
REPRESENTATION SPACES OF PRETZEL KNOTS

RAPHAEL ZENTNER

Abstract. We study the representation spaces R(K; i) as appearing in Kro-

nheimer and Mrowka’s framed instanton knot Floer homology, for a class of
pretzel knots. In particular, for pretzel knots P (p, q, r) with p, q, r odd, pos-

itive and pairwise coprime, these appear to be non-degenerate and comprise
representations in SU(2) that are not binary dihedral.

1. Introduction

Let K be a knot in the 3-sphere, and y0 a point in its complement. Let further-
more m be a meridian to the knot. In the construction of framed instanton knot
Floer homology [8–10] there appear at the chain group level representation spaces

R(K; i) = {ρ ∈ Hom(π1(S3 \K; y0), SU(2)) | ρ(m) ∼ i}
of knots with the meridian m (or links with each of their meridians) mapped to
traceless matrices, or, equivalently, to elements that are conjugate to i when SU(2)
is viewed as the group of unit quaternions.

Our intention is to study these representation spaces for a class of pretzel knots.
In particular, we describe the conjugacy classes of representations of P (p, q, r) by
triangles on the 2-sphere, with the binary dihedral representations appearing as
degenerate triangles in Section 3. More generally, we show that for knots K =
P (p1, . . . pn) the conjugacy classes of representations are described by n-gons on
the 2-sphere. In Section 6, we show that under some arithmetic conditions all the
irreducible representations of P (p, q, r) are non-degenerate. However, in the case
n ≥ 4 the representation spaces R(K; i) appear to be degenerate even though they
remain non-degenerate at the binary dihedral representations if certain arithmetic
conditions are satisfied. For pretzel knots P (p, q, r) with p, q, r odd, positive (or all
of the same sign) and pairwise coprime we get a very complete picture in Section 7
below.

Kronheimer and Mrowka observed in [8, Observation 1.1] that for (2, p) torus
knots K there is an isomorphism

H∗(R(K; i);Z) ∼= Kh(K) . (1)

Lewallen has proved [in the current version by use of an unpublished result of
Shumakovitch [14]] that Khovanov homology of a one or two component alternating
link is isomorphic to the integer homology of Rbd(K; i), where Rbd(K; i) ⊆ R(K; i)
is the subspace of binary dihedral representations [11]. This extends (1) to 2-bridge
knots. Our results show that the above isomorphism does not extend to pretzel
knots P (p, q, r) with p, q, r positive, odd, pairwise coprime, and such that p, q, r > 1.
These knots are still alternating and form a natural class of knots with bridge
number 3. In fact, we show that these knots admit representations ρ ∈ R(K; i)
that are not binary dihedral, and that we have H∗(R(K; i);Z) 6= H∗(Rbd(K; i);Z).
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We shall also outline that for P (p, q, r) the associated chain complex yielding
framed instanton Floer homology FI∗(P (p, q, r)) may be expected to have non-
trivial differentials. It would be interesting to understand these differentials in
detail. Possibly this could be used for investigating Question 1.2 of [8] which asks
whether for all alternating knot K there is an isomorphism FI∗(K) ∼= Kh(K) ⊕
Kh(K). This holds over Q for the ‘reduced’ versions of instanton knot Floer homol-
ogy and Khovanov homology [9, Corollary 1.6]. In general, Kronheimer and Mrowka
have constructed a spectral sequence starting at (reduced) Khovanov homology and
converging to (reduced) framed instanton knot Floer homology [9].
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2. Presentations of pretzel knot groups

Let us consider the elementary ‘p-tangle’ as in the figure. This means that we
have a braid with p crossings, all of them negative. Let s and t be meridians at the
top as indicated (with the basepoint in front of the eye of the observer), and u and
v at the bottom. Then we have

u = (ts)−k s−1ts (ts)k,

v = (ts)−k s (ts)k

for p = 2k + 1 odd, and

u = (ts)−k s (ts)k,

v = (ts)−(k−1) s−1ts (ts)k−1

for p = 2k even.

With these formulae at hand we get a presentation
of the complement of any pretzel knot rather quickly.
Indeed, consider an arbitrary pretzel knot or link, de-
noted P (p1, . . . , pn) – see for instance [12, Figure 1.7]
for its ‘standard diagram’. In this diagram it becomes
obvious that it can be visualised as a knot or link with
n bridges or a 2n–plat. We therefore see that there is an embedded 2-sphere in
the 3-sphere cutting the P (p1, . . . , pn) pretzel knot/link in 2n points such that the
resulting balls each contain 2n unknotted arcs with boundaries on the boundary
2-sphere. We therefore see that the knot or link complement has a decomposition
into two pieces which each are (or deformation retract onto) two handlebodies of
genus n with common intersection a two-sphere punctured in 2n discs, with these
discs centered at the intersection points of the knot or link with this 2-sphere. The
fundamental group of each handlebody is a free group on n generators given by the
meridians of the knot/link in the corresponding ball.

Now let s1, . . . , sn be these meridians in the upper and u1, . . . , un be the merdians
in the lower handlebody. We orient these meridians so that at each ‘elementary
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p-tangle’ at the position i we have si corresponding to s in the picture above, and
s−1i+1 corresponding to t in the picture above.

The Seifert-van-Kampen theorem now gives a presentation of the knot/link com-
plement in a straight-forward manner. For simplicity, we give the presentation in
the case where all pi are odd and positive. This corresponds to an alternating
negative 2-component link if n is even and to an alternating negative knot if n is
odd.

Proposition 2.1. The fundamental group G(K) := π1(S3 − P (p1, . . . , pn), y0) of
the complement of the pretzel knot or link P (p1, . . . , pn) with all pi = 2ki + 1 odd
and positive is given by

〈s1, . . . , sn|(s−12 s1)−k1s1(s−12 s1)k1 (s−13 s2)−k2s−12 s−13 s2(s−13 s2)k2 = 1 ,

(s−13 s2)−k2s2(s−13 s2)k2 (s−13 s3)−k3s−13 s−14 s3(s−14 s3)k3 = 1 ,

. . . ,

(s−1n sn−1)−kn−1sn−1(s−1n sn−1)kn−1 (s−11 sn)−kns−1n s−11 sn(s−11 sn)kn = 1 ,

(s−11 sn)−knsn(s−11 sn)kn (s−12 s1)−k1s−11 s−12 s1(s−12 s1)k1 = 1〉.
Each generator is a meridian, and any relation is a consequence of all others, so
(any) one relation may be omitted.

Proof: The relations that are added by the Seifert-van-Kampen theorem are
v1u2 = 1, v2u3 = 1, . . . , vn−1un = 1, vnu1 = 1. Now as vnunvn−1un−1 . . . v1u1 = 1
it is clear that any of the n relations can be omitted. �

3. The representation space

The spaceR(K; i) consists of representations ρ ∈ Hom(G(K), SU(2)) with ρ(m) ∼
i, where m is a preferred element (or a set of preferred elements in the case of a
link, and the condition of being conjugated to i is satisfied for each element of the
set). Any element in SU(2) with zero trace has order 4 and square −1. Therefore,
any representation ρ ∈ R(K, i) factors through the group

G(K)m,i := (G(K)× Z/2)/〈m2(−1)〉 , (2)

where 〈m2(−1)〉 denotes the normal subgroup generated by m2(−1). This observa-
tion simplifies the description of R(K, i) considerably. We denote by R(G(K)m,i)
the representation space Hom(G(K)m,i, SU(2)).

Proposition 3.1. The canonical homomorphism π : G(K) → G(K)m,i induces a
homeomorphism

π∗ : R(G(K)m,i)→ R(K; i) ,

with both representation spaces seen as subspaces of Map(G(K)m,i, SU(2)), re-
spectively Map(G(K), SU(2)), and with these mapping spaces topologised by the
compact-open topology determined by the standard topology on SU(2) and the dis-
crete topology on the groups.

Proof: Any element in R(K; i) is in the image of π∗ by construction of G(K)m,i,
and as π is surjective the map π∗ is injective likewise. It is an easy matter to check
continuity and openness of the map π∗ directly from the definition of the compact-
open topology. �
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Proposition 3.2. For the pretzel knot or link K = P (p1, . . . , pn) with all pi =
2ki + 1 odd and positive, and with m denoting the set of (conjugacy classes of)
meridians, we have a presentation of G(K)m,i given by

〈s1, . . . , sn,−1|[−1, si] = 1, (si)
2 = −1, i = 1, . . . , n, (−1)2 = 1,

(s1s2)p1 = (s2s3)p2 = · · · = (sn−1sn)pn−1 = (sns1)pn〉.
Proof: In the presentation of Proposition 2.1 any generator is a meridian m.

Therefore, the relations in the first line follow directly from the definition of Gm,i.
The remaining relations of the presentation 2.1 simplify because any of the elements
si now satisfies s−1i = −si, and because any of the pi was assumed odd. �

The elements ρ ∈ R(P (p1, . . . , pn); i) fall into two classes, depending on whether
ρ((s1s2)p1) = ±1 or not. As we shall see, if this is not the case, then the represen-
tation ρ is binary dihedral, that is, it factors through a subgroup of SU(2) that is
conjugate to

Pin(2) = S1
∐

j · S1 ,

where SU(2) is seen as the unit quaternions, S1 ⊆ C = 〈1, i 〉 ⊆ H the unit complex
numbers, and j · S1 ⊆ 〈 j,k 〉 ⊆ H the circle of unit complex numbers multiplied by
j, lying entirely in the space spanned by j and k.

Before we proceed, we shall note a useful formula: Let v = v1 i + v2 j + v3 k and
w = w1 i + w2 j + w3 k be purely imaginary quaternions. Then we have

v ·w = −〈v,w〉+ v ×w , (3)

where

v ×w = (v2w3 − v3w2) i + (v3w1 − v1w3) j + (v1w2 − v2w1) k ,

and where 〈−,−〉 denotes the standard scalar product. As the notation suggests,
this corresponds to the usual ‘cross-product’ in R3. In particular, if v and w are
linearly independent the vector v ×w is perpendicular to the plane spanned by v
and w.

3.1. A conjugacy condition.

Lemma 3.3. Let K be an arbitrary knot, and assume P and Q are two meridional
generators of the knot group (among possibly others). Let ρ ∈ R(K; i). Up to
conjugation we may assume that

ρ(P ) = j, and ρ(Q) = j · eiα ,
with α ∈ [0, 2π]. Furthermore, assume that one has

ρ(P ) = j, ρ(Q) = j · eiα , and

ρ′(P ) = j, ρ′(Q) = j · eiα
′
,

with α, α′ not both equal to 0 or both equal to π. Then ρ and ρ′ are conjugated
inside SU(2) only if ρ(Q) = ρ′(Q) or

ρ′(Q) = j · ρ(Q) · j−1 .

In the latter case eiα
′

= e−iα, i.e. ρ′(Q) ∈ S2 ⊆ 〈 i, j,k 〉 is obtained from ρ(Q) by
rotation around j by angle π.
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Proof: Up to conjugation we may assume ρ(P ) = j because the action of SU(2)
on the 2-sphere S2 ⊆ 〈i, j,k〉 of elements conjugated to i is transitive by definition.
This assumption does not yet fix ρ up to conjugation. In fact, we have c j c−1 = j if
and only if c ∈ SU(2) is of the form c = w+y j with w, y ∈ R and w2 +y2 = 1. The
set of these elements is a 1-dimensional circle, and conjugating with an element c
of this circle yields a rotation around the axis j in 〈i, j,k〉 ∼= R3. Therefore, we may
assume that ρ(Q) lies in the 〈i,k〉–plane, and so may be written ρ(Q) = j · eiα as
claimed. �

3.2. The case ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) = +1. This class
may have binary dihedral representations and may and usually does contain repre-
sentations that are not binary dihedral.

Lemma 3.4. Let x,y, z ∈ S2 ⊆ 〈i, j,k〉, and suppose y = x · ezα for some α ∈
[0, 2π]. Suppose x 6= ±y. Then z must be perpendicular to x.

Proof: As usually one proves that exα = cos(α)+x sin(α). Therefore we see that

x · ezα = x cos(α) + x · z sin(α) . (4)

As we were assuming x 6= ±y the angle α cannot be 0 or π, and so sin(α) 6= 0. By
the above formula (3) we see that this is purely imaginary if and only if x and z
are perpendicular. �

Up to conjugation we may assume that ρ(s1) = j, and ρ(s2) = j · eiα12 , with
angle α12 ∈ [0, π] satisfying

p1 α12 ≡ 1 (mod 2π ) .

We may write ρ(s3) = ρ(s2) · exα23 , where x ∈ S2 ⊆ 〈i, j,k〉 is a purely imaginary
quaternion of norm 1 which is perpendicular to ρ(s2) ∈ S2 ⊆ 〈i, j,k〉, and with
angle α23 ∈ [0, π] satisfying

p2 α23 ≡ 1 (mod 2π ) .

We notice that for given angle α23 there is a circle of possibilities for the choice
of ρ(s3) parametrised by the circle of elements x which are pependicular to ρ(s2),
as long as α23 is different from 0 and π. Furthermore, α23 is the distance between
ρ(s2) and ρ(s3) on the 2-sphere S2 with its standard metric.

This process continues, and the last congruence to satisfy is

pn αn1 ≡ 1 (mod 2π ) ,

with αn1 ∈ [0, π] now such that ρ(s1) = ρ(sn) · eyαn1 . In particular, having ρ(sn)
fixed there is only one possibility of choosing y ∈ S2 - instead of a whole circle - as
we have to ‘come back’ to ρ(s1) that was already fixed. Using the above Lemma
3.3 for fixing the conjugacy classes, we can now summarise our discussion in the
following

Proposition 3.5. The set of conjugacy classes of representations ρ ∈ R(K; i) such
that ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) = +1 is bijective to the ordered
subsets (ρ1, . . . , ρn) of points ρ1, . . . , ρn ∈ S2 ⊆ 〈i, j,k〉 such that
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(1) the distance between ρi and ρi+1 is given by αi,i+1 ∈ [0, π] satisfying the
congruence

pi αi,i+1 ≡ 1 (mod 2π ) ,

for i = 1, . . . , n with n+ 1 = 1 understood, and
(2) these points satisfy the following ‘conjugacy class fixing condition’:

ρ1 = j , ρj+1 = ρj · eiαj,j+1 ,

for j = 1, . . . , l where l is the smallest integer such that αl,l+1 6= π, if it
exists, or l = n if not.

Furthermore, a representation ρ determined by an n-tuple (α12, α23, . . . , αn1) is
non-abelian unless all angles αi,i+1 are equal to π (the case αi,i+1 = 0 is excluded
by the congruences to satisfy). It is binary dihedral if and only if all points ρi lie
on the great circle lying in the 〈j,k〉–plane. Reflection on this plane induces an
involution on the space of conjugacy classes of representations with fixed point set
precisely the binary dihedral representations. In particular, conjugacy classes of
non-abelian representations that are not binary dihedral come in pairs.

�

3.3. The case ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) = −1. This case is
entirely analogous to the preceeding one, and the corresponding statement is given
by

Proposition 3.6. The set of conjugacy classes of representations ρ ∈ R(K; i) such
that ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) = −1 is bijective to the ordered
subsets (ρ1, . . . , ρn) of points ρ1, . . . , ρn ∈ S2 ⊆ 〈i, j,k〉 such that

(1) the distance between ρi and ρi+1 is given by αi,i+1 ∈ [0, π] satisfying the
congruence

pi αi,i+1 ≡ 0 (mod 2π ) ,

for i = 1, . . . , n with n+ 1 = 1 understood, and
(2) these points satisfy the following ‘conjugacy class fixing condition’:

ρ1 = j , ρj+1 = ρj · eiαj,j+1 ,

for j = 1, . . . , l where l is the smallest integer such that αl,l+1 6= 0, if it
exists, or l = n if not.

Furthermore, a representation ρ determined by an n-tuple (α12, α23, . . . , αn1) is
non-abelian unless all angles αi,i+1 are equal to 0 (the case αi,i+1 = π is excluded
by the congruences to satisfy). It is binary dihedral if and only if all points ρi lie
on the great circle lying in the 〈j,k〉–plane. Reflection on this plane induces an
involution on the space of conjugacy classes of representations with fixed point set
precisely the binary dihedral representations. In particular, conjugacy classes of
non-abelian representations that are not binary dihedral come in pairs.

�
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3.4. The case ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) 6= ±1. Under this
assumption we have ρ(si) 6= ±ρ(si+1) modulo n. Up to conjugation we may assume
ρ(s1) = j and ρ(s2) = j eiα, with α 6= 0 (modπ).

We therefore have ρ(s1s2) = (−1) eiα. The image of this element under SU(2)→
SO(3) is given by rotation by 2α around the i axis, where we consider R3 as the
span of i, j,k inside H. By assumption, eiβ := ρ((s1s2)p1) 6= ±1, so ρ((s2s3))p2

must be a non-trivial rotation around the same axis, the one spanned by i. By the
formula (3) we therefore see that ρ(s3) must lie in the plane 〈 j,k 〉 as well, and so

may be written as ρ(s3) = ρ(s2) eiα
′
. Inductively, we see that all elements ρ(si) are

of the form j eiα for some angle α ∈ [0, 2π]. This means that the presentation ρ is
binary dihedral, so we have shown:

Proposition 3.7. The set of conjugacy classes of representations ρ ∈ R(K; i)
such that ρ((s1s2)p1) = ρ((s2s3)p2) = · · · = ρ((sns1)pn) is conjugate to eiβ with
β /∈ {0, π} is in one-to-two correspondance with the ordered subsets (ρ1, . . . , ρn) of
points ρ1, . . . , ρn ∈ S2 ⊆ 〈i, j,k〉 such that

ρ1 = j , ρi+1 = ρi · eiαi,i+1 ,

with the angle αi,i+1 ∈ [0, 2π] satisfying the congruence

pi αi,i+1 ≡ β (mod 2π ) ,

for i = 1, . . . , n with n+ 1 = 1 understood.
All these representations are binary dihedral and non-abelian.

�

By the methods of Section 5 below we can see explicitely that there are only finitely
many possible values for β in the formula eiβ = ρ((s1s2)p1) = · · · = ρ((sns1)pn).
However, this also follows from [7, Theorem 10].

Observation 3.8. A corollary from the above explicit description is the following:
If we denote by R(K; i) the space R(K; i)/SU(2), the quotient by the action given
by conjugation, then for n = 3 the conjugacy classes of representations ρ appear to
be isolated in R(K; i) – essentially because a triangle on the sphere is ‘rigid’ given
the lengths of its sides and keeping two edge points fixed – whereas for n ≥ 4 the
conjugacy classes in R(K; i) will in general come in positive dimensional families
– because one may ‘move’ the n-gon even if two consecutive points of it are fixed.
This intuitive conclusion will be settled rigorously in Section 6 below.

3.5. Orbits of the conjugacy action. A representation ρ ∈ Hom(G,SU(2)) is
called irreducible if there is no proper subspace V of C2 that is invariant under ρ,
in the sense that ρ(g)V = V for all g ∈ G. Otherwise it is called reducible. It is
not hard to see that a representation into SU(2) is irreducible if and only if it is
non-abelian.

Let us consider the action of SU(2) on Hom(G,SU(2)) given by conjugation. A
representation ρ is irreducible if and only if its stabiliser Γρ ⊆ SU(2) is equal to
the centre Z/2. The trivial representation and representations with image inside
the centre of SU(2) have stabiliser SU(2), and a reducible representation that acts
non-trivially on a proper subspace has stabiliser isomorphic to U(1). Therefore, the
orbit [ρ] of an irreducible representation is isomorphic to SU(2)/Z/2 ∼= RP3, and
the orbit of a reducible representation that acts non-trivially on a proper subspace
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is homeomorphic to SU(2)/U(1) ∼= S2. In the situation of the representation spaces
R(K; i) that we consider the reducible representations with stabiliser SU(2) do not
appear.

4. Abelian representations

The reducible/abelian representations inside R(K; i) are quite easily described
for the pretzel knots that we consider.

Proposition 4.1. Let K = P (p1, . . . , pn) be a pretzel knot with all pi odd and
positive. Then there are, up to conjugation, precisely two abelian representations
in R(K; i) for n even (the situation of a 2-component link), and there is precisely
one abelian representation when n is odd.

Proof: Let ρ ∈ R(K; i) be an abelian representation. We must then have
ρ(si+1) = ±ρ(si) for all i because otherwise the representation would be non-
abelian.

Suppose ρ(s2) = −ρ(s1). Then ρ((s1s2))p1) = 1 = ρ((s2s3))p2) = · · · =
ρ((sns1)pn). In particular, we must have ρ(si+1) = −ρ(si) for i = 1, . . . , n modulo
n. For n odd we obtain a contradiction. For n even there is precisely one abelian
representation, up to conjugation, for which we have ρ(s2) = −ρ(s1).

Suppose now that we have ρ(s2) = ρ(s1). Then ρ((s1s2))p1) = −1 = ρ((s2s3))p2) =
· · · = ρ((sns1)pn), and this defines precisely one abelian representation, up to con-
jugation, regardless on the parity of n. Clearly, for n even, this representation is
not conjugated to the preceeding one. �

5. Arithmetic properties

We show that under a simple arithmetic condition on the numbers p1, . . . , pn
irreducible representations with certain ‘degenerate properties’ may be avoided,
with the best possible situation for n = 3.

Proposition 5.1. Suppose the positive odd numbers p1, . . . , pn are pairwise co-
prime. Then there is no representation ρ determined by angles

(α12, . . . , αn,1)

with only two of the angles αi,i+1 not in the set {0, π}.
In particular, if n = 3, then any ρ that is non-abelian must have angles α12, α23, α31

none of which lies in {0, π}.

Proof: Notice that if ρ is not such that ρ((s1s2)p1) = · · · = ρ((sns1)pn) = ±1
then none of the angles αi,i+1 may be in the set {0, π}. So we may assume ρ to be
such that this equation holds, and therefore in the situation of Proposition 3.5 or
3.6 above.

Suppose αi,i+1, αj,j+1 with i 6= j are such that they both do not lie in {0, π},
and all others do. These two angles must satisfy

pi
αi,i+1

π
≡ pj

αj,j+1

π
≡ 0 (mod Z ).

Therefore we may assume αi,i+1/π = ki/pi, and αj,j+1/π = kj/pj with numbers
ki, kj ∈ Z. On the other hand it is easy to see that the points ρi = ρ(si) map

to precisely two points under S2 → RP2, and in particular lie on a geodesic circle
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joining two non-antipodal points on S2, of length 2π. Therefore we must have the
congruence

αi,i+1

π
+
αj,j+1

π
≡ 0 (mod Z ).

This implies that there is an integer n ∈ Z such that

kipj + kjpi = n pipj ,

and so pj divides kjpi. As pi and pj are assumed to be coprime pj must divide kj .

But this contradicts that αj = π
kj
pj

does not lie in {0, π}. �

Our next arithmetic result concerns binary dihedral representations.

Proposition 5.2. Suppose the positive odd numbers p1, . . . , pn are pairwise co-
prime, and suppose ρ is a binary dihedral representation. Then either ρ is abelian
or we must have (up to conjugation)

ρ((s1s2)p1) = · · · = ρ((sns1)pn) = ei β

with β /∈ {0, π}. In other words, the situation in Section 3.4 above is the one that
must occur for all non-abelian binary dihedral representations under this assump-
tion.

Proof: Suppose ρ is binary dihedral and β
π is an integer. We may suppose that

ρ(s1) = j and

ρ(si+1) = ρ(si) e
iαi,i+1 ,

with angle αi,i+1 ∈ [0, 2π], for i = 1, . . . , n and n+ 1 = 1 understood. This implies
that the sum of the angles must be a multiple of 2π,

α1,2

π
+ · · ·+ αn−1,n

π
+
αn,1
π
≡ 0 (mod 2Z ). (5)

In addition, we must have the congruences

pi
αi,i+1

π
≡ 0 (mod Z )

for i = 1, . . . , n. Putting αi,i+1/π = ki/pi with ki ∈ Z, i = 1, . . . , n, inserting this
in equation (5), and multiplying this equation by p1 · · · · · pn we see that pj divides
kj p1 · · · · · p̂j · · · · · pn, with the hat on p̂j indicating that this factor is omitted. By
the condition on pairwise coprimeness we see that pj must in fact divide kj , and
this for j = 1, . . . , n. As a consequence, each angle αi,i+1 must be 0 or π, and so
the representation ρ is abelian. �

6. Non-degeneracy conditions

The local structure of the representation variety Hom(G,SU(2)) of a discrete
group G was first studied by Weil, see [15,16]. Given a group G the representation
variety Hom(G,SU(2)) has the structure of an algebraic variety. Given a presen-
tation 〈g1, . . . , gn|r1, . . . , rm〉 of G, the space Hom(G,SU(2)) is homeomorphic to
F−1(1, . . . , 1), where F : SU(2)n → SU(2)m is given by the polynomials deter-
mined by the relations that the generators have to satisfy. The (Zariski) tangent
space at an element ρ ∈ Hom(G,SU(2)) is the kernel of dF at ρ. Of course it
depends a priori on the explicit presentation of G.
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Adapted to our situation is the following notion: We call a representation
non-degenerate if its only possible deformations by 1-parameter families inside
Hom(G,SU(2)) are induced from the action of SU(2) on itself by conjugation.

Definition 6.1. A map ξ : G→ su(2) is called a cocycle at ρ if one has

ξ(gh) = ξ(g) + Adρ(g)ξ(h) (6)

for any g, h ∈ G. An element ζ ∈ su(2) defines a coboundary ζ# : G → su(2) at a
representation ρ by the formula

ζ#(g) = ζ −Adρ(g)ζ (7)

for g ∈ G. Coboundaries are cocycles. Coboundaries are inifinitessimal deforma-
tions of ρ that are induced by conjugating ρ by elements of SU(2).

To motivate this definition, let ρ be a representation. A deformation into nearby
representations ρt may be written as ρt(g) = ρ(g)+ t ξ(g)ρ(g)+o(t). It is then easy
to check that the requirement of ρt to be a group homomorphism implies for ξ to
be a cocycle. Likewise, the derivative of t 7→ etζρ(g)e−tζ at 0 yields the coboundary
ζ# associated to ζ ∈ su(2). Therefore, a representation ρ is non-degenerate if and
only if the space of cocycles at ρ is equal to the space of coboundaries. Orbits [ρ]
of non-degenerate representations ρ are isolated in R(K; i).

Remark 6.2. The quotient of the space of cocycles Zρ(G; su(2)) by the space of
coboundaries Bρ(G; su(2)) at ρ turns out to be isomorphic to the first cohomology
group H1(G; su(2)ρ) with twisted coefficients defined by the adjoint action of G on
su(2) determined by ρ, see [16].

In this section we shall study the local structure ofR(K; i), seen asR(G(K)m,i) =
Hom(G(K)m,i, SU(2)) by Proposition 3.1 above. In particular, a non-degenerate
representation ρ ∈ R(K; i) may well have deformations not coming from the ac-
tion by conjugation when seen as an element of the bigger representation space
Hom(G(K), SU(2)) (without the assumption that meridians are mapped onto trace-
free matrices).

Observation 6.3. If ρ is a non-abelian representation then a coboundary ξ at ρ
necessarily satisfies ξ((−1)) = 0.

In fact, by the cocycle condition we must have

ξ(g (−1)) = ξ(g) + Adρ(g)ξ((−1)) = ξ((−1)) + Adρ((−1))ξ(g) = ξ((−1) g)

for all g ∈ G(K)m,i as (−1) commutes with all elements in G(K)m,i. Clearly the
endomorphism Adρ((−1)) is the identity. Therefore Adρ(g)ξ((−1)) = ξ((−1)) for all
g ∈ G(K)m,i. If ρ is non-abelian this implies ξ((−1)) = 0.

Observation 6.4. If ξ is a cocycle at ρ then for any element h that is (conjugated
to) a meridional element m the element ξ(h) ∈ su(2) must be perpendicular to
ρ(h) ∈ S2 ⊆ 〈 i, j,k 〉 = su(2) = R3.

Indeed, as we have the relation h2 = −1 in G(K)m,i the cocycle condition to-
gether with the preceeding Observation implies

0 = ξ(h2) = (1 + Adρ(h)) ξ(h) .

By assumption Adρ(h) is a rotation by π around the axis ρ(h). Consequently ξ(h)
must lie in the plane annihilated by (1 + Adρ(h)) which is precisely the plane of
elements perpendicular to ρ(h).
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Proposition 6.5. Let K = P (p1, . . . , pn) be a pretzel knot or link with pi odd and
positive, i = 1, . . . , n (without any arithmetic assumption). Let ρ ∈ R(K; i) be a
non-abelian representation which is binary dihedral, and which satisfies ρ((s1s2)p1) =
· · · = ρ((sns1)pn) 6= ±1. Then the tangent space of R(K; i) at ρ is equal to the space
of coboundaries determined by ρ. Equivalently, the tangent space to R(K; i) at the
conjugacy class [ρ] of ρ is zero-dimensional.

Proof: Up to conjugation we may assume that ρ(s1) = j and ρ(si+1) = ρ(si) e
iαi,i+1

with angles αi,i+1 ∈ [0, 2π] for i = 1, . . . , n and n+ 1 = 1 understood. The assump-
tion implies that there is an angle β ∈ [0, 2π], different from 0 and π, such that
pi αi,i+1 ≡ β (mod 2πZ ) and ρ((s1s2)p1) = · · · = ρ((sns1)pn) = (−1) eiβ . Suppose
ξ is a cocycle at ρ. Notice that we have

ξ((si si+1)pi) = (1 + Adρ(sisi+1) + · · ·+ Adpi−1ρ(sisi+1)
)︸ ︷︷ ︸

=:Bi,i+1

ξ(si si+1) , (8)

with Ad denoting the adjoint action of SU(2) on the Lie algebra su(2).

Lemma 6.6. The endomorphism Bi,i+1 of su(2) is an automorphism.

Proof of the Lemma: Notice that we have the equation

1−Adeiβ = Bi,i+1(1−Adρ(sisi+1))

for any i = 1, . . . , n. Now Adeiβ is rotation by angle 2β /∈ {0, 2π} around the i–axis.
Therefore (1−Adeiβ ) has the subspace spanned by i ∈ su(2) ∼= R3 in its kernel and
maps the whole space onto the plane perpendicular to i. Therefore Bi,i+1 must have
rank at least 2. Likewise, Adρ(sisi+1) is a non-trivial rotation around the i–axis,
and so (1 − Adρ(sisi+1)) maps the plane perpendicular to i onto itself. Therefore
Bi,i+1 must map the plane perpendicular to i onto itself. On the other hand, Bi,i+1

restricted to the subspace spanned by i is just multiplication by the number pi, and
so Bi,i+1 is an automorphism. �

For an element λ ∈ su(2) = 〈 i, j,k 〉 we denote by λ‖i its projection onto the
subspace generated by i.

Lemma 6.7. For a cocycle ξ at ρ the following equation holds for the i projections:

(pn + p1)ξ(s1)‖i = (p1 + p2)ξ(s2)‖i = · · · = (pn−1 + pn)ξ(sn)‖i .

Proof of the Lemma: Recall that the automorphisms Bi,i+1 introduced above
respect the splitting of su(2) into the span of i and its orthogonal complement, and
that Bi,i+1 restricted to the span of i is just multiplication by pi. Now expressing
the cocyle ξ at the element (s1s2)p1 = · · · = (sns1)pn in the i–direction and using
this fact we just obtain

p1(ξ(s1)‖i − ξ(s2)‖i) = p2(ξ(s2)‖i − ξ(s3)‖i) = · · · = pn(ξ(sn)‖i − ξ(s1)‖i) ,

which is equivalent to the formula in the statement. �

Lemma 6.8. We may choose an element ζ ∈ su(2) such that the coboundary ζ#

satisfies ζ#(s1) = ξ(s1) and ζ#(s2) = ξ(s2).
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Proof of Lemma: By Observation 6.4 above we know that ξ(s1) must be per-
pendicular to ρ(s1) = j. Now for any ζ ∈ su(2) we have ζ#(s1) = (1 − Adρ(s1)) ζ,
and (1− Adρ(s1)) has kernel given by the span of j and is an automorphism when
restricted to the plane perpendicular to j. We decompose ζ as

ζ = ζ‖j + ζ⊥j
,

where ζ‖j is parallel to j and ζ⊥j
lies in the plane orthogonal to j. Therefore we

may choose ζ⊥j
such that ζ#(s1) = ξ(s1), thereby leaving us the possibility to fix

ζ‖j later.
By Lemma 6.7 above we see that the i component of ξ(s2) is determined by that

of ξ(s1). The element ξ(s2), being perpendicular to ρ(s2) ∈ S2 ⊆ 〈 i, j,k 〉 = su(2)
therefore only has its 1-dimensional component ξ(s2)⊥i,ρ(s2), perpendicular to i
and ρ(s2), as remaining degree of liberty. However, as ρ(s2) is not parallel to ρ(s1)
by assumption, it is easy to see that it is indeed possible to choose ζ‖ so that

ζ#(s2) = ξ(s2).
�

We may now proceed with the proof of Proposition 6.5. We suppose now that ζ
is chosen according to Lemma 6.8 for a given cocycle ξ. Therefore the cocycles ζ#

and ξ satisfy ξ((s1s2)p1) = ζ#((s1s2)p1). As (s1s2)p1 = (s2s3)p2 , they also satisfy
ξ((s2s3)p2) = ζ#((s2s3)p2), or equivalently

B2,3 ξ(s2s3) = B2,3 ζ
#(s2s3) .

By Lemma 6.6 above B2,3 is an automorphism, and so we must have

ξ(s2s3) = ξ(s2) + Adρ(s2)ξ(s3) = ζ#(s2) + Adρ(s2)ζ
#(s3) = ζ#(s2s3) .

As we already have ξ(s2) = ζ#(s2) it follows that we also must have ξ(s3) = ζ#(s3).
Using the same argument, we see inductively that we also have ξ(s4) = ζ#(s4), . . . ,
ξ(sn) = ζ#(sn). �

Proposition 6.9. Let K = P (p, q, r) be a pretzel knot with each p, q, r positive,
odd and pairwise coprime. Then the tangent space of R(K; i) at any non-abelian
representation ρ is of dimension 3. The tangent space to R(K; i) at any conjugacy
class [ρ] of a non-abelian representation ρ is zero-dimensional.

Proof: By Proposition 6.5 we only have to check the claim at non-abelian rep-
resentations ρ with ρ((s1s2)p) = ρ((s2s3)q) = ρ((s3s1)r) = ±1 so we shall assume
that this holds.

Up to conjugation we may assume that ρ(s1) = j and ρ(s2) = j eiα12 with angle
α12 ∈ [0, 2π]. Suppose ξ is a cocycle at ρ. The conclusions of Observation 6.3 and
6.4 remain valid in this situation. Therefore, the dimension of the space of cocylces
at ρ is at most 6. However, instead of Lemma 6.6 we now have:

Lemma 6.10. Suppose that we have ρ((sisi+1)pi) = ±1 and that ρ(si) 6= ±ρ(si+1).
Then the endomorphism Bi,i+1 of su(2) defined in equation (8) above has rank
1. More precisely, we have Bi,i+1 = pi Πρ(si)×ρ(si+1), where Πρ(si)×ρ(si+1) is the
projection onto the space spanned by ρ(si)× ρ(si+1) ∈ su(2).
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Proof: As we now have Adρ((sisi+1)pi = ±1 we can conclude that

0 = Bi,i+1(1−Adρ((sisi+1))) .

By the arithmetic assumption we made we know that Adρ((sisi+1))) is a non-trivial
element in SO(su(2)) by Proposition 5.1. Therefore the image of Adρ((sisi+1)) must
have rank 2, and so the kernel of Bi,i+1 must at least contain the 2-dimensional
subspace of su(2) that is perpendicular to the rotation axis 〈 ρ(si) × ρ(si+1) 〉 of
Adρ(sisi+1). On the other hand, it is immediate from the definition of Bi,i+1 that
it is given by multiplication by pi when restricted to the 1-dimensional subspace
〈 ρ(si)× ρ(si+1) 〉. �

Because of (s1s2)p = (s2s3)q = (s3s1)r the cocycle must satisfy

B12 ξ(s1s2)−B23 ξ(s2s3) = 0

B23 ξ(s2s3)−B31 ξ(s3s1) = 0 .

From our arithmetic assumptions it follows from Proposition 5.2 that the three
axes ρ(s1) × ρ(s2), ρ(s2) × ρ(s3), ρ(s3) × ρ(s1) are pairwise linearly independent.
Therefore, the last equations are equivalent to

B12 ξ(s1s2) = 0

B23 ξ(s2s3) = 0

B31 ξ(s3s1) = 0 .

Equivalently, the element (ξ(s1), ξ(s2), ξ(s3) lies in the kernel of the linear map
L : su(2)3 → su(2)2 given by

(ξ1, ξ2, ξ3) 7→

B12 0 0
0 B23 0
0 0 B31


︸ ︷︷ ︸

:=B

 1 Adρ(s1) 0
0 1 Adρ(s2)

Adρ(s3) 0 1


︸ ︷︷ ︸

:=C

ξ1ξ2
ξ3

 .

The linear map defined by B has rank 3. Likewise, the map C is an automorphism.
Therefore, the homomorphism L has rank 3. Let Hi ⊆ su(2) be the subspace in
which the cocycle ξ(si) must lie according to Observation 6.4. It is not hard to
show that the restriction of L to H1 ⊕H2 ⊕H3 still has rank 3. So the fact that
(ξ(s1), ξ(s2), ξ(s3)) must lie in the kernel of L then implies that the space of cocy-
cles at ρ is 3-dimensional. �

Remark 6.11. It is interesting to notice that instead of computing the Zariski
tangent space explicitely one may also get non-degeneracy results by studying the
topology of the 3-manifold one gets from taking the double branched cover of S3,
branched along the knot, see the corresponding results of [4].

7. The pretzel knots P (p, q, r)

We get a complete picture of the representation space R(K; i) for the pretzel
knots K = P (p, q, r) for p, q, r odd, pairwise coprime, and of the same sign.
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Proposition 7.1. Let K be the pretzel knot P (p, q, r) for p, q, r odd, pairwise co-
prime, and of the same sign. Then the representation space R(K; i) is isomorphic
to the disjoint union

S2
∐(∐

I

RP3
)

,

where the finite index set I parametrises the conjugacy classes of all non-abelian
representations. Among these there are (|∆P (p,q,r)(−1)| − 1)/2 = 1/2(pq + qr +
rp − 1) many binary dihedral ones, as well as the non-abelian non-binary dihedral
representations that are described in Proposition 3.5 and 3.6 above.

If one of p, q, r is equal to 1, then there are no representations that are not binary
dihedral. If all of p, q, r are strictly bigger than 1, then there always are represen-
tations that are not binary dihedral, and so fall in the situation of Proposition 3.5
or 3.6 above.

Proof: The fact that there is a single orbit homeomorphic to S2 follows from
Lemma 4.1 above. That there are only finitely many isolated orbits homeomorphic
to RP3 follows from the results of the preceeding sections. The number of non-
abelian binary dihedral conjugacy classes was determined by Klassen [7].

If p, q or r is equal to 1, then Proposition 5.1 comes to bear. In fact, suppose
without loss of generality that p = 1. Then any representation ρ occuring in
Proposition 3.5 or 3.6 above has to satisfy α12 ∈ {0, 1}. By Proposition 5.1 the
representation ρ would then be abelian.

Suppose now that p, q, r all are strictly bigger than 1. We may without loss of
generality assume that r ≥ q ≥ p. We show that there is a non-abelian representa-
tion ρ as in Proposition 3.5. We fix the first two angles αpq and αqr which have to
satisfy the congruence pαpq ≡ 1 (mod 2π ) and q αqr ≡ 1 (mod 2π ). We just pick
αpq = π/p and αqr = π/q. What remains to show is that we can find a distance
αqr ∈ (0, π) which satisfies the congruence q αqr ≡ 1 (mod 2π ), and such that the
triangle inequality

|αpq − αqr| ≤ αrp ≤ αpq + αqr

holds, or equivalently, with the already chosen angles, such that

q − p
pq
≤ αrp

π
≤ q + p

pq
.

The interval [ q−ppq ,
q+p
pq ] has length 2

q . But as we have assumed r ≥ q, there cer-

tainly are two integer multiples of π
r inside this interval, one of which will satisfy

the congruence r αrp ≡ 1 (mod 2π ). �

It is interesting that we get the following Corollary from the method of the pre-
ceeding proof. The result is not new, see [2].

Corollary 7.2. Let K be the pretzel knot P (p, q, r) with p, q, r odd and of the same
sign. Then P (p, q, r) has bridge number 3 if and only if all of p, q, r are strictly
bigger than 1.

Proof: Assume that p, q, r are all odd and strictly bigger than 1. By the pre-
ceeding proof we see that there are representations that are not binary dihedral.
However, a 2-bridge knot K only has representations in R(K; i) that are binary
dihedral, which is easy to see. On the other hand, if one of the numbers p, q, r is 1,
then it is easy to see that the knot actually is 2-bridge. �
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As an example, we shall now compute the non-abelian representations of P (3, 5, 7)
that are not binary dihedral. As a matter of notation, we shall write αi,i+1 :=
αi,i+1/π for the angles occuring in Proposition 3.5 and 3.6 above. These have to
satisfy the congruences in these Propositions, and as distances between the points
ρ1, ρ2, and ρ3, they have to satisfy the triangle inequality.

The representations ρ with ρ((s1s2)3) = ρ((s2s3)5 = · · · = ρ((s3s1)7) = +1 are
determined by the following table, that first lists all possible combinations of angles
satisfying the congruencies, and then checks the triangle-inequality on each.

α12 α23 α31 |α23 − α31| α23 + α31 ∆–inequality

1/3 1/5 1/7 2/35 12/35 no
3/7 8/35 22/35 yes
5/7 18/35 32/35 no

3/5 1/7 16/35 26/35 no
3/7 6/35 36/35 yes
5/7 4/35 46/35 yes.

Likewise, the representations ρ with ρ((s1s2)3) = ρ((s2s3)5 = · · · = ρ((s3s1)7) =
−1 are determined by the following table.

α12 α23 α31 |α23 − α31| α23 + α31 ∆–inequality

2/3 2/5 2/7 4/35 24/35 yes
4/7 6/35 34/35 yes
6/7 16/35 44/35 yes

4/5 2/7 18/35 38/35 yes
4/7 8/35 48/35 yes
6/7 2/35 58/35 yes.

Each combination of angles that gives rise to a non-abelian representation that is not
binary dihedral yields precisely two different conjugacy classes of representations.
Therefore, there are in total 18 such conjugacy classes for the knot P (3, 5, 7).

8. Perspectives and connections with related results

8.1. Relation to Lin’s knot invariant. Lin has defined a knot invariant, that he
denotes h(K), from the representation space R(K; i) = R(K; i)/SU(2) considered
here. In the case that all irreducible representations are non-degenerate, and so
these are isolated points in R(K; i), the number h(K) is just a signed count of
these conjugacy classes of irreducible representations. Surprisingly, this is related
to the signature of K in the following way [13]:

h(K) =
1

2
sign(K) .

The signature of a knot is just the signature of the symmetric bilinear form given
by the matrix V + V t, with V denoting a Seifert matrix of the knot.

For the pretzel knots P (p, q, r) with p, q, r odd the signature is easily computed.
Indeed, a Seifert matrix is given by

V =
1

2

(
p+ q q + 1
q − 1 q + r

)
,
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see for instance [12, Example 6.9]. If p, q, r are all odd and positive then the
signature is just 2, and so Lin’s invariant h(K) equals 1, and is in particular odd.
We may therefore draw the conclusion that the index set I appearing in Proposition
7.1 as the index set for the conjugacy classes of irreducible representions has odd
cardinality. This is not such a surprise. In fact, as indicated earlier, the non-abelian
non-binary dihedral representations come in pairs, and so modulo 2 the cardinality
of the index set I is just equal to the absolute value of the determinant |∆K(−1)|
which, for a knot, is always an odd integer.

8.2. Relation to Khovanov-homology. As we have mentioned in the introduc-
tion, there is an isomorphism of abelian groups

Kh(K) ∼= H∗(R(K; i);Z) , (9)

where Kh(K) denotes the Khovanov homology [6] of K, for certain knots. For
torus knots of type (2, p) this was observed by Kronheimer and Mrowka [8, Obser-
vation 1.1]. For an arbitrary 2-bridge knot or 2-component link this was proved
by Lewallen [11](in the current version by use of an unpublished result of Shu-
makovitch [14]). More precisely, he shows that Khovanov homology of a one or
two component alternating link is isomorphic to the integer homology of Rbd(K; i),
where Rbd(K; i) ⊆ R(K; i) is the subspace of binary dihedral representations. Our
explicit description in Proposition 7.1 allows us to draw the following conclusion:

Proposition 8.1. Let K be the alternating pretzel knot P (p, q, r) for p, q, r odd,
pairwise coprime, positive, and such that p, q, r > 1. Then

Kh(K) � H∗(R(K; i);Z) , (10)

i.e. these two abelian groups are not isomorphic.

Proof: In fact we have R(K; i) ∼= Rbd(K; i)
∐

(
∐
I′ RP

3), where I ′ parametrises
the non-empty set of conjugacy classes of non-binary dihedral representations. �

8.3. Relation to Kronheimer and Mrowka’s framed instanton Floer ho-
mology. In [8] Kronheimer and Mrowka construct an abelian group called the
framed instanton Floer homology FI∗(Y,K) of knots K in a 3-manifold Y . This is
the Morse homology of the Chern-Simons functional CS defined on a space of con-
nections on Y with certain singularities along K. However, there are conditions on
the 3-manifold Y in this construction. In particular one must have b1(Y ) > 0. For
classical knots in S3 the construction is not directly applicable, but it is applied to
a connected sum of (S3,K) with the pair (T 3, ∅). If one applies their construction
to SU(2) connections, the space of critical points CCS for this connected sum is
given by

R(K; i)
∐

R(K; i)

in our notation. In particular it is not non-degenerate, and so the Chern-Simons
functional CS has to be perturbed. If the critical space is non-degenerate in the
Morse-Bott sense [1] one may proceed as outlined in the following, see for instance
[3, Section 4] and [1, Section 3.4]: One chooses a Morse-function g on the critical
space CCS and extends it to a regular neighbourhood of CCS inside the space of
connections considered. One then studies the perturbed Chern-Simons functional
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CSg = CS + εψ g, where ε > 0 and ψ is a bump function on the regular neighbour-
hood above. For small enough ε it will only have non-degenerate critical points, and
these generate the instanton Floer chain complex of FI∗(K), which by definition is
FI∗ applied to (S3#T 3,K). Of course, there are compactness and transversality
issues to be studied if one wants to settle this further.

Presumably our results of Section 6 imply that for the pretzel knots P (p, q, r)
with p, q, r positive, odd, and pairwise coprime, the critical space

R(P (p, q, r); i)
∐

R(P (p, q, r); i)

is non-degenerate in the sense of [8] in the normal directions, and so non-degenerate
in the Morse-Bott sense for the setting of [8]. If this is the case then our results of
Proposition 7.1 indicate that the instanton Floer chain complex of FI∗(P (p, q, r))
has non-trivial differentials. In fact, for quasi-alternating knots K the rank of
FI∗(K) is known [8–10] to be equal to 2|∆K(−1)|+ 2, whereas the rank of

H∗(R(P (p, q, r); i);Z)⊕H∗(R(P (p, q, r); i);Z)

is strictly bigger if p, q and r are all strictly bigger than 1. As the number of critical
points of a Morse-function on R(P (p, q, r); i) is at least as high as the rank of its
homology, the claim about the non-triviality of the differentials follows.

Thinking further, it would be interesting to compute the differentials yielding to
FI∗(K) explicitly and to study Question 1.2 of [8] explicitly on the class of pretzel
knots considered here.

8.4. Parallels with representation spaces of Brieskorn homology spheres.
There appear to be parallels between the representation spaces R(K; i) for K =
P (p1, . . . , pn) and the representation spaces R(Y ) = Hom(π1(Y );SU(2)) for Y =
Σ(p1, . . . , pn) a Seifert fibred homology sphere [3]. In both cases the representation
space is non-degenerate for n = 3 and degenerate for n ≥ 4, with a similar growth
in the dimensions. Possibly this fact could be used to compute various versions of
the instanton Floer homology of the knots P (p, q, r), and we hope to be able to
investigate this further. However, the analogies between the two cases also have
limitations: In the case of the Brieskorn homology spheres the Floer gradings of
the critical points all have the same parity, so there are no non-zero differentials in
the instanton Floer chain complex, and the Floer homology is just isomorphic to
the chain complex. As indicated above, this cannot be expected from the instanton
Floer chain complex of the pretzel knots P (p, q, r) with p, q, r all odd, pairwise
coprime, and of the same sign.

8.5. Relation to results of Heusener and Kroll. In [4] Heusener and Kroll
extend Lin’s result to the situation of studying spaces of representations ρ modulo
conjugation, such that ρ(m) ∼ eiα ∈ SU(2). They define an invariant hα(K)
and establish hα(K) = 1

2 signK(ei2α). Here signK : S1 \ {1} → Z is the Levine-
Tristram signature function, i.e. signK(ω) is the signature of the Hermitian form
(1− ω)V + (1− ω)V t, where ω ∈ S1 \ {1} ⊆ C, and V is a Seifert matrix of K.

Our notion of non-degeneracy implied that a non-degenerate representation ρ ∈
R(K; i) has its conjugacy class [ρ] ∈ R(K; i) isolated. Below Remark 6.2 we were
pointing out that this does not imply that it is isolated when seen as element of the
representation space R(K) of all representations of the knot group in SU(2), up
to conjugation. In fact, the following result of Heusener and Kroll has interesting
conclusion for our situation.
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Proposition 8.2. [4, Corollary 3.9] Let K be a knot, ∆K its Alexander poly-
nomial and signK its Levine-Tristram signature function. If ∆K(e2iα) 6= 0 and
signK(e2iα) 6= 0 for α ∈ (0, π) then there is an irreducible representation ρ0 ∈
Hom(GK , SU(2)) with tr(ρ0(m)) = 2 cos(α). Furthermore this deforms to an arc
inside R(K): There is some ε > 0 and a continous arc ρt ∈ Hom(GK , SU(2)) for
t ∈ [−ε, ε], extending ρ, and such that tr(ρ−ε(m)) < 2 cos(α) < tr(ρε(m)).

This applies to our situation for α = π/2. For this value ∆K(e2iα) = ∆K(−1) is
just the determinant of the knot K and signK(e2iα) = sign(K) is just the ordinary
signature. For P (p, q, r) with p, q, r all odd and of the same sign both values are non-
zero. Therefore we may conclude that there must be non-abelian representations
ρ ∈ R(P (p, q, r); i) that have 1–parameter deformations inside R(P (p, q, r)).
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