characterization of
the stationary distributions of the iterative imputation. Unlike usual Markov chain
Monte Carlo (MCMC) algorithms, which are designed in such a way that the in-
variant distribution and target distribution are identical, the invariant distribution
of iterative imputation (even if it exists) is largely unknown.

The analysis of iterative imputation is challenging for at least two reasons. First,
the range of choices of conditional models is very wide so that it is difficult to pro-
vide a solution applicable to all situations. Second, there is a lack of mathematical
tools to study such Markov processes. The main contribution of this paper is to
develop a mathematical framework under which the asymptotic properties of it-
erative imputation can be discussed via the coupling of two Markov processes. In
particular, we demonstrate the following results.

1. Given the existence of a unique invariant (stationary) distribution of the itera-
tive imputation Markov chain, we provide a set of conditions under which this
distribution converges in total variation to the posterior distribution of a joint
Bayesian model, as the sample size tends to infinity. Under these conditions,
iterative imputation is asymptotically equivalent to full Bayesian imputation
using some joint model. Among these conditions, the most important is that
the conditional models are compatible—that there exists a joint model whose
conditional distributions are identical to the conditional models specified by
the iterative imputation (Definition 3.1). This discussion is in Section 3.

2. Model compatibility is usually a necessary condition for the iterative impu-
tation distribution to converge to the posterior distribution of some Bayesian
model (Section 3.4).

3. For incompatible models whose imputation distributions are generally differ-
ent from any Bayesian model, we show that the expectation of the imputed
data MLE’s (under the imputation distribution) is a consistent estimator if
the set of conditional models is valid, that is, if each conditional model con-
tains the true probability distribution (Definition 4.2 in Section 4.).

The analysis presented in this paper connects to two literatures. The first one
is the literature of missing data and multiple imputation. Standard textbooks are
[22, 11], and some key papers are [14, 13, 10, 3, 21, 23, 24]. Large sample properties
are studied by [25, 28, 17], small samples are by [3], and the issue of congeniality
between the imputer’s and analyst’s models is considered by [13].

The asymptotic results for both the compatible and incompatible models require
bounds on the convergence rates of the Markov chains. There is a vast literature



ON THE STATIONARY DISTRIBUTION OF ITERATIVE IMPUTATIONS 3

on Markov chain stability and rate of convergence. General results on the expo-
nential convergence rate appear in [8]. For specific bounds on convergence rates of
specific models, see [2, 1]. In addition, empirical diagnostics of Markov chains were
also suggested by many authors, for instance, [7]. In the example of this paper (cf.
the illustrative example in Section 6), we adopt the framework of renewal theory
to prove stability and construct bound for convergence rate ([15, 18, 4]). The ad-
vantage of this framework is that it does not assume the existence of an invariant
distribution, which is naturally yielded by the minorization and drift conditions.

In Section 2 of this article, we lay out our notations and assumptions. Next, we
briefly review the framework of multiple imputation, the iterative imputation pro-
cedure, and the Gibbs sampler. In Section 3, we investigate compatible conditional
models. In Section 4, the discussion focuses on incompatible models. In Section 5,
we review the literature for Markov chain convergence via renewal theory. Section
6 considers one linear example in detail.

2. Background. Consider a data set with n cases and p variables, where
x = (x1, ...,xp) represents the complete data and xi = (x1,i, ..., xn,i)

> is the i-
th variable. Let ri be the vector of observed data indicators for variable i, 1 for
the observed and 0 for the missing. Further, we use xobsi and xmisi to denote the
observed and missing data of variable i and let

xobs = {xobsi : i = 1, ..., p}, xmis = {xmisi : i = 1, ..., p}, r = {ri : i = 1, ..., p}

To facilitate our description of the procedures, we let

xobs−j = {xobsi : i = 1, ..., j−1, j+1, ..., p}, xmis−j = {xmisi : i = 1, ..., j−1, j+1, ..., p}.

We use boldface x to denote the entire data set and x to denote individual obser-
vations. Therefore, xj denotes the j-th variable of one observation and x−j denotes
all the variables except for the j-th one.

Throughout the discussion, we assume that the missing data process is ignorable.
One set of sufficient conditions for ignorability is that the ri process is missing at
random and the parameter spaces for ri and x are distinct, with independent prior
distributions [11, 22].

2.1. Inference of multiple imputations. Multiple imputation is a convenient
tool to handle incomplete data set by means of complete data procedures. The
framework consists of producing m copies of the imputed data and applying the
users’ complete data procedures to each of the multiply imputed data sets. Suppose
that m copies of point estimates and variance estimates are obtained, denoted by
(θ̂(i), U (i)), i = 1, ...,m. The next step is to combine them into a single point esti-

mate and a single variance estimate (θ̂m, T̂m) [11]. If the imputed data are drawn
from the joint posterior distribution of the missing data under a Bayesian model, un-
der appropriate congeniality conditions, θ̂m is asymptotically equal to the posterior
mean of θ and T̂m is asymptotically equal to the posterior variance of θ ([22, 13]).
The large sample theory of Bayesian inference ensures that the posterior mean and
variance are asymptotically equivalent to the maximum likelihood estimate and its
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variance based on the observed data alone (see [5]). Therefore, the combined esti-
mator from imputed samples is efficient. In literature, there are other imputation
procedures based on parametric models; for instance, Robins and Wang ([17, 28])
propose an imputation procedure using estimates based on estimating equations
and the corresponding combining rules. Also, there are non-parametric procedures:
hot deck, last observation carried forward, and so forth.

2.2. Bayesian modeling, imputation, and Gibbs sampling. For Bayesian impu-
tation, multiply imputed data sets are i.i.d. samples from the posterior distribution.
In particular, we adopt a parametric family and a prior distribution

x|θ ∼ f(x|θ), θ ∼ π(θ),

for θ ∈ Θ. The imputed values are i.i.d. samples from the posterior predictive
distribution

(2.1) f(xmis|xobs) =

∫
Θ

f(xmis|xobs, θ)p(θ|xobs)dθ,

where p(θ|x) is the posterior distribution associated with f and π. Direct simulation
from (2.1) is generally difficult. One standard solution is to use MCMC to draw
approximate samples. A popular scheme is the Gibbs sampler. In the scenario of
missing data, one iteratively draw θ given (xobs,xmis) and xmis given (xobs, θ).
Under regularity conditions (positive recurrence, irreducibility, and aperiodicity),
the Markov process is ergodic with limiting distribution p(xmis, θ|xobs) ([8]).

In order to connect these results to the iterative imputation that will be discussed
momentarily, we consider a slightly different Gibbs scheme which consists of p steps
as follows,

Step 1. Draw θ ∼ p(θ|xobs1 ,x−1) and xmiss1 ∼ f(xmiss1 |xobs1 ,x−1, θ);
Step 2. Draw θ ∼ p(θ|xobs2 ,x−2) and xmiss2 ∼ f(xmiss2 |xobs2 ,x−2, θ);

...
Step p. Draw θ ∼ p(θ|xobsp ,x−p) and xmissp ∼ f(xmissp |xobsp ,x−p, θ).

Run steps 1 to p iteratively. At each step, the posterior distribution is based on
the updated values of the parameters and imputed data. It is not hard to verify
that the Markov chain evolving according to steps 1 to p (under mild regularity
conditions) converges to the posterior distribution of the corresponding Bayesian
model.

2.3. Iterative imputation and compatibility. For iterative imputation, we need
to specify p conditional models,

gj(xj |x−j , θj),

for θj ∈ Θj with prior distributions πj(θj) for j = 1, ..., p. Iterative imputation
adopts the following scheme to construct a Markov chain,
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Step 1. Draw θ1 from p1(θ1|xobs1 ,x−1), which is the posterior distribution associ-
ated with g1 and π1; draw xmiss1 from g1(xmiss1 |xobs1 ,x−1, θ1);

Step 2. Draw θ2 from p2(θ2|xobs2 ,x−2), which is the posterior distribution associ-
ated with g2 and π2; draw xmiss2 from g2(xmiss2 |xobs2 ,x−2, θ2);

...
Step p. Draw θp from pp(θp|xobsp ,x−p), which is the posterior distribution associ-

ated with gp and πp; draw xmissp from gp(x
miss
p |xobsp ,x−p, θp).

Iterative imputation has the practical advantage that, at each step, one only
needs to set up a sensible regression model of xj given x−j . This substantially re-
duces the modeling task, given that there are usually standard linear or generalized
linear models for univariate responses of different variable types.

In contrast, the full Bayesian modeling approach requires a joint model for x.
There are only a handful of models of that sort and even fewer of them that accom-
modate both continuous and discrete variables. Moreover, these models typically
impose strict distributional assumptions. For instance, the general location model
([24]) assumes that the continuous variables are multivariate Gaussian.

On the other hand, iterative imputation has conceptual problems. There may
not exist a joint distribution of x such that f(xj |x−j , θ) = gj(xj |x−j , θj) for each
j. In addition, it is unclear whether the Markov process has a probability invariant
distribution; if there is such a distribution, it lacks characterization.

In this paper, we discuss the properties of the iterative imputation distribution
by first classifying the conditional models into two categories: compatible and in-
compatible models. For compatible models, there exists a joint model f which is
consistent with each conditional model. For incompatible models, there does not
exist such an f .

We refer to the Markov chain generated by the scheme in Section 2.2 as the
Gibbs chain and the one generated by the scheme in Section 2.3 as the iterative
chain. The central analysis lies in coupling the Gibbs chain and the iterative chain.

3. Compatible conditional models.

3.1. Model compatibility. Analysis of the properties of iterative imputation is
particularly challenging. This is partly because of the large collection of possible
choices of conditional models. Therefore, we first focus on a smaller class, compatible
conditional models, defined as follows:

Definition 3.1. A set of conditional models {gj(xj |x−j , θj) : θj ∈ Θj , j =
1, ..., p} is said to be compatible if there exists a joint model {f(x|θ) : θ ∈ Θ} and
a collection of surjective maps, {tj : Θ → Θj : j = 1, ..., p} such that for each j,
θj ∈ Θj, and θ ∈ t−1

j (θj) = {θ : tj(θ) = θj},

gj(xj |x−j , θj) = f(xj |x−j , θ).

Otherwise, {gj : j = 1, ..., p} is said to be incompatible.
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Though imposing certain restrictions, compatible models do include quite a col-
lection of procedures practically in use. In what follows, we give a few examples of
compatible and incompatible conditional models.

We begin with a simple linear model, which we shall revisit in Section 6.

Example 3.2 (Illustrating example). Consider a binary continuous variable
(x, y) and conditional models

x|y ∼ N(αx|y + βx|yy, τ
2
x), y|x ∼ N(αy|x + βy|xx, τ

2
y ).

These two conditional models are compatible. The corresponding joint model is(
x
y

)
∼ N

((
µx
µy

)
,Σ

)
, where Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
,

with σx, σy > 0 and ρ ∈ [−1, 1]. The reparameterization from (µx, µy, σx, σy, ρ) to
the parameters of the conditional models is:

t1(µx, σ
2
x, µy, σ

2
y, ρ) = (αx|y, βx|y, τ

2
x) =

(
µx −

ρσx
σy

µy,
ρσx
σy

, (1− ρ2)σ2
x

)
t2(µx, σ

2
x, µy, σ

2
y, ρ) = (αy|x, βy|x, τ

2
y ) =

(
µy −

ρσy
σx

µx,
ρσy
σx

, (1− ρ2)σ2
y

)
.

The following example is a natural extension.

Example 3.3 (continuous data). Consider a set of conditional linear models:
for each j,

xj |x−j , βj , σ2
j ∼ N

(
(1, x−j)βj , σ

2
j

)
,

where βj is a p×1 vector, 1 = (1, ..., 1)>. Consider the joint model of (x1, ..., xp)
i.i.d.∼

N(µ,Σ). Then the conditional distribution of each xj given x−j is Gaussian. The
maps tj’s can be derived by conditional multivariate Gaussian calculations.

Example 3.4 (continuous and binary data). Let x1 be a Bernoulli random
variable and x2 be a continuous random variable. The conditional models are as
follows:

x1|x2 ∼ Bernoulli
(

eα+βx2

1 + eα+βx2

)
, x2|x1 ∼ N(β0 + β1x1, σ

2).

The above conditional models are compatible with the following joint model:

x1 ∼ Bernoulli(p), x2|x1 ∼ N(β0 + β1x1, σ
2).

If we let,

t1(p, β0, β1, σ
2) =

(
log

p

1− p
− β2

1

2σ2
,
β1

2σ2

)
= (α, β)

t2(p, β0, β1, σ
2) = (β0, β1),

the conditional models and this joint model are compatible with each other. Similarly
compatible models can be defined for other natural exponential families. See [6, 12].
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Example 3.5 (an incompatible example). There are many incompatible con-
ditional models. For instance,

x|y ∼ N(β1y + β2y
2, 1), y|x ∼ N(λ1x, 1).

These are compatible only if β2 = 0.

3.2. The main theorem for compatible conditional models. Let {xmis,1(k) : k ∈
Z+} be the Gibbs chain and {xmis,2(k) : k ∈ Z+} be the iterative chain. Both
chains live on the space of the missing data. They admit transition kernels

(3.1) Ki(w, dw
′) = P (xmis,i(k + 1) ∈ dw′|xmis,i(k) = w),

for i = 1, 2. The transition kernels (K1 and K2) depend on xobs. For simplicity, we
omit the index of xobs in the notation of Ki. Also, we let

K
(k)
i (ν,A) , Pν(xmis,i(k) ∈ A),

for xmis,i(0) ∼ ν, ν being some starting distribution. The probability measure Pν
also depends on xobs.

Let dTV denote the total variation distance between two measures, that is, for
two measures, ν1 and ν2, defined on the same probability space

dTV (ν1, ν2) = sup
A∈F
|ν1(A)− ν2(A)|.

In order to accommodate different variations of the imputation scheme, we write
the theorem in a generic way. Then, we discuss how one can adapt the theorem to
the analysis of iterative imputation.

Theorem 3.6. Let xmis,i(k) admit transition kernels Ki for i = 1, 2. The
transition kernels can be data dependent. We use n to denote sample size. Suppose
the following conditions hold:

C1 The transition kernel Ki admits a unique invariant distribution, denoted by

νx
obs

i .
C2 There exists a monotone decreasing sequence qk → 0 (independent of xobs)

and a starting measure ν (depending on xobs) such that

(3.2) P
[
dTV (K

(k)
i (ν, ·), νx

obs

i (·)) ≤ qk,∀k > 0
]
→ 1,

as n→∞.
C3 There exists a sequence of sets An (depending on sample size), such that for

each m ∈ Z+,

(3.3) Pν
(
xmis,i(k) ∈ An: for all k = 1, ...,m

)
→ 1,

in probability as n→∞1. In addition,

(3.4) d(An) , sup
w∈An

dTV (K1(w, ·),K2(w, ·))→ 0,

in probability as n→∞.

1The probability measure Pν depends on xobs. That is why the convergence is in probability.
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Then,

(3.5) dTV (νx
obs

1 , νx
obs

2 )→ 0,

in probability as n→∞.

Remark 3.7. By construction of the Gibbs chain, νx
obs

1 is the posterior dis-
tribution of the corresponding Bayesian model. Iterative imputations satisfying the
conditions in Theorem 3.6 are asymptotically equivalent to Bayesian imputation.
Then the asymptotic statistical properties developed for multiple imputations using
joint Bayesian models are applicable to such iterative imputations too.

Remark 3.8. In practice, the specific imputation scheme might be different
from the one presented in Section 2.3. We list two such variations. First, at each of
the p steps within one iteration, one may sample θ from the posterior distribution
given the entire data set x from the previous iteration, instead of xobsj ,x−j. Second,
instead of updating the p variables in a fixed order, one may randomly select one
variable to update. Given that Theorem 3.6 is presented in a general form, the
results are applicable to these schemes as well. We will then discuss how to check
conditions in specific contexts.

Remark 3.9. C1 and C2 can be obtained simultaneously using existing results
in the literature of MCMC convergence. Given that this is an independent topic, we
discuss tools for the existence of an invariant distribution, its uniqueness, and the
rate of convergence in Section 5.

Remark 3.10. The statement of the theorem does not explicitly require com-
patibility. However, as we will show in later this section, compatibility is usually a
necessary condition for C3 (Theorem 3.19). In addition, C3 is generally difficult
to check directly. We will provide a set of sufficient and checkable conditions in
Section 3.3. Compatibility is one of them.

Remark 3.11. In order to have the two stationary distributions converging
to each other, it is necessary to have a bound on the convergence rate (C2) in
addition to the condition (C3) that the two transition kernels converge to each other.
One illustrative example is given as follows. Consider two order-1 autoregressive
processes:

Wi(n+ 1) = ρiWi(n) + εi(n+ 1), for i = 1, 2

with εi(n) ∼ N(0, 1) and Wi having probability invariant distribution N(0, (1 −
ρ2
i )
−1). Suppose ρ2

1 = 1−δ and ρ2
2 = 1−2δ. With δ small, the two transition kernels

are close to each other. However, the variances of their invariant distributions are
approximately different by a factor of 2. This is because the mixing rate is low for
both chains.

Remark 3.12. For iterative chains, the invariant distribution typically depends
on the order of variables within each iteration. For procedures satisfying conditions
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in Theorem 3.6, the impact of this order vanishes asymptotically. This is because
the theorem does not require a particular order to have the convergence result.

Remark 3.13. The result of Theorem 3.6 does not rely on the validity of the
imputation model. Even if the model is misspecified, the convergence in (3.5) still
applies.

Remark 3.14. The set An is introduced to ensure (3.4). It is not always feasible
to have K1(w, ·) and K2(w, ·) close in total variation for all w. Very often, it is
easy to identify a compact set An such that K1(w, ·) and K2(w, ·) are close on An
and the chains stay in An with very high probability in a finite number of steps.

Before the proof of Theorem 3.6, we first present a lemma.

Lemma 3.15. Consider two positive measures ν1, ν2 and a non-negative bounded
function h. Then,∣∣∣∣∫ h(x)ν1(dx)−

∫
h(x)ν2(dx)

∣∣∣∣ ≤ dTV (ν1, ν2) sup
x
h(x).

Proof. The proof is immediate by considering measure φ = ν1−ν2 and
∫
h(x)ν1(dx)−∫

h(x)ν2(dx) =
∫
h(x)φ(dx). 2

Proof of Theorem 3.6. For any ε, δ > 0, let kε = inf{K : ∀k > K, qk ≤ ε}.
Then, for any m > kε

dTV (νx
obs

1 , νx
obs

2 ) ≤ dTV

(
νx

obs

1 ,
1

m

m∑
k=1

K
(k)
1 (ν, ·)

)
+ dTV

(
νx

obs

2 ,
1

m

m∑
k=1

K
(k)
2 (ν, ·)

)

+dTV

(
1

m

m∑
k=1

K
(k)
1 (ν, ·), 1

m

m∑
k=1

K
(k)
2 (ν, ·)

)
.

By the definition of kε, each of the first two terms is bounded by ε+ kε/m. For the
last term, using Lemma 3.15, for each k ≤ m and A,∣∣∣K(k+1)

1 (ν,A)−K(k+1)
2 (ν,A)

∣∣∣
≤

∣∣∣∣∫ (K(k)
1 (ν, dx)−K(k)

2 (ν, dx)
)
K2(x,A)

∣∣∣∣+

∫
K

(k)
1 (ν, dx) |K1(x,A)−K2(x,A)|

≤ dTV (K
(k)
1 (ν, ·),K(k)

2 (ν, ·)) + d(An) + 1− Pν
(
xmis,1(k) ∈ An: for all k = 1, ...,m

)
.

Then, by induction, for all k ≤ m,

dTV (K
(k)
1 (ν, ·),K(k)

2 (ν, ·)) ≤ m
[
d(An) + 1− Pν

(
xmis,1(k) ∈ An: for all k = 1, ...,m

)]
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Therefore, the last term is bounded by

dTV

(
1

m

m∑
k=1

K
(k)
1 (ν, ·), 1

m

m∑
k=1

K
(k)
2 (ν, ·)

)
≤ m

[
d(An) + 1− Pν

(
xmis,1(k) ∈ An: for all k = 1, ...,m

)]
.

Therefore,

dTV (νx
obs

1 , νx
obs

2 ) ≤ 2ε+2kε/m+m
[
d(An) + 1− Pν

(
xmis,1(k) ∈ An: for all k = 1, ...,m

)]
.

We first choose m sufficiently large such that 2kε/m < ε. Given the choice of m,
thanks to C3,

d(An)→ 0,

in probability as n→∞, one can choose n sufficiently large such that

P
(
d(An) > m−1ε

)
< δ,

P
(
1− Pν

(
xmis,1(k) ∈ An: for all k = 1, ...,m

)
> m−1ε

)
< δ,

and the probability in (3.2) is greater than 1− δ. Therefore, with this choice of n,
we have

P
(
dTV (νx

obs

1 , νx
obs

2 ) < 5ε
)
> 1− 3δ.

We conclude the proof. 2

3.3. Total variation distance between the two transition kernels. Theorem 3.6
is written in a general format. One needs to check conditions C1-3 in the specific
context of the Gibbs chain and the iterative chain. As mentioned in Remark 3.9,
conditions C1 and C2 will be discussed in Section 5. The rest of this section focuses
on the discussion of condition C3. It is difficult to provide checkable, sufficient,
and necessary conditions for condition C3 in Theorem 3.6. Instead, we provide a
set of sufficient and checkable conditions for C3 and argue that they cover a wide
range of practical situations. Note that both the Gibbs chain and the iterative
chain evolve by updating each missing variable from the corresponding posterior
predictive distributions. Upon comparing the difference between the two transition
kernels associated with the simulation schemes in Sections 2.2 and 2.3, it suffices
to bound the total variation distance between the following posterior predictive
distributions (for each j = 1, ..., p),

f(xmisj |xobsj ,x−j) =

∫
f(xmisj |xobsj ,x−j , θ)p(θ|xobsj ,x−j)dθ(3.6)

gj(x
mis
j |xobsj ,x−j) =

∫
gj(x

mis
j |xobsj ,x−j , θj)pj(θj |xobsj ,x−j)dθj ,(3.7)

where p and pj denote the posterior distributions under f and gj respectively. Due
to compatibility, the distributions of the missing data given the parameters are the
same for both the joint Bayesian model and the iterative imputation model:

f(xmisj |xobsj ,x−j , θ) = gj(x
mis
j |xobsj ,x−j , θj),
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with tj(θ) = θj . The only difference lies in their posterior distributions. In fact,
thanks to Lemma 3.15, the total variation distance between two posterior predictive
distributions is bounded by the distance between their posterior distributions of
parameters. Therefore, we move on to compare p(θ|xobsj ,x−j) and pj(θj |xobsj ,x−j).

Parameter augmentation. Upon comparing the posterior distributions of θ and θj ,
the first disparity to reconcile is that the dimensions are usually different. Typically
θj is of lower dimension. Consider the linear model in Example 3.2. The conditional
models include three parameters (two regression coefficients and variance of the er-
rors), while the joint model has five parameters (µx, µy, σx, σy, ρ). This is because
the (conditional) regression models are usually conditional on the covariates. The
joint model not only parameterizes the conditional distributions of xj given x−j but
also the marginal distribution of x−j . Therefore, it includes extra parameters, al-
though the distributions of the missing data is independent of these parameters. We
augment the parameter space of the iterative imputation to (θj , θ

∗
j ) with the corre-

sponding map θ∗j = t∗j (θ). The augmented parameter (θj , θ
∗
j ) is a non-degenerated

reparameterization of θ, that is, Tj(θ) = (tj(θ), t
∗
j (θ)) is a one-to-one (invertible)

map.
To illustrate this parameter augmentation, we consider the linear model in Ex-

ample 3.2 in which θ = (µx, σ
2
x, µy, σ

2
y, ρ), where we use µx and σ2

x to denote mean
and variance of the first variable, µy and σ2

y to denote the mean and variance of
the second, and ρ to denote the correlation. The reparameterization is,

θ2 = t2(µx, σ
2
x, µy, σ

2
y, ρ) = (αy|x, βy|x, τ

2
y ) = (µy −

ρσy
σx

µx,
ρσy
σx

, (1− ρ2)σ2
y),

θ∗2 = t∗2(µx, σ
2
x, µy, σ

2
y, ρ) = (µx, σ

2
x).

t2 maps to the regression coefficients and the variance of the residuals; t∗2 maps to
the marginal mean and variance of x. Similarly, we can define the map of t1 and t∗1.

Impact of the prior distribution. Thanks to compatibility, we can drop the notation
gj which we employed to denote the conditional model of the j-th variable. Instead,
we unify the notation to that of the joint Bayesian model f(xj |x−j , θ). In addition,
we abuse the notation and write f(xj |x−j , θj) = f(xj |x−j , θ) for tj(θ) = θj . For
instance, in Example 3.2, we write f(y|x, αy|x, βy|x, σy|x) = f(y|x, µx, µy, σx, σy, ρ)
as long as αy|x = µy − ρσy

σx
µx, βy|x =

ρσy
σx

, and σ2
y|x = (1− ρ2)σ2

y.

The prior distribution π for the joint Bayesian model implies a prior on (θj , θ
∗
j ),

denoted by
π∗j (θj , θ

∗
j ) = |det(∂Tj/∂θ)|−1π(T−1

j (θj , θ
∗
j )).

For the full Bayesian model, the posterior distribution of θj is

p(θj |xobsj ,x−j) =

∫
p(θj , θ

∗
j |xobsj ,x−j)dθ

∗
j ∝

∫
f(xobsj ,x−j |θj , θ∗j )π∗j (θj , θ

∗
j )dθ∗j .

Because f(xobsj |x−j , θj , θ∗j ) = f(xobsj |x−j , θj), the above posterior distribution can
be further reduced to

p(θj |xobsj ,x−j) ∝ f(xobsj |x−j , θj)
∫
f(x−j |θj , θ∗j )π∗j (θj , θ

∗
j )dθ∗j .
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If we write

πj,x−j (θj) ,
∫
f(x−j |θj , θ∗j )π∗j (θj , θ

∗
j )dθ∗j ,

then the posterior distribution of θj under the joint Bayesian model is

p(θj |xobsj ,x−j) ∝ f(xobsj |x−j , θj)πj,x−j (θj).

Comparing with the posterior distribution of the iterative imputation procedure,
which is proportional to

pj(θj |xobsj ,x−j) ∝ gj(xobsj |x−j , θj)πj(θj) = f(xobsj |x−j , θj)πj(θj),

the difference lies in the prior distributions, πj(θj) and πj,x−j (θj).

Controlling the total variation distance of the posterior predictive distributions.
We put forward tools to control the total variation distance between the two poste-
rior predictive distributions in (3.6) and (3.7). Let x be the generic notation for the
observed data and fx(θ) and gx(θ) be two densities of θ. Let h(x̃|θ) be the density
function for future observations given the parameter θ, and let f̃x(x̃) and g̃x(x̃) be
the posterior predictive distributions:

f̃x(x̃) =

∫
h(x̃|θ)fx(θ)dθ, g̃x(x̃) =

∫
h(x̃|θ)gx(θ)dθ.

Then, by Lemma 3.15,

(3.8) dTV (f̃x, g̃x) ≤ dTV (fx, gx).

The next proposition provides sufficient conditions that dTV (fx, gx) vanishes.

Proposition 3.16. Let n be the sample size. Let fx(θ) and gx(θ) be two pos-
terior density functions that share the same likelihood but have two different prior
distributions πf and πg. Let L(θ) = πg(θ)/πf (θ) and n denote sample size. Let

µθ =

∫
θfx(θ)dθ.

Suppose that on the set x ∈ An (c.f. Theorem 3.6) there exists κ > 0 such that

(3.9) |SDf (θ)| ≤ κ√
n
,

where SDf (θ) is the posterior standard deviation under fx. Let ∂L(θ) be the partial
derivative with respect to θ and ξ be a random variable such that

L(θ) = L(µθ) + ∂L(ξ) · (θ − µθ),

where “·” denotes inner product. If there exists a random variable y with finite
expectation under fx, such that for x ∈ An

(3.10)

∣∣∣∣√n∂L(ξ) · (θ − µθ)
L(µθ)

∣∣∣∣2 ≤ y,
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then for x ∈ An
dTV (fx, gx) = O(1)

|∂L(µθ) · SDf (θ)|
L(µθ)

.

By (3.8), we further obtain

(3.11) dTV (f̃x, g̃x) ≤ O(1)
|∂L(µθ) · SDf (θ)|

L(µθ)
= o(1)

|L′(µθ)|
L(µθ)

.

We delay the proof of this proposition to Appendix A.

Remark 3.17. We adapt Proposition 3.16 to the analysis of conditional mod-
els. For most parametric models, (3.9) is satisfied. Under mild moment conditions
for the posterior distribution of θj, (3.10) is satisfied. Therefore, we only need to
verify that d logL(θj)/dθj is bounded. One sufficient condition is that L(θj) =
πj(θj)/πj,x−j (θj) grows polynomially in θj.

Remark 3.18. One only needs to know πf and πg up to a normalizing constant.
This is because the bound is in terms of ∂L(θ)/L(θ). This helps to handle the
situation when improper priors are used and it is not feasible to obtain a normalized
prior distribution.

Summary. As a result of (3.11) and Proposition 3.16, the total variation distances
between the posterior predictive distributions of xmisj given (xobs,xmis−j ) associated
with the two models (under mild technical conditions) can be controlled by the
posterior variance of the parameters and d logL(θj)/dθj where

L(θj) =
πj(θj)

πj,x−j (θj)
.

This forms a set of checkable sufficient conditions for C3 in Theorem 3.6.

3.4. On the necessity of model compatibility. Theorem 3.6 and Proposition 3.16
show that for compatible models and under suitable technical conditions, itera-
tive imputation is asymptotically equivalent to Bayesian imputation. The following
proposition suggests that model compatibility is typically necessary for this con-
vergence.

Let P f denote the probability measure induced by the posterior predictive dis-
tribution of the joint Bayesian model and P gj denote those induced by the iterative
imputation’s conditional models. That is,

P f (xmisj ∈ A|xmis−j ,xobs) =

∫
A

f(xmisj |xmis−j ,xobs, θ)p(θ|xmis−j ,xobs)dθ

P gj (xmisj ∈ A|xmis−j ,xobs) =

∫
A

gj(x
mis
j |xmis−j ,xobs, θ)pj(θ|xmis−j ,xobs)dθ.

Furthermore, denote the stationary distributions of the Gibbs chain and the itera-

tive chain by νx
obs

1 and νx
obs

2 .
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Theorem 3.19. Suppose that for some j ∈ Z+, sets A and C, and ε ∈ (0, 1/2)

inf
xmis−j ∈C

P gj (xmisj ∈ A|xmis−j ,xobs) > sup
xmis−j ∈C

P f (xmisj ∈ A|xmis−j ,xobs) + ε

or

sup
xmis−j ∈C

P gj (xmisj ∈ A|xmis−j ,xobs) < inf
xmis−j ∈C

P f (xmisj ∈ A|xmis−j ,xobs)− ε

and νx
obs

1 (xmis−j ∈ C) > q ∈ (0, 1). Then there exists a set B such that∣∣∣νxobs2 (xmis ∈ B)− νx
obs

1 (xmis ∈ B)
∣∣∣ > qε/4.

Proof. Suppose that

inf
xmis−j ∈C

P gj (xmisj ∈ A|xmis−j ,xobs) > sup
xmis−j ∈C

P f (xmisj ∈ A|xmis−j ,xobs) + ε,

The “less than” case is completely analogous. Consider the set B = {xmis : xmis−j ∈
C,xmisj ∈ A}. If

(3.12) |νx
obs

2 (xmis−j ∈ C)− νx
obs

1 (xmis−j ∈ C)| ≤ qε/2,

then, by the fact that

νx
obs

1 (xmis ∈ B) = νx
obs

1 (xmis−j ∈ C)

∫
P f (xmisj ∈ A|xmis−j ,xobs)νx

obs

1 (dxmis−j |xmis−j ∈ C),

νx
obs

2 (xmis ∈ B) = νx
obs

2 (xmis−j ∈ C)

∫
P g(xmisj ∈ A|xmis−j ,xobs)νx

obs

2 (dxmis−j |xmis−j ∈ C),

we obtain
|νx

obs

2 (xmis ∈ B)− νx
obs

1 (xmis ∈ B)| > qε/4.

Otherwise, if (3.12) does not hold, let B = {xmis : xmis−j ∈ C}. 2

For two models with different likelihood functions, it is not hard to construct sets
A and C such that the conditions in the above theorem hold. Therefore, if among the
predictive distributions of all the p conditional models there is one gj that is different
from f as stated in Theorem 3.19, then the stationary distribution of the iterative
imputation is different from the posterior distribution of the Bayesian model in total
variation by a fixed amount. For a set of incompatible models and any joint model f ,
there exists at least one j such that the conditional likelihood functions of xj given
x−j are different for f and gj . Their predictive distributions have to be different for
xj . Therefore, such an iterative imputation using incompatible conditional models
typically does not correspond to Bayesian imputation under any joint model.
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4. The imputation distribution of incompatible conditional models.
In this section, we proceed to the discussion of incompatible conditional models. In
particular, we first extend the concept of model compatibility to semi-compatibility
which includes essentially all the regression models practically in use. Second, we
introduce the validity of semi-compatible models. Lastly, we show that if the con-
ditional models are semi-compatible and valid (together with a few mild technical
conditions) the combined imputation estimator is consistent.

4.1. Semi-compatibility and model validity. As in the previous section, we al-
ways assume that the invariant distribution and a bound on the convergence rate
exist. For compatible conditional models, we used the posterior distribution of the
corresponding Bayesian model as the natural benchmark and show that the two
imputation distributions converge to each other. We can transfer this idea to the
analyis of incompatible models. In this setting, the first issue is to find a natural
Bayesian model associated with a set of incompatible conditional models. Naturally,
we introduce the concept of semi-compatibility.

Definition 4.1. A set of conditional models {hj(xj |x−j , θj , ϕj) : j = 1, ..., p},
each of which is indexed by two sets of parameters (θj , ϕj), is said semi-compatible,
if there exists a set of compatible conditional models

(4.1) gj(xj |x−j , θj) = hj(xj |x−j , θj , ϕj = 0),

for j = 1, ..., p. We call {gj : j = 1, ..., p} a compatible element of {hj : j = 1, ..., p}.

By definition, every set of compatible conditional models is semi-compatible.
A simple and uninteresting class of semi-compatible models arises with iterative
regression imputation. As typically parameterized, these models include complete
independence as a special case. A trivial compatible element, then, is the one in
which xj is independent of x−j under gj for all j. We call a set of semi-compatible
models to be trivial if it only contains a trivial compatible element and nontrivial
otherwise. Throughout the discussion of this section, we use {gj : j = 1, ..., p} to
denote the compatible element of {hj : j = 1, ..., p} and f to denote the joint model
compatible with {gj : j = 1, ..., p}.

Semi-compatibility is a natural concept connecting a joint probability model to
a set of conditional models. One foundation of almost all statistical theories is that
data are generated according to some (unknown) probability law. When setting
up each conditional model, the imputer chooses a rich family such that it includes
the true conditional model. For instance, as recommended by [13], the imputer
should always try to include as many predictors as possible. Sometimes, the de-
grees of flexibility among the conditional models are different. For instance, some
includes quadratic terms or interactions. This richness usually results in incompat-
ibility. Semi-compatibility includes such cases in which the conditional models are
rich enough to include the true model but may not be always compatible among
themselves. To proceed, we introduce the following definition.
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Definition 4.2. Let {hj : j = 1, ..., p} be semi-compatible, {gj : j = 1, ..., p}
be its compatible element, and f be the joint model compatible with gj. If the joint
model f(x|θ) includes the true probability distribution, we say {hj : j = 1, ..., p} is
a set of valid semi-compatible models.

In order to obtain good prediction, we must assume the validity of the semi-
compatible models. A natural issue is the performance of valid semi-compatible
models. Given that we have given up compatibility, we should not expect the iter-
ative imputation to be equivalent to any joint Bayesian imputation. Nevertheless,
under mild conditions, we are able to show the consistency of the combined impu-
tation estimator.

4.2. Notations and technical conditions. Let Sf denote the score function of
the joint model f(x|θ) and If be the observed Fisher information:

Sf (θ;x) =
∂ log f(x|θ)

∂θ
, If (θ;x) = −∂

2 log f(x|θ)
∂θ2

.

We use the second argument (after “;”) for the generic notation of data. For in-
stance, Sf (θ;xobs) is the score function of the observed data and Sf (θ;xmis|xobs)
is the conditional score function of xmis conditional on xobs. In addition, we use
Sf (θ;x) to denote the score function of the entire data set; this is calculated as the
sum of individual scores. Similarly, we use such a notation for the observed Fisher
information If . Recall that Sf (θ0;x) = Op(1) and Sf (θ0;x) = Op(

√
n), where θ0

is the true parameter of f . Furthermore, we let Sj be the score function of hj and
Ij be its Fisher information, that is,

Sj(θj , ϕj ;xj |x−j) =
∂ log hj(xj |x−j , θj , ϕj)

∂(θj , ϕj)
,

Ij(θj , ϕj ;xj |x−j) = −∂
2 log hj(xj |x−j , θj , ϕj)

∂(θj , ϕj)2
.

We use θ0
j = tj(θ

0) and ϕ0
j = 0 to denote the true parameters under hj .

For each j, we let Fj(x|x−j , θj , ϕj) be the conditional cumulative distribution
function associated with model h(xj |x−j , θj , ϕj) and F−1

j (x|x−j , θj , ϕj) be its gen-
eralized inverse function.

We also slightly change the definition of “iteration.” In Section 2, one iteration
consists of p steps updating each of the p variables. For convenience, we now let
xmis,i(k+1) be the state of the chain after updating just one variable from xmis,i(k).
Therefore, the original chain is a p-skeleton of the chain under the current definition.

Throughout this discussion, we use κ to denote a generic constant for upper
bounds whose specific values may vary from case to case. Now, we list a set of
technical conditions.

D1 Let Uj ∼ U(0, 1), and define

(4.2) xj = F−1
j (Uj |x̃−j , θj , ϕj) and x′j = F−1

j (Uj |x̃′−j , θ′j , ϕ′j).
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Then, there exists κ > 0 such that

E|xj − x′j |2 ≤ κ
(
|x̃′−j − x̃−j |2 + |θ′j − θj |2 + |ϕ′j − ϕj |2

)
,

for all (θj , ϕj) and (θ′j , ϕ
′
j) in a neighborhood of (θ0

j , 0). The expectation is
taken with respect to Uj conditional on x̃−j and x̃′−j .

D2 Let xj and x′j be defined as in (4.2) for j = 1, ..., p. Then

E|Sf (θ0;x1, ..., xn)−Sf (θ0;x′1, ..., x
′
n)|2 ≤ κ

p∑
j=1

|x̃′−j−x̃−j |2+|θ′j−θj |2+|ϕ′j−ϕj |2

and

E|Sj(θ0
j , ϕ

0
j ;xj |x−j)−Sj(θ0

j , ϕ
0
j ;x
′
1|x′−j)|2 ≤ κ

p∑
j=1

|x̃′−j−x̃−j |2+|θ′j−θj |2+|ϕ′j−ϕj |2,

where ϕ0
j = 0 and the expectation is taken with respect to U1, ..., Un.

D3 Let θ̂, (θ̂j , ϕ̂j) be the MLE’s based on f and hj . They satisfy regularity con-
ditions,

θ̂ − θ0 = If (θ0;x)−1Sf (θ0;x) + o(n−1/2)ξ,

(θ̂j − θ0
j , ϕ̂j) = Ij(θ

0
j , 0;xj |x−j)−1Sj(θ

0
j , 0;xj |x−j) + o(n−1/2)ξj ,

where ξ and ξj are random vectors with bounded second moments.

D4 Let xmis,i(k) admit a unique stationary distribution denoted by νx
obs

i . Let
x = (xobs,xmis) and

µ(i)(xobs) =

∫
θ̂(x)νx

obs

i (dxmis),(4.3)

µ
(i)
j,θ(x

obs) =

∫
θ̂j(x)νx

obs

i (dxmis),(4.4)

µ
(i)
j,ϕ(xobs) =

∫
ϕ̂j(x)νx

obs

i (dxmis).(4.5)

There exists qk → 0 such that if xmis,2(0) ∼ νxobs1 , then for any k > 0

P
(∣∣∣E[θ̂(xobs,xmis,2(k))|xobs]− µ(2)(xobs)

∣∣∣ ≤ qk) → 1,(4.6)

P
(∣∣∣E[θ̂j(x

obs,xmis,2(k))|xobs]− µ(2)
j,θ (xobs)

∣∣∣ ≤ qk) → 1,(4.7)

P
(∣∣∣E[ϕ̂j(x

obs,xmis,2(k))|xobs]− µ(2)
j,ϕ(xobs)

∣∣∣ ≤ qk) → 1,(4.8)

as n → ∞, for all j = 1, ..., p. The expectation is taken with respect to
xmis,2(k) under the distribution associated with the iterative Markov chain.
The probability outside is taken with respect to xobs under the sampling
distribution. In addition, for some κ > 0

(4.9) E|µ(1)(xobs)− θ0|2 ≤ κ

n
,
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where the expectation is taken with respect to xobs over the sampling distri-
bution.

D5 The posterior distribution of θ given complete data set x has the representa-
tion

θ − θ̂ = Z + o(n−1/2)ξ,

where Z is a random vector with mean [If (θ0;x)]−1Sf (θ0;x) and covariance
matrix [If (θ0;x)]−1 and Eξ2 ≤ κ. Similarly, the posterior of (θj , ϕj) is

(θj − θ̂j , ϕj − ϕ̂j) = Zj + o(n−1/2)ξj ,

where Zj is a random vector with mean [Ij(θ
0
j , 0;xj |x−j)]−1Sj(θ

0
j , 0;xj |x−j)

and covariance matrix [Ij(θj , 0;xj |x−j)]−1 and Eξ2
j ≤ κ.

Remark 4.3. Conditions D1 and D2 are satisfied by typical parametric fam-
ilies. For instance, X ∼ N(µ, 1) can be represented by X = µ + Φ−1(U) and the
score function is S(µ′;X) = µ − µ′ + Φ−1(U), where Φ is the c.d.f. of standard
normal distribution.

Condition D4 requires a bound on the convergence rate of the Markov chain.
(4.9) suggests that the posterior mean of the complete data MLE is Op(1/

√
n) from

the true parameter.
Conditions D3 and D5 require that the maximum likelihood estimate satisfies the

normal equation and the posterior distributions of θ and θj are centered around the
MLE and have O(n−1/2) standard deviation.

4.3. Main theorem of incompatible conditional models.

Theorem 4.4. Consider a set of valid semi-compatible models {hj : j = 1, ..., p}.
Suppose that conditions D1-5 are in force. We use n to denote sample size. Then,
the combined maximum likelihood estimator with infinitely many imputations is a
consistent estimator, that is,

(4.10) µ(2)(xobs)→ θ0

and

(4.11) µ
(2)
j,θ (xobs)→ tj(θ

0), µ
(2)
j,ϕ(xobs)→ 0,

in probability as n→∞ for all j.

Remark 4.5. µ(2)(xobs) is the expectation of the complete data MLE under
the iterative imputation distribution and is also the combined point estimator of θ
according to Rubin’s combining rule (with infinitely many imputations). Similarly,
(4.11) contains the combined estimators of the conditional models. Therefore, the
result of Theorem 4.4 suggests that the combined imputation estimator is consistent
under conditions D1-5.
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Remark 4.6. There is one problem that remains open, that is, how one can
consistently estimate the variance of the combined imputation estimator. Given that
the imputation distribution of incompatible models is asymptotically different from
that of any joint Bayesian imputation, there is no guarantee that Rubin’s combined
variance estimator is asymptotically consistent. We acknowledge that this is a very
challenging problem. Even for joint Bayesian imputation, estimating the variance
of the combined estimator is still a nontrivial task under specific situations; see, for
instance, [13, 9]. Therefore, we leave this issue to future studies.

Proof of Theorem 4.4. We construct xmis,1(k) and xmis,2(k) such that they

are coupled as follows. Both chains start from νx
obs

1 . Then xmis,1(k) ∼ νx
obs

1 for
all k. Let xmis,1(0) = xmis,2(0). Suppose that variable j is updated at step k + 1.
Then, θ(k) is first sampled from

p(θ|xobs,xmis,1−j (k))

and xmis,1j (k+ 1) is sampled from f(xmisj |xmis,1−j (k),xobs, θ(k)) and xmis,1−j (k+ 1) =

xmis,1−j (k). Using the representation in (4.2), we write

(4.12) xmis,1i,j (k + 1) = F−1
j (Ui,j |xmis,1i,−j (k), xobsi,−j , tj(θ(k)), 0),

where xmis,1i,j (k + 1) is the j-th missing variable of the i-th observation (given it is

missing). Similarly, for xmis,2(k), at each step (θj(k), ϕj(k)) is sampled from

pj(θj , ϕj |xobs,xmis,1−j (k)).

Then xmis,2j (k + 1) is sampled as follows

(4.13) xmis,2i,j (k + 1) = F−1
j (Ui,j |xmis,2i,−j (k), xobsi,−j , θj(k), ϕj(k)).

We let the Ui,j in (4.12) and (4.13) be identical. Therefore, xmis,1(k) and xmis,2(k)
are coupled through Ui,j . In what follows, we prove by induction that xmis,1(k) and
xmis,2(k) are sufficiently close.

We define notation
E∗(·) = E(·|xobs)

that is the expectation associated with the probability measure induced by xmis,i(k)
for i = 1, 2. Let κ∗ be a generic (data-dependent) constant whose value may vary
from case to case. In addition, κ∗ depends on xobs and its expectation Eκ∗ < ∞
does not increase with sample size. To simplify notation, we write κ∗ instead of
κ∗(xobs).

First, by construction, we have xmis,1(0) = xmis,2(0). Suppose that for some k
and each 1 ≤ l ≤ k there exist Al and A′l (possibly increasing with l, depending on
xobs, and their expectations EAl, EA

′
l <∞ do not increase with sample size) such

that for all i and j,
(4.14)

E∗
(
xmis,1i,j (l)− xmis,2i,j (l)

)2

≤ Al
n
, E∗ |tj(θ(l − 1))− θj(l − 1)|2+E∗|ϕj(l−1)|2 ≤

A′l−1

n
.
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Now we consider the case of k + 1. Without loss of generality, we assume that
the j-th variable is updated at step k+1. According to (4.12), (4.13), and condition
D1,

E∗
[∣∣∣xmis,1i,j (k + 1)− xmis,2i,j (k + 1)

∣∣∣2∣∣∣∣ θj(k), ϕj(k), θ(k),xmis,1(k),xmis,2(k)

]
≤ κ

[
|θj(k)− tj(θ(k))|2 + |ϕj(k)|2 +

p∑
l=1

∣∣∣xmis,1i,l (k)− xmis,2i,l (k)
∣∣∣2] .

By the induction assumptions, the last term is controlled by

E∗
∣∣∣xmis,1i,l (k)− xmis,2i,l (k)

∣∣∣2 ≤ Ak
n
.

For the first two terms, let µl(k) be the posterior mean of (θl(k), ϕl(k)) given
xmis,2−l (k) and xobs (under the conditional model hl) for each 1 ≤ l ≤ p. Then,

E∗
(
|θl(k)− tl(θ(k))|2 + |ϕl(k)|2

)
≤ E∗

∣∣tl(θ(k))− θ0
l

∣∣2 + E∗ |(θl(k), ϕl(k))− µl(k)|2 + E∗
∣∣µl(k)− (θ0

l , 0)
∣∣2 .

To control each of the three terms on the right hand side, we collect the following
facts. For each 1 ≤ l ≤ p, we derive the following bounds.

1. Since xmis,1(k) ∼ νxobs1 , D5, and (4.9), there exists κ > 0 such that

(4.15) E∗|tl(θ(k))− θ0
l |2 ≤

κ∗

n
.

2. By condition D5, we obtain that

(4.16) E∗|(θl(k), ϕl(k))− µl(k)|2 ≤ κ∗

n
.

3. Lastly, we control E∗
∣∣µl(k)− (θ0

l , 0)
∣∣2. Note that

µl(k)− (θ0
l , 0) = (θ̂l(x

mis,2
−j (k),xobs)− θ0

l , ϕ̂l(x
mis,2
−j (k),xobs)) + o(n−1/2)ξl

= Il(θ
0
l , 0;xobsl |xobs−l ,x

mis,2
−l (k))−1Sl(θ

0
l , 0;xobsl |xobs−l ,x

mis,2
−l (k)) + o(n−1/2)ξl.

In addition, for some j∗, suppose xmis,1j∗ (k) is updated according to hj∗ given

xmis,1(k − 1), tj∗(θ(k − 1)) and ϕj∗ = 0; xmis,2j∗ (k) is updated according to

hj∗ given xmis,2(k − 1), θj∗(k − 1) and ϕj∗(k − 1). Therefore, by D2

E∗
∣∣∣Sl(θ0

l , 0;xobsi,l |xobsi,−l, x
mis,1
i,−l (k))− Sl(θ0

l , 0;xobsi,l |xobsi,−l, x
mis,2
i,−l (k))

∣∣∣2
≤ κ

[
E∗|ϕj∗(k − 1)|2 + E∗ |tj∗(θ(k − 1))− θj∗(k − 1)|2 +

p∑
l′=1

E∗
(
xmis,1i,l′ (k − 1)− xmis,2i,l′ (k − 1)

)2
]

≤ κ
A′k−1 + pAk−1

n
.
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Therefore, we add up the scores functions of the individual observations and
obtain that
(4.17)

E∗
∣∣∣Sl(θ0

l , 0;xobsl |xobs−l ,x
mis,1
−l (k))− Sl(θ0

l , 0;xobsl |xobs−l ,x
mis,2
−l (k))

∣∣∣2 ≤ nκ (A′k−1 + pAk−1

)
,

for some κ > 0. Since xmis,1(k) ∼ νxobs1 , (4.9), and D5, we have that (possibly
by enlarging κ∗)

(4.18) E∗|Sl(θ0
l , 0;xobsl |xobs−l ,x

mis,1
−l (k))|2 ≤ κ∗n.

Combining (4.17) and (4.18), we obtain

E∗|Sl(θ0
l , 0;xobsl |xobs−l ,x

mis,2
−l (k))|2 ≤ 2κn(A′k−1 + pAk−1) + 2nκ∗.

Let nλl be the smallest eigenvalue of Il. Then,

E∗
∣∣µl(k)− (θ0

l , 0)
∣∣2(4.19)

= E∗
∣∣∣Il(θ0

l , 0;xobsl |xobs−l ,x
mis,2
−l (k))−1Sl(θ

0
l , 0;xobsl |xobs−l ,x

mis,2
−l (k))

∣∣∣2
+o(n−1)

≤
2κ(A′k−1 + pAk−1) + 2κ∗ + o(1)

nλ2
l

.

According to (4.15), (4.16), and (4.19), we obtain that for each l

E∗
(
|θl(k)− tl(θ(k))|2 + |ϕl(k)|2

)
≤ E∗

∣∣tl(θ(k))− θ0
l

∣∣2 + E∗ |(θl(k), ϕl(k))− µl(k)|2 + E∗
∣∣µl(k)− (θ0

l , 0)
∣∣2

≤ max
l

2κ∗(1 + λ−2
l ) + 2κλ−2

l (A′k−1 + pAk−1) + o(1)

n

,
A′k
n
,

and,

E∗
[∣∣∣xmis,1i,j (k + 1)− xmis,2i,j (k + 1)

∣∣∣2∣∣∣∣ θj , ϕj , θ,xmis,1(k),xmis,2(k)

]
≤ κ(A′k + pAk)

n
,
Ak+1

n
.

Therefore we conclude by induction that
(4.20)

E∗
(
xmis,1i,j (k)− xmis,2i,j (k)

)2

≤ Ak
n
, E∗ |tj(θ(k − 1))− θj(k − 1)|2+E∗|ϕ(k−1)|2 ≤

A′k−1

n
.

for all i, j, k. In addition, EAk, EA
′
k <∞ do not increase with sample size (but do

increase with k).
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With the result from induction and exactly the same argument as in (4.17) and
(4.18), we can find Ck sufficiently large (depending on xobs and its expectation
ECk <∞ does not increase with sample size) such that

E∗
∣∣S(θ0;xmis,1(k),xobs)− S(θ0;xmis,2(k),xobs)

∣∣2 ≤ Ckn,

E∗
∣∣S(θ0;xmis,1(k),xobs)

∣∣2 ≤ κ∗n.

Then,

E∗
∣∣S(θ0;xmis,2(k),xobs)

∣∣2 ≤ 2(Ck + κ∗)n.

Let λn be the smallest eigenvalue of If . Then, by D3

(4.21) E∗
(
θ̂(xmis,2(k),xobs)− θ0

)2

≤ 2(Ck + κ∗)

λ2n
.

In addition, (4.15) and the second inequality in (4.20) suggest

E∗(θj(k)− θ0
j )

2 + E∗(ϕj(k))2 ≤ 2A′k + 2κ∗

n
,

and therefore

(4.22) E∗
(
θ̂j(x

obs,xmis,2(k))− θ0
j

)2

+ E∗
(
ϕ̂j(x

obs,xmis,2(k))
)2 ≤ 2A′k + 2κ∗

n
.

Recall that E∗(·) = E(·|xobs). Putting together (4.6), (4.7), and (4.8) in D4, (4.21)
and (4.22), we conclude the proof. 2

5. Markov chain stability and rates of convergence. In this section,
we discuss the pending topic of the Markov chain’s convergence. A bound on the
convergence rate qk is required for both Theorems 3.6 and 4.4. In this section, we
review strategies in existing literature to check the convergence. We first provide a
brief summary of methods to control the rate of convergence via renewal theory.

Markov chain stability by renewal theory. We first list a few conditions (cf. [4]),
which we will refer to later.

A1 Minorization condition: A homogeneous Markov process W (n) with state
space in X and transition kernel K(w, dw′) = P (W (n+ 1) ∈ dw′|W (n) = w)
is said to satisfy a minorization condition if for a subset C ⊂ X , there exists
a probability measure ν on X , l ∈ Z+, and q ∈ (0, 1] such that

K(l)(w,A) ≥ qν(A)

for all w ∈ C and measurable A ⊂ X . C is called a small set.
A2 Strong aperiodicity condition: There exists δ > 0 such that qν(C) > δ.
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A3 Geometric drift condition: there exists a non-negative and finite drift function,
V and scalar λ ∈ (0, 1) such that for all w∈̄C,

λV (w) ≥
∫
V (w′)K(w, dw′),

and for all w ∈ C,
∫
V (w′)K(w, dw′) ≤ b.

Chains satisfying A1-3 are ergodic and admit a unique stationary distribution

π(·) = lim
n→∞

1

n

n∑
l=1

K(l)(w, ·)

for all w. Moreover, there exists ρ < 1 depending only (and explicitly) on q, δ, λ,
and b such that whenever ρ < γ < 1, there exists M < ∞ depending only (and
explicitly) on q, δ, λ, and b such that

(5.1) sup
|g|≤V

|
∫
g(w′)K(k)(w, dw′)−

∫
g(w′)π(dw′)| ≤MV (w)γk,

for all w and k ≥ 0, where the supremum is taken over all measurable g satisfying
g(w) ≤ V (w). See [18] and more recently [4] for a proof via the coupling of two
Markov processes.

Therefore, once conditions A1, A2 and A3 are in force, the chain admits a unique
probability invariant distribution. In addition, we can construct a bound for the
convergence rates in conditions C2 (Theorem 3.6) and D4 (Theorem 4.4) according
to (5.1).

On the convergence of the iterative chain. For the Markov chain of the iterative
imputation, usually conditions A1 and A2 are easy to check. For instance, sufficient
conditions for A1 and A2 are that the transition kernel K(w, ·) is continuous in w
and has positive density on the space. The challenge lies in checking the positive
recurrence to a small set. We let W1(n) denote the Gibbs chain and W2(n) denote
the iterative chain. Assuming that conditions A1 and A2 are in force, we focus
our attention on the positive recurrence of W2(n) to a small set. One sufficient
condition is the existence of a drift function to a small set (A3). Though there
are some principles to follow, construction of drift functions is usually done on a
case by case basis. Nevertheless, if a drift function of W1 is available, we can take
advantage of the closeness of the transition kernels of W1 and W2 and construct
a drift function to the same small set for W2. We provide a proposition for the
construction of a drift function of W2 given that the drift function of W1 is known.
Therefore, we will need to construct a drift function for only one chain.

Proposition 5.1. Suppose that Wi(n), i = 1, 2, are Markov processes. Both
chains satisfy conditions A1 and A2. C is a small set for both Wi. W1 satisfies A3
with drift function V (w) to the small set C such that for all w,

λV (w) + b ≥
∫
K1(w, dw′)V (w′),
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with λ ∈ (0, 1) and b ∈ (0,∞). In addition, there exists q ∈ (0, 1) such that

K1(w, ·) = (1− q)T (w, ·) + qQ1(w, ·), K2(w, ·) = (1− q)T (w, ·) + qQ2(w, ·),

with T,Q1, Q2 transition kernels. Furthermore, there exists a constant κ such that∫
Q2(w, dw′)V (w′) ≤ V (w) + κ.

If q < 1− λ, then there exists λ′ ∈ (0, 1) and b′ large enough such that

λ′V (w) + b′ ≥
∫
K2(w, dw′)V (w′).

Proof.∫
K2(w, dw′)V (w′) =

∫
K1(w, dw′)V (w′)− q

∫
Q1(w, dw′)V (w′) + q

∫
Q2(w, dw′)V (w′)

≤ λV (w) + q(V (w) + κ) + b

≤ (λ+ q)V (w) + qκ+ b.

Therefore, we choose b′ = b+ qκ and λ′ = q + λ < 1. The conclusion holds. 2

A practical alternative. In practice, one can check for convergence empirically.
There are many diagnostic tools for the convergence of MCMC; see ([7]) and the
associated discussion. Such empirical studies can show stability within the range of
observed simulations. This can be important in that we would like our imputations
to be coherent even if we cannot assure they are correct. In addition, most theo-
retical bounds are conservative in the sense that the chain usually converges much
faster than what it is implied by the bounds. On the other hand, purely empirically
checking supplies no theoretical guarantee that the chain converges to any distri-
bution. Therefore, a theoretical development of the convergence is recommended
when it is feasible given available resources (for instance, time constraint).

6. Linear example.

6.1. Compatible conditional models. In this section, we study a linear model as
an illustration of our strategy of the analysis. Consider n i.i.d. bivariate observations
(x,y) = {(xi, yi) : i = 1, ..., n} and a set of conditional models

(6.1) xi|yi ∼ N(βx|yyi, τ
2
x), yi|xi ∼ N(βy|xxi, τ

2
y ).

To simplify the discussion, we let the intercept be zero. As discussed previously, the
joint compatible model assumes that (x, y) is a bivariate normal random variable
with mean zero, variances σ2

x and σ2
y, and correlation ρ. The reparameterization

from the joint model to the conditional model of y given x is

βy|x =
σy
σx
ρ, τ2

y = (1− ρ2)σ2
y.
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Fig 6.1. Missingness pattern for our simple example. The gray area indicates observed data. This
example thus avoids the potential instability that can arise when multible variables are missing
simultaneously.

As shown in Figure 6.1, let a denote the set of observations for which both x and
y are observed, b denote those with missing y’s and c denote those with missing
x’s; na, nb, and nc denote their respective sample sizes, and n = na + nb + nc.
To simplify discussion, we assume that there is no case in which both x and y are
missing.

Positive recurrence and the limiting distribution. Both the Gibbs chain and the
iterative chain satisfy conditions A1, A2, and A3. The verification of conditions
A1-3 is tedious and not particularly relevant to the current discussion, and so we
leave their detailed derivations to the supplemental materials. We proceed here by
assuming that they are in force and therefore C1 and C2 in Theorem 3.6 have been
satisfied.

Total variation distance between the kernels. We now check condition C3 in The-
orem 3.6. The posterior distribution of the full Bayes model is

p(σ2
x, τ

2
y , βy|x|x,y) ∝ f(x,y|σ2

x, τ
2
y , βy|x)π∗(σ2

x, τ
2
y , βy|x)

= f(y|τ2
y , βy|x,x)f(x|σ2

x)π∗(σ2
x, τ

2
y , βy|x).

The posterior distribution of (τ2
y , βy|x) with σ2

x integrated out is

p(τ2
y , βy|x|x,y) ∝ f(y|τ2

y , βy|x,x)πx(βy|x, τ
2
y ),

where

πx(βy|x, τ
2
y ) ∝

∫
f(x|σ2

x)π∗(σ2
x, τ

2
y , βy|x)dσ2

x.

The next task is to show that πx(βy|x, τ
2
y ) is a diffuse prior satisfying the conditions

in Proposition 3.16. We impose independent prior distributions on σ2
x, σ2

y, and ρ

(6.2) π(σ2
x, σ

2
y, ρ) ∝ σxσyI[−1,1](ρ).
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The distribution of x does not depend on (σ2
y, ρ). Therefore, under the posterior

distribution given x, σ2
x and (σ2

y, ρ) are independent. Conditional on x, σ2
x is in-

verse Gamma. Now we proceed to develop the conditional/posterior distribution of
(τ2
y , βy|x) given x. Consider the following change of variables

σ2
y = τ2

y + β2
y|xσ

2
x, ρ = βy|x

√
σ2
x

τ2
y + β2

y|xσ
2
x

.

Then,

det

(
∂(σ2

y, ρ, σ
2
x)

∂(τ2
y , βy|x, σ

2
x)

)
=

σx√
τ2
y + β2

y|xσ
2
x

.

Together with
π(σ2

y, ρ
2) ∝ σy,

we have

πx(τ2
y , βy|x) ∝

∫
det

(
∂(σ2

y, ρ, σ
2
x)

∂(τ2
y , βy|x, σ

2
x)

)
π(σ2

y, ρ)p(σ2
x|x)dσ2

x

=

∫
σxp(σ

2
x|x)dσ2

x = C(x).

Remark 6.1. If one chooses π2(τ2
y , βy|x) ∝ 1 for the iterative imputation and

(6.2) for the joint Bayesian model, the iterative chain and the Gibbs chain happen
to have identical transition kernels and, therefore, identical invariant distributions.
Note that this is one of the rare occasions that these two procedures yield identical
imputation distributions.

If one chooses Jeffreys’ prior, π2(τ2
y , βy|x) ∝ τ−2

y , then

L(τ2
y , βy|x) =

πx(τ2
y , βy|x)

π2(τ2
y , βy|x)

∝ τ2
y .

Let µτ2
y

be the posterior mean of τ2
y . Then, SDf (τ2

y ) = O(µτ2
y
n−1/2) and SDf (βy|x) =

O(µ
−1/2
τ2
y

n−1/2). Therefore, according to Proposition 3.16, condition C3 in Theorem

3.6 is satisfied by choosing An be a set such that the sample variances of the x and
y variables are bounded by some constant. According to Theorem 3.6, the itera-
tive imputation distribution converges to the posterior distribution of the bivariate
Gaussian Bayesian model as the sample size tend to infinity.

Empirical check of the convergence in total variation. To confirm the convergence
of the two distributions, we generate the following data sets. To simplify analysis,
let (xi, yi)’s be bivariate Gaussian random vectors with mean zero, variance one,
and correlation zero. We set na = 200, nb = 80, and nc = 80. For the iterative
imputation we use Jeffreys’ prior p(τ2

y , βy|x) ∝ τ−2
y and p(τ2

x , βx|y) ∝ τ−2
x . For the

full Bayesian model, the prior distribution is chosen as in (6.2).
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Fig 6.2. Quantile-quantile plots of the posterior distributions of the Bayesian model versus the
compatible iterative imputation distribution for βx and βy with sample size na = 200.

We monitor the posterior distributions of the following statistics:

(6.3) βx =

∑
i∈b xiyi∑
i∈b y

2
i

, βy =

∑
i∈c xiyi∑
i∈c x

2
i

.

Figures 6.2 shows the quantile-quantile plots of the distributions of βx and βy under

νx
obs

1 and νx
obs

2 based on 1 million MCMC iterations. The differences between these
two distributions are tiny.

Fig 6.3. Trace plots and partial autocorrelation functions of βx and βy.
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Fig 6.4. Difference of the expectations of βx (and βy) under the two stationary distributions
versus sample size na

6.2. Empirical check of incompatible models with quadratic terms. Now, we con-
sider an incompatible model with quadratic terms,

(6.4) xi|yi ∼ N(α0 + α1yi + α2y
2
i , τ

2
x), yi|xi ∼ N(β0 + β1xi + β2x

2
i , τ

2
y ).

This set of conditional models is semi-compatible with a compatible element as in
(6.1). The corresponding joint model of this compatible element is

(6.5) (xi, yi)
> ∼ N(0,Σ).

It is not hard to verify that the combined estimates associated with models (6.4)
and (6.5) satisfy the regularity conditions in D1, D2, D3, and D5. We also em-
pirically check the convergence of the chains (condition D4). We generate bivariate
Gaussian random vectors with mean zero, variance one, and correlation zero and set
nb = nc = 0.4na. The conditional models are valid. We implemented iterative impu-
tation using the above model with flat prior distributions π1(α0, α1, α2, τ

2
x) ∝ 1 and

π2(β0, β1, β2, τ
2
y ) ∝ 1. We check the convergence of the iterative chain empirically

via the partial autocorrelation function of βx and βy shown in Figure 6.3.
We compare the invariant distributions of the iterative chain and the posterior

distribution of the joint Bayesian model

(xi, yi)
> ∼ N(0,Σ)

using the statistics monitored in (6.3). As shown in Figure 6.4, the differences of

the expectations of βx (and βy) under ν1,xobs and ν2,xobs vanishes as sample size
(na) becomes large. On the other hand, Figure 6.5 shows the Q-Q plots of the two
distributions based on 100,000 iterations. As expected, the total variation distance
between the two distributions does not vanish even for na = 1000. Nevertheless,
their expectations are close (difference less than 0.05).

Appendix A: Proof of Proposition 3.16

Let r(θ) = gx(θ)/fx(θ) and

m(θ) = fx(θ) min(r(θ), 1), p =

∫
Θ

m(θ)dθ ≤ 1.
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Fig 6.5. Q-Q plots of the posterior distributions of the joint Bayesian model versus the iterative
imputation distribution with squared terms for βx and βy with sample size n = 1000.

We write fx(θ) = m(θ) + df (θ) and gx(θ) = m(θ) + dg(θ), where df (θ) and dg(θ)
are nonnegative functions. By defining q = 1− p, we have∫

Θ

df (θ)dx =

∫
Θ

dg(θ)dθ = q.

Therefore,
fx(θ) = pc(θ) + qef (θ), gx(θ) = pc(θ) + qeg(θ),

where c(θ) = m(θ)/p, ef (θ) = df (θ)/q, and eg(θ) = dg(θ)/q are normalized density
functions. Then

dTV (fx, gx) ≤ q.

The next step is to provide bounds on q. By the fact that df (θ)dg(θ) = 0, we have

q =

∫
Θ

1

2
(df (θ) + dg(θ))dθ =

∫
Θ

1

2
|df (θ)− dg(θ)|dθ

=

∫
Θ

1

2
|fx(θ)− gx(θ)|dθ =

∫
Θ

1

2
|r(θ)− 1|fx(θ)dθ

Let µL = EfL(θ) and sL = SDf (L(θ)). By the Cauchy-Schwarz inequality,

q =
Ef |L(θ)− µL|

2µL
≤ sL

2µL
.

Condition (3.10) and the dominated convergence theorem imply that

µL → L(µθ), SDf (L(θ)) = (1 + o(1))|∂L(µθ) · SDf (θ)|,

where µθ and SDf (θ) are the mean and standard deviation under distribution f .
Therefore,

(A.1) q ≤ sL
2µL

= (1 + o(1))
|∂L(µθ) · SDf (θ)|

2L(µθ)
.

Hereby, we conclude the proof.
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Supplemental materials: technical development of
positive recurrence and drift function for linear

model

In this section, we construct a small set and drift function for the iterative
Markov chain for the linear model in Section 6. Note that it suffices to consider the
following sufficient statistics for block c,∑

i∈c
xiyi,

∑
i∈c

x2
i .

That is, we need to identify a small set in R2 and a drift function to that small
set for the two statistics in the above display. Given that we only consider one-step
transition of the Markov process, we use “˜” to denote the updated values of the
next iteration and (xi, yi)’s to denote the observed value or the imputed values from
the previous iteration. Also, we adopt the following notation,

s2
α,x =

∑
i∈α

x2
i , s2

α,y =
∑
i∈α

y2
i , s̃2

α,x =
∑
i∈α

x̃2
i , s̃2

α,y =
∑
i∈α

ỹ2
i ,

for α = a, b, c. In what follows, we investigate the one step transition of
∑
c xiyi

and
∑
c x

2
i . To simplify the calculation and without loss of generality, we assume∑

a

xiyi = 0.

Remark A.1. The construction of small set and drift function for the cases
when

∑
a xiyi 6= 0 is completely analogous and more tedious. Also, we can perform

a linear transformation on x or y and make the crossproduct equal to zero.

Throughout this section, we adopt the following notations. Let n denote the
sample size. We write a an = O(bn) if there exists C > 0 such that an ≤ Cbn;
an = o(bn) if lim an/bn = 0. We write xn = O2(an) if there exists a random
variable x > 0 such that |xn| is stochastically dominated by anx with Ex2 < ∞
and xn = o2(1) if Ex2

n → 0.
The general strategy of constructing a small set and a drift function is to first

identify an equilibrium point and let the small set C be a compact domain around
the equilibrium point. For instance,

∑
i∈c xiyi ≈ 0 and

∑
i∈c x

2
i ≈ (s2

a,x+s2
b,x) nc

na+nb
.

Whence a small set has been identified, we are ready to construct the drift function.
The basic idea is that if the current state of the Markov chain is far away from C,
the chain will in expectation move closer to C. Therefore, we need to first compute
approximations of

g(xi; i ∈ c) , E(
∑
c

x̃iyi|xi; i ∈ c), and f(xi; i ∈ c) , E(
∑
c

x̃2
i |xi; i ∈ c).

The second step is to show that both g and f are contraction mappings with one
unique fixed point. The small set C is then chosen to be a domain around this fixed
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point. In addition, we show that the noise compared with the drift is ignorable as
long as the chain is far away enough from C. In Sections A.1 and A.2, we study the
one-step transition of

∑
i∈c xiyi and

∑
i∈c x

2
i . In Section A.3, we give the specific

form of a drift function and small set C based on the results in Section A.1 and
A.2. The calculations are the same for the Gibbs chain and the iterative chain.
Therefore, we do not particularly differentiate them.

A.1. One-step transition of the cross-product. The iterative imputation
evolves as such that we first impute the missing y in b and then impute the missing
x in c. Therefore, we have∑

b

xiỹi =
∑
b

xi(βy|xxi + εi) = βy|xs
2
b,x +

∑
b

xiεi,

where βy|x is a random variable following the posterior distribution given the ob-
servations in groups a and c and is asymptotically a normal random variable

N

(∑
a xiyi +

∑
c xiyi +O(1)

s2
a,x + s2

c,x +O(1)
,

τ2
y +O(1)

s2
a,x + s2

c,x +O(1)

)
.

The term with O(1) is the impact of the prior distribution and τ2
y is a random

variable following the corresponding posterior distribution. In addition, εi’s are
i.i.d. N(0, τ2

y ). Therefore,

∑
b

xiỹi =

∑
a xiyi +

∑
c xiyi +O(1)

s2
a,x + s2

c,x +O(1)
s2
b,x + Zsb,x

√
1 +

s2
b,x

s2
a,x + s2

c,x +O(1)
,

=

∑
a xiyi +

∑
c xiyi

s2
a,x + s2

c,x +O(1)
s2
b,x + Zsb,x

√
1 +

s2
b,x

s2
a,x + s2

c,x +O(1)
(A.2)

+
O(1)s2

b,x

s2
a,x + s2

c,x +O(1)
,

where EZ = 0 and Z = O2(τy).
Similarly, conditional on the imputed y values in block b, the imputed x values

in block c (for the next iteration) satisfies,∑
c

x̃iyi =
∑
b

yi(βx|yyi + εi)

=

∑
a xiyi +

∑
b xiỹi

s2
a,y + s̃2

b,y +O(1)
s2
c,y + Z ′sc,y

√
1 +

s2
c,y

s2
a,y + s̃2

b,y +O(1)
+

O(1)s2
c,y

s2
a,y + s̃2

b,y +O(1)
.
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Plugging in (A.2) and
∑
a xiyi = 0 into the above display, we have

∑
c

x̃iyi =
∑
c

xiyi
s2
b,x

s2
a,x + s2

c,x +O(1)

s2
c,y

s2
a,y + s̃2

b,y +O(1)

+Z ′sc,y

√
1 +

s2
c,y

s2
a,y + s̃2

b,y +O(1)
+ Zsb,x

√
1 +

s2
b,x

s2
a,x + s2

c,x +O(1)

s2
c,y

s2
a,y + s̃2

b,y +O(1)

+
O(1)s2

c,y

s2
a,y + s̃2

b,y +O(1)

s2
b,x

s2
a,x + s2

c,x +O(1)
+

O(1)s2
c,y

s2
a,y + s̃2

b,y +O(1)
.

where E(Z) = E(Z ′) = 0, Z = O2(τy) and Z ′ = O2(τx). The two terms in the
last row of the above display with O(1) are due to the prior. We write them as IP
(impact of prior), that is

IP =
O(1)s2

c,y

s2
a,y + s̃2

b,y +O(1)

s2
b,x

s2
a,x + s2

c,x +O(1)
+

O(1)s2
c,y

s2
a,y + s̃2

b,y +O(1)
.

Then, the above display can be simplified to

∑
c

x̃iyi =
∑
c

xiyi
s2
b,x

s2
a,x + s2

c,x +O(1)

s2
c,y

s2
a,y + s̃2

b,y +O(1)
+O2

(√
s2
c,y + s2

b,x

)
+ IP.

We assume that for some ε > 0,

(A.3) s2
b,x < (1− 2ε)s2

a,x, s2
c,y < (1− 2ε)s2

a,y.

Remark A.2. The above assumption is strong. It requires the fraction of miss-
ing information to be small enough and is usually not necessary. This is just to
simplify our analysis.

Let

γ =
s2
b,x

s2
a,x + s2

c,x +O(1)

s2
c,y

s2
a,y + s̃2

b,y +O(1)
∈ (0, 1− ε),

then ∑
c

x̃iyi = γ
∑
c

xiyi +Op

(√
s2
c,y + s2

b,x

)
+ IP,

= γ
∑
c

xiyi +Op

(√
s2
c,y + s2

b,x

)
.(A.4)

The last step is because IP(impact of prior) is of constant order O(1). An intuitive
interpretation of the above result is that

∑
c xiyi decays exponentially fast to zero

with rate γ.
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A.2. One-step transition of the sum of squares. Now, we proceed to the
one step transition of s2

c,x =
∑
c x

2
i . Let

σ̄2
x =

s2
a,x + s2

b,x

na + nb
, σ̄2

y =
s2
a,y + s2

c,y

na + nc
.

Let ρa,c be the sample correlation between x and y based on samples in a and c,
and ρ̃a,b be that based on a and b samples. The sums of squares of the x and y’s
satisfy the following recursion,

s̃2
b,y = ρ2

a,c

s2
a,y + s2

c,y

s2
a,x + s2

c,x

s2
b,x + (1− ρ2

a,c)σ̄
2
ynb +O2(

√
nb)

= σ̄2
ynb

[
(1− ρ2

a,c) + ρ2
a,c

(na + nc)s
2
b,x

nb(s2
a,x + s2

c,x)

]
+O2(

√
nb),(A.5)

Similarly,

(A.6) s̃2
c,x = σ̄2

xnc

[
(1− ρ̃2

a,b) + ρ̃2
a,b

(na + nb)s
2
c,y

nc(s2
a,y + s̃2

b,y)

]
+O2(

√
nc).

Therefore, by plugging (A.5) into (A.6), the evolution of s2
c,x satisfies

s̃2
c,x

σ̄2
xnc

= (1−ρ̃2
a,b)+ρ̃

2
a,b

s2
c,y/nc

s2a,y
na+nb

+
nbσ̄2

y(1−ρ2
a,c)

na+nb
+

ρ2
a,cσ̄

2
ys

2
b,x/[(na+nb)σ̄2

x]

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

s2c,x

σ̃2
xnc

+O2(
√
nb/(na + nb))

+O2(1/
√
nc).

Define function,

f(λ, ρ, ρ̃) = (1− ρ̃2) + ρ̃2
s2
c,y/nc

s2a,y
na+nb

+
nbσ̄2

y(1−ρ2)

na+nb
+

ρ2σ̄2
ys

2
b,x/[(na+nb)σ̄2

x]

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

λ

.

Then, the evolution of sc,x follows,

(A.7)
s̃2
c,x

σ̄2
xnc

= f

(
s2
c,x

σ̄2
xnc

, ρa,c, ρ̃a,b

)
+O2(n−1/2

c + n
−1/2
b )

Let λ∗ be the solution to

(A.8) f (λ∗, ρa,c, ρ̃a,b) = λ∗.

Note that λ∗ depends on ρa,c and ρ̃a,b. To simplify notation, we omit the indexes
of ρa,c and ρa,b in the notation of λ∗. In what follows, we provide conditions under
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which f is a contraction mapping with fixed point λ∗. Consider

∂f(λ, ρa,c, ρ̃a,b)

∂λ
=

ρ̃2
a,bs

2
c,y/nc

s2a,y
na+nb

+
nbσ̄2

y(1−ρ2
a,c)

na+nb
+

ρ2
a,cσ̄

2
ys

2
b,x/(na+nb)σ̄2

x

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

λ

ρ2
a,cσ̄

2
ys

2
b,x/(na+nb)σ̄

2
x

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

λ

s2a,y
na+nb

+
nbσ̄2

y(1−ρ2
a,c)

na+nb
+

ρ2
a,cσ̄

2
ys

2
b,x/(na+nb)σ̄2

x

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

λ

nc
na+nc

s2a,x
σ̄2
x(na+nc)

+ nc
na+nc

λ
.

The first term on the right hand side of the above display,

ρ̃2
a,bs

2
c,y/nc

s2a,y
na+nb

+
nbσ̄2

y(1−ρ2
a,c)

na+nb
+

ρ2
a,cσ̄

2
ys

2
b,x/(na+nb)σ̄2

x

s2a,x

σ̄2
x(na+nc)

+ nc
na+nc

λ

≤
s2
c,y(na + nb)

s2
a,ync

;

the second term is less than or equals to one; the last term,

nc
na+nc

s2a,x
σ̄2
x(na+nc)

+ nc
na+nc

λ
≤ ncσ̄

2
x

s2
a,x

.

We put all these terms together and obtain,

(A.9)
∂f(λ, ρa,c, ρ̃a,b)

∂λ
≤
s2
c,y(s2

a,x + s2
b,x)

s2
a,ys

2
a,x

.

Suppose for some ε > 0, we have

(A.10)
s2
c,y(s2

a,x + s2
b,x)

s2
a,ys

2
a,x

< 1− ε.

Remark A.3. Similar to condition (A.3), we assume (A.10) to simplify the
complexity of the analysis. It is usually not necessary.

We obtain that |∂λf(λ, ρ, ρ̃)| < 1 − ε for all λ > 0. One nice feature of having
|∂λf(λ, ρa,c, ρ̃a,b)| < 1 − ε is that f : R+ → R+ is a contraction mapping and for
any ∆λ,

|f(λ∗ + ∆λ, ρa,c, ρ̃a,b)− λ∗| ≤ (1− ε)|∆λ|,

where λ∗ = f(λ∗, ρ, ρ̃), uniqueness and existence of which have been proved in stan-

dard functional analysis. Therefore, with condition (A.10),
s2c,x
σ̄2
xnc

goes exponentially

fast to λ∗.
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A.3. The small set and drift function. Based on the fluid dynamics of
s2
c,x and

∑
c xiyi, we are able to provide a drift function and a small set. Let

xc = {xi : i ∈ c} and λ∗ be the solution to

f(λ∗, ρa,c, Eρ̃a,b) = λ∗.

Consider

V (xc) =
(
∑
c xiyi)

2

s2
a,x

+

(
s2c,x
σ̄2
xnc
− λ∗

)2

A2
nc.

for some A large enough. Let λ̃∗ be the solution to

f(λ̃∗, ρ̃a,c, E(ρ̃a,b|x̃c)) = λ̃∗,

which is the equilibrium point of the next iteration, that is,

V (x̃c) =
(
∑
c x̃iyi)

2

s2
a,x

+

(
s̃2c,x
σ̄2
xnc
− λ̃∗

)2

A2
nc.

Now we define a small set

CA = {xc : V (xc) ≤ A} .

In CA both
∑
c xiyi/s

2
c,x and

s2c,x
σ̄2
xnc
−λ∗ are 1/

√
n distance away from zero. It is not

hard to show that CA is a small set. Consider the one step transition. Let ζ = 1−ε.
For all xc∈̄CA, thanks to (A.4), (A.7), (A.9),and γ < ζ, we have

V (x̃c) =
(
∑
c x̃iyi)

2

s2
a,x

+

(
s̃2c,x
σ̄2
xnc
− λ̃∗

)2

A2
nc

≤ ζ2 (
∑
c xiyi)

2

s2
a,x

+O2

(√
s2
c,y + s2

b,x

) ∑
c xiyi
s2
a,x

+O1

(
s2
c,y + s2

b,x

s2
a,x

)

+
nc
A2

ζ2

(
s2
c,x

σ̄2
xnc
− λ∗

)2

+

∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣ ∣∣∣λ̃∗ − λ∗∣∣∣+
(
λ̃∗ − λ∗

)2


+

1

A2
O2 (
√
nc)

(∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣+
∣∣∣λ̃∗ − λ∗∣∣∣+O2(

1
√
nc

)

)
≤ ζ2V (xc)

+O2

(√
s2
c,y + s2

b,x

) ∑
c xiyi
s2
a,x

+O1

(
s2
c,y + s2

b,x

s2
a,x

)

+
nc
A2

[∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣ ∣∣∣λ̃∗ − λ∗∣∣∣+
(
λ̃∗ − λ∗

)2
]

+
1

A2
O2 (
√
nc)

(∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣+
∣∣∣λ̃∗ − λ∗∣∣∣+O2(

1
√
nc

)

)
.
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In what follows, we show that we can choose A sufficiently large, so that when
V (xc) > A

E
{
O2

(√
s2
c,y + s2

b,x

) ∑
c xiyi
s2
a,x

+O2

(
s2
c,y + s2

b,x

s2
a,x

)
(A.11)

+
nc
A2

[∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣ ∣∣∣λ̃∗ − λ∗∣∣∣+
(
λ̃∗ − λ∗

)2
]

+
1

A2
O2 (
√
nc)

(∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣+
∣∣∣λ̃∗ − λ∗∣∣∣+O2(

1
√
nc

)

)}
≤ εV (xc)/2.

The first terms of the above display are all bounded by

√
V (xc)O1

(√
s2
c,y + s2

b,x

s2
a,x

)
;

the second term

O2

(
s2
c,y + s2

b,x

s2
a,x

)
= O2(1).

We focus on the second line in (A.11). Note that λ∗ is a smooth function of ρa,c.
Then, by Taylor’s expansion, there exists κ such that∣∣∣λ∗ − λ̃∗∣∣∣√nc ≤ κ |

∑
c xiyi −

∑
c x̃iyi|

s2
a,x

√
nc ≤

2κ |
∑
c xiyi|

√
nc

s2
a,x

+O2(1) ≤ 2κ

√
nc
s2
a,c

V (xc)

Thus,

nc
A2

∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣ ∣∣∣λ̃∗ − λ∗∣∣∣ ≤ 2κ

A

√
nc
s2
a,c

V (xc),
nc

(
λ̃∗ − λ∗

)2

A2
≤ 4κ2nc
A2s2

a,c

V (xc),

and

1

A2
O2 (
√
nc)

(∣∣∣∣∣ s2
c,x

σ̄2
xnc
− λ∗

∣∣∣∣∣+
∣∣∣λ̃∗ − λ∗∣∣∣+O2(

1
√
nc

)

)

≤ O2(1)

A2

(
A
√
V (xc) + 2κ

√
nc
s2
a,c

√
V (xc) +O2(1)

)
.

Therefore, for A sufficiently large and V (xc) > A, we have that (A.11) holds and

E(V (x̃c)) ≤ (1− ε/2)V (xc).

Therefore, the Markov chain of the iterative imputation under conditions in (A.3)
and (A.10) is positive recurrent and the expected recurrent time to the small set
CA is bounded by V (xc) + bICA(xc).
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