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AN ITERATIVE CONSTRUCTION OF IRREDUCIBLE

POLYNOMIALS REDUCIBLE MODULO EVERY PRIME

RAFE JONES

Abstract. We give a method of constructing polynomials of arbitrarily large de-
gree irreducible over a global field F but reducible modulo every finite prime of F .
The method consists of finding quadratic f ∈ F [x] whose iterates have the desired
property, and it depends on new criteria ensuring all iterates of f are irreducible.
In particular when F is a number field of odd degree, we construct infinitely many
families of quadratic f such that every iterate fn is irreducible over F , but fn is
reducible modulo all primes of F for n ≥ 2. We also give an example of a quadratic
f with coefficients in Z whose eighth iterate is irreducible modulo some primes, but
whose ninth iterate is not. Finally, we study the number of primes p for which a given
quadratic f defined over a global field has fn irreducible modulo p for all n ≥ 1.

1. Introduction

At the end of the 19th century, David Hilbert gave examples of irreducible polynomi-
als f(x) ∈ Z[x] that are reducible modulo all primes, namely any irreducible member
of the family x4+2ax2+b2. In particular, one easily checks that f(x) = x4+1 qualifies,
since f(x+ 1) is Eisenstein with respect to 2. Moreover, g(x) = x2n + 1, n ≥ 2, shares

the same properties, since g(x + 1) is again Eisenstein and g(x) = f(x2n−2

) inherits
from f a non-trivial factorization modulo any p. In this paper, we give a generaliza-
tion of this construction, one that yields infinitely many infinite families of irreducible
polynomials that are reducible modulo all primes. Specifically, we give criteria that
ensure a quadratic polynomial f(x) ∈ Z[x] has its nth iterate irreducible over Q but
reducible modulo all primes. The construction works over most global fields, and is
based on new results dealing with the irreducibility of iterates of quadratic polynomi-
als. For simplicity, we state here our results over Q and k(t), where k is a finite field of
odd characteristic. We denote by fn the nth iterate of a polynomial f , and by f the
coefficient-wise reduction of f modulo a prime.

Theorem 1.1. Let n ≥ 2 and let f(x) = (x− γ)2 + γ +m, where m ∈ Z is arbitrary

and γ ∈ Z is chosen as follows. Let f0(x) = x2 + m, and let s ∈ Z be a square with

s > (fn−1
0 (0))2 and with s odd if either m is even or n is odd, and s even otherwise.

Put γ = s− fn
0 (0). Then for any i ≥ n, f i is irreducible over Q and f i is reducible for

all primes p ∈ Z.
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For instance, n = 2, m = 0 and γ = 1 (coming from s = 1) satisfy the hypotheses of
the theorem, giving that f(x) = (x−1)2+1 has all iterates beyond the first irreducible

but reducible modulo all primes. However, f i(x) = (x − 1)2
i

+ 1, and we recover the
example given above. Note that Theorem 1.1 applies to f that do not have all iterates
Eisenstein. Take n = 2, m = 1, and γ = 2 (this comes from choosing s = 4). Then
Theorem 1.1 applies to f(x) = (x− 2)2 + 3, though no iterate of f is Eisenstein since
the x2n−1 coefficient of fn is a power of two and the constant coefficient is either 0 or
3 modulo 4. Our results also allow for the construction of “primitive” examples where
fn−1 is irreducible for some primes; for example we construct f ∈ Z[x] such that f 8

is irreducible for some primes, but fn is reducible modulo all primes for n ≥ 9. This
also furnishes an example of a polynomial whose first 8 iterates yield maximally large
Galois groups, but whose 9th iterate does not. This is in contrast to the case of linear
ℓ-adic Galois representations, where maximal size at low levels (typically the first level)
implies maximality at all levels. See p. 7 for details.

The broad applicability of Theorem 1.1 stems from Theorem 3.1, which gives a new
criterion ensuring irreducibility of the iterates of a quadratic polynomial over a number
field. Theorem 3.1 applies to any number field in which the ideal (2) is not a square,
and in particular to any number field of odd degree over Q. The more general version
of Theorem 1.1, Corollary 3.2, also applies to such fields.

We now turn to F = k(t), where our result is weaker because we have no equivalent
of Theorem 3.1.

Theorem 1.2. Let k be a finite field of odd characteristic, F = k(t), and O = k[t].
Let n ≥ 3 and let f(x) = (x − γ)2 + γ +m, where m ∈ O has odd degree and γ ∈ O
is chosen as follows. Let f0(x) = x2 + m, and take γ = m2n−1 − fn

0 (0). Then fn is

irreducible over F and fn is reducible for all primes p ⊂ O.

We give an example and make some comments on the case n = 2 in Section 4.
When f satisfies the hypotheses of Theorem 1.2, fn has the curious property that it is
irreducible over k(t) but for any c in the algebraic closure of k, the specialization of f
at t = c is reducible over k(c).

We note that in [6] and [10] it is shown that polynomials similar to those in Hilbert’s
example exist in any composite degree. These papers adopt a Galois-theoretic view-
point – one needs to construct a polynomial whose Galois group acts transitively on the
polynomial’s roots, but contains no full cycles. They rely on non-constructive theorems
from inverse Galois theory. Here, we shall not use the Galois-theoretic perspective; for
more on the Galois theory of iterates of quadratic polynomials, see e.g. [11, 15].

In Section 2 we give background and basic results on the irreducibility of iterates
of a quadratic polynomial. In Section 3 we prove our main results on number fields,
including Theorem 1.1 (see Corollary 3.3) and Theorem 3.1. In Section 4 we turn to
function fields, including Theorem 1.2 (see Corollary 4.2). Finally, in Section 5 we
study the number of primes p for which a given quadratic f defined over a global field
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has f
n
irreducible for all n ≥ 1. The answer should depend on the size and arithmetic

of the forward orbit of the critical point of f . We prove this holds when the forward
orbit of the critical point either contains a square or is finite, and conjecture that it
should be true in the remaining case. We give a heuristic argument in support of the
conjecture and examine some examples.

2. Setup and Basic Results

Let F be a field of characteristic 6= 2, and let f ∈ F [x] be a monic, quadratic
polynomial. By completing the square, we may write

(1) f(x) = (x− γ)2 + γ +m.

Note that γ is the unique critical point of f .

Definition 2.1. We call f ∈ F [x] stable if fn is irreducible over F for all n ≥ 1.

Several recent papers have studied various properties of stable f [2, 3, 4, 5, 7, 11, 17].
The following is one of the fundamental results involving stability, and appears in a
slightly different form in [5, Proposition 3] (see also [11, Proposition 4.2]).

Theorem 2.2. Let f be as in (1), and let n ≥ 1. Then fn is irreducible if none of

−f(γ), f 2(γ), f 3(γ), . . . , fn(γ) is a square in F . Moreover, “if” may be replaced by “if

and only if” provided that for every finite extension E of F the norm homomorphism

NE/F : E∗ → F ∗ induces an injection E∗/E∗2 → F ∗/F ∗2.

We recall a proof: for n = 1, we have that f is irreducible if and only if −f(γ) is a
square in F , since −f(γ) = −(γ +m). Let n ≥ 2 and assume inductively that fn−1 is
irreducible if none of −f(γ), f 2(γ), f 3(γ), . . . , fn−1(γ) is a square in F . Suppose that
none of −f(γ), f 2(γ), f 3(γ), . . . , fn(γ) is a square in F . Then we have fn−1 irreducible,
and hence separable since deg fn−1 = 2n−1 and char F 6= 2. Let β be a root of fn, and
note that α := f(β) is a root of fn−1. Clearly F (β) ⊇ F (α). Now fn is irreducible if
and only if [F (β) : F ] = deg fn = 2n. However, [F (β) : F ] = [F (β) : F (α)][F (α) : F ] =
2n−1[F (β) : F (α)], where the last equality follows since fn−1 is irreducible. Thus fn is
irreducible if and only if [F (β) : F (α)] = 2, i.e., if and only if f(x)−α is irreducible over
F (α). This is a special case of Capelli’s Lemma [8, p. 490]. But f(x)−α is irreducible
over F (α) if and only if −(γ +m− α) is a square in F (α). One now computes

NF (α)/F (−(γ +m− α)) =
∏

fn−1(α)=0

−(γ +m− α)(2)

= (−1)2
n−1

fn−1(γ +m)

= fn(γ).

By assumption fn(γ) is not a square in F , implying that −(γ + m − α) is not a
square in F (α) and proving the irreducibility of fn. In the case where NF (α)/F induces
an injection F (α)∗/F (α)∗2 → F ∗/F ∗2, then fn(γ) is a square in F if and only if
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−(γ +m− α) is a square in F (α), i.e., if and only if fn is irreducible. This proves the
theorem.

We note that in general fn will be irreducible even if fn(γ) is a square. Indeed,
in the proof of Theorem 2.2, for n ≥ 2 we may replace the ground field F by F1 :=
F (

√−γ −m), the splitting field of f over F . Then over F1 we have

fn−1(x) = f(fn−2(x)) =
(

fn−2(x)− γ +
√

−(γ +m)
)(

fn−2(x)− γ −
√

−(γ +m)
)

.

The two polynomials in the last expression are irreducible because fn−1 is irreducible
over F , implying that [F (α) : F1] = 2n−2. Hence (2) becomes

NF (α)/F1
(−(γ +m− α)) = (−1)2

n−2

(

fn−2(γ +m)− γ ±
√

−(γ +m)
)

= (−1)2
n−2

(

fn−1(γ)− γ ±
√

−(γ +m)
)

To ease notation, set δ =
√

−(γ +m), and assume n ≥ 3. We now have that
NF (α)/F1

(−(γ + m − α)) is a square in F1 if and only if there are a, b ∈ F with
(a + bδ)2 = fn−1(γ) − γ ± δ. This gives a2 − b2(γ +m) = fn−1(γ)− γ and 2ab = ±1.
A straightforward computation shows this happens if and only if one of

(3)
1

2

(

fn−1(γ)− γ ±
√

fn(γ)
)

is a square in F . When n = 2 there is an extra minus sign and the elements in question
become (−f(γ) + γ ±

√

f 2(γ))/2. The point of this computation is that the elements
in (3) may well fail to be squares in F even if fn(γ) is a square. This observation lies
behind our main results, since fn(γ) being a square ensures reducibility of fn modulo
all primes for which γ and m are defined (see Theorem 2.5). Because it will be useful
to us in the sequel, we state as a theorem:

Theorem 2.3. Let f(x) = (x− γ)2 + γ +m for γ,m ∈ F , and let n ≥ 2. Then fn is

irreducible if none of

−f(γ),
−f(γ) + γ ±

√

f 2(γ)

2
,
f 2(γ)− γ ±

√

f 3(γ)

2
, . . . ,

fn−1(γ)− γ ±
√

fn(γ)

2
is a square in F .

Remark. The expressions fn(γ) − γ are independent of γ. Indeed, if we set f0(x) =
x2 +m, then it is easy to see that

(4) fn(γ)− γ = fn
0 (0).

We turn our attention now to Dedekind domains. The next proposition illustrates
the kind of stability result made possible by Theorems 2.2 and 2.3. It is a mild gen-
eralization for quadratic polynomials of a result of Odoni [14, Lemma 2.2], where it
is shown that Eisenstein polynomials are stable. In Theorem 3.1 we give a stronger
result in the case where O is the ring of integers in a number field.
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Proposition 2.4. Let O be a Dedekind domain with field of fractions F , and suppose

that there is a prime p ⊂ O with vp(m) positive and odd and vp(γ) > vp(m). Then

f(x) = (x− γ)2 + γ +m is stable.

Proof. We use Theorem 2.2. Note that by (4), fn(γ) = fn
0 (0)+γ for all n ≥ 1. Suppose

that vp(m) = c, which is odd and positive by hypothesis; we claim that vp(f
n
0 (0)) = c

for all n ≥ 1. For n = 1 the claim is clear since f 1
0 (0) = m. If vp(f

n−1
0 (0)) = c, then

vp(f
n
0 (0)) = vp(f

n−1
0 (0)2 +m) = vp(m) = c, where the middle equality follows because

vp(f
n−1
0 (0)2 = 2c > c. As a side note, one can show similarly that if vp(f

n
0 (0)) = e > 0

for any n, then vp(f
nm
0 (0)) = e for all m ≥ 1, or in the terminology of [11, p. 524] the

sequence {(fn
0 (0)) : n ≥ 1} is a rigid divisibility sequence.

We now have that for all n ≥ 1, vp(f
n(γ)) = vp(f

n
0 (0) + γ) = vp(f

n
0 (0)) = c, where

the middle equality follows since vp(γ) > vp(m). Hence fn(γ) is not a square in F . �

Suppose now that O is a Dedekind domain with field of fractions F and that for each
p ⊂ O the residue field O/p is finite. We recall some basic algebraic facts regarding the
ring O(a) := S−1O, where S = a, an ideal of O. The prime ideals of O(a) are precisely
those of the form pO(a), where p ⊂ O satisfies p ∤ a. Moreover, for any such p we have

(5) O(a)/pO(a)
∼= O/p.

Now let f be as in (1), and fix c ∈ O so that cγm ⊂ O Let a = (c) and R = O(a),
ensuring that f is defined over R (in fact f may be defined over a smaller ring). Then for
each prime p ⊂ O with p ∤ a, (5) gives a natural ring homomorphism R → O/p, x 7→ x.

By application to coefficients we thus get a polynomial f ∈ (O/p)[x] and fn = f
n

follows from homomorphism properties.

Theorem 2.5. Suppose that O is a Dedekind domain with field of fractions F and

finite residue fields. Let n ≥ 2, let s ∈ F be a square, and let m ∈ F be arbitrary. Put

f0(x) = x2 +m, let γ = s− fn
0 (0), and consider f(x) = (x− γ)2 + γ +m. Then fn is

reducible for all primes p ⊂ O with p ∤ (c), where c satisfies csm ∈ O.

Proof. We have that γ and m belong to R := O(c) because s,m ∈ R and fn
0 (0) is a

polynomial in m. Hence γ and m (and in particular f) are well-defined for all p ∤ (c).
For p ⊂ O, the field Fp := O/p is finite. For any p ∤ (c) with Fp of characteristic

2, f is reducible and hence so is fn. Otherwise Fp has odd characteristic, and thus
any finite extension E of Fp satisfies E

∗/E∗2 ∼= Z/2Z. Because NE/Fp
is surjective, the

induced map NE/Fp
: E∗/E∗2 → F ∗

p /F
∗2
p is too, and hence is also injective. For p ∤ (c),

we may now write f(x) = (x− γ)2+ γ+m and apply Theorem 2.2. Using (4) we then
have

f
n
(γ) = γ + (fn(γ)− γ) = γ + fn

0 (0) = s.

By Theorem 2.2, fn is reducible. �
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3. Results for number fields

We now give a criterion for stability for certain quadratic polynomials over a number
field. Denote by vq the q-adic valuation for a prime q of O.

Theorem 3.1. Let F be a number field with ring of integers O, and suppose there

is a prime q ⊂ O with vq(2) odd. Let γ,m ∈ O and f(x) = (x − γ)2 + γ + m. If

γ 6≡ m mod q and −(γ +m) is not a square in F , then f is stable.

Remark. The condition on the existence of q is satisfied if and only if the ideal (2) is
not a square in F . In particular, it is satisfied provided that [F : Q] is odd.

Proof. By Theorem 2.3 it suffices to show that −f(γ) and all elements of the form

(6)
1

2

(

±(f i−1(γ)− γ)±
√

f i(γ)
)

, i ≥ 2

are not squares in F . Because f(γ) = γ + m, we have that −f(γ) is not a square
in F by hypothesis. If for given i ≥ 2, f i(γ) is not a square in F , then certainly no
element of the form (6) for the i in question can be a square in F . If f i(γ) is a square

in F , then we argue as follows. Suppose that q divides ±(f i−1(γ) − γ) ±
√

f i(γ), so

that ±(f i−1(γ)− γ) ≡ ±
√

f i(γ) mod q. Squaring and using (4) then gives f i−1
0 (0)2 ≡

f i(γ) mod q. Hence f i
0(0)−m ≡ f i(γ) mod q, and applying (4) again yields

f i(γ)− γ −m ≡ f i(γ) mod q.

Because O/q has characteristic two, this implies that γ ≡ m mod q, a contradiction.
We now have

vq

(

±(f i−1(γ)− γ)±
√

f i(γ)

2

)

= vq(1/2) = −vq(2),

and the latter is odd, showing that none of the elements of the form (6) is a square in
F . �

Corollary 3.2. Let F be a number field with ring of integers O, and suppose there is

a prime q ⊂ O with vq(2) odd. Let n ≥ 2, fix m ∈ O, let f0(x) = x2 +m, and choose

s ∈ O to be a square such that s− (fn−1
0 (0))2 6≡ 0 mod q and −(s− (fn−1

0 (0))2) is not
a square in F . Then putting γ = s− fn

0 (0) and f(x) = (x− γ)2 + γ +m we have that

for any i ≥ n, f i is irreducible over F and f i is reducible for all p ⊂ O.

Proof. Note that γ+m = s−fn
0 (0)+m = s− (fn−1

0 (0))2, and so the hypotheses imply
that γ+m 6≡ 0 mod q and −(γ+m) is not a square in F . By Theorem 3.1 f is stable,
and so in particular f i is irreducible for all i ≥ n. On the other hand, since m, s ∈ O
we may take c = 1 in Theorem 2.5, showing that fn is reducible for all p ⊂ O. Then
f i = fn ◦ f i−n, which is reducible for all p ⊂ O. �
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Remark. For each m ∈ O it is possible to find infinitely many values of s satisfying the
hypotheses of Corollary 3.2. Indeed, fix a prime r of O not dividing (2) or (fn−1

0 (0)),
and let x ∈ r/r2. By the Chinese Remainder Theorem there exist infinitely many
a ∈ O with a ≡ fn−1

0 (0) + x mod r2 and a 6≡ fn−1
0 (0) mod q. Taking s = a2 satisfies

the hypotheses of Corollary 3.2. To see why, note that a + fn−1
0 (0) ≡ 2fn−1

0 (0) 6≡
0 mod r, and so r divides s − fn−1

0 (0)2 to only the first power, showing it is not a
square in F . Also, a 6≡ fn−1

0 (0) mod q implies a 6≡ −fn−1
0 (0) mod q since q | (2), and

so s− fn−1
0 (0)2 6≡ 0 mod q.

Corollary 3.3. Fix n ≥ 2 and m ∈ Z, and let s ∈ Z be a square with s odd if either

m is even or n is odd, and s even otherwise. Let f0(x) = x2 + m, and suppose that

s > (fn−1
0 (0))2. Then putting γ = s− fn

0 (0) and f(x) = (x− γ)2 + γ +m we have that

for any i ≥ n, f i is irreducible over F and f i is reducible for all primes p ∈ Z.

Proof. By Corollary 3.2, we only need to show that s − (fn−1
0 (0))2 is odd and −(s −

(fn−1
0 (0))2) is not a square in Q. The latter is immediate from s > (fn−1

0 (0))2, while
the former follows from the observation that fn−1

0 (0) is even if m is even or n is odd,
and odd otherwise. �

For a given m, Corollary 3.3 can be used to find infinitely many γ such that f(x)
is stable but fn is reducible modulo all primes for any n ≥ 2. Indeed, let n = 2 and
choose s of parity and size satisfying the hypotheses of Corollary 3.3. For instance,
when m = 0 any odd s will do, though the resulting polynomials f(x) = (x − s)2 + s
have iterates with the closed form fn(x) = (x − s)2

n

+ s. For a family whose iterates
do not have a closed form, let m = 1; then n = 2 implies we need to take s even with
s > 1. Setting s = (2a)2 with a ∈ Z, a ≥ 1 gives γ = s − f 2

0 (0) = 4a2 − 2 and this
yields the family

f(x) = (x− γ)2 + γ + 1 = x2 + (−8a2 + 4)x+ 16a4 − 12a2 + 3, a ≥ 1

any member of which is stable but has fn reducible modulo all primes, for any n ≥ 2.
We can also use Corollary 3.3 to generate “primitive” examples, namely where f is

stable, fn is reducible modulo all primes, and fn−1 is irreducible for some primes. We
do so with n = 9 and m = 1. We have

f 9
0 (0) = 1947270476915296449559703445493848930452791205.

Set s = (f 8
0 (0) + 1)2, which is odd and thus satisfies the hypotheses of Corollary 3.3.

We then have
γ = s− f 9

0 (0) = 88255775491812351975604,

and thus the 9th iterate of the polynomial

f(x) = (x− 88255775491812351975604)2+ 88255775491812351975605

is irreducible over Q but reducible modulo all primes p. One then checks manually
that none of −f(γ), f 2(γ), f 3(γ), . . . , f 8(γ) is a square in Z. Then using quadratic
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reciprocity and the Chinese remainder theorem one can find p such that none of
−f(γ), f 2(γ), f 3(γ), . . . , f 8(γ) is a square modulo p (indeed such p have positive density

in the set of primes). By Theorem 2.2, f 8 is irreducible for any such p.
Indeed, using [11, Theorem 3.3], one can show that the Galois groups obtained by

adjoining the roots of f i to Q are as large as possible for 1 ≤ i ≤ 8, that is, they
are the full tree automorphism group of the height-i tree of preimages of 0 under f .
To do so, one needs to find for each 1 ≤ i ≤ 8 an odd prime p dividing f i(γ) to odd
multiplicity, and not dividing fk(γ) for 1 ≤ k < i. MAGMA quickly verifies this is the
case. Clearly the Galois group of f 9 is not as large as possible, since it does not even
act transitively on the roots of f 9. This poses a contrast to the case of linear ℓ-adic
representations, where surjectivity modulo small powers of ℓ implies surjectivity of the
full representation (for ℓ ≥ 5 surjectivity modulo ℓ suffices). The salient difference is
that the Frattini subgroup of G ≤ GLd(Zℓ) has finite index in G, while the Frattini
subgroup of the automorphism group of the infinite tree of preimages of 0 under f has
infinite index. For more on this, see [12, Sections 3 and 5].

4. Results for function fields

When F is a function field over a finite field of odd characteristic, we cannot use the
same proof as in Theorem 3.1, since now 2 is a unit. Indeed, there does not appear to
be a stability result as general as that of Theorem 3.1 that will allow us to mimic the
construction of Corollary 3.2. However, it is still possible to give conditions on m and
γ that ensure fn is irreducible but fn is reducible modulo all finite primes.

In order to do so, we need to use properties of primes at infinity. Let F be a function
field over a finite field k of odd characteristic, and let O be the integral closure of k(t)
in F . In contrast with the usage of the previous two sections, we take a prime of F
to be slightly more general than simply the prime ideals p ⊂ O. Specifically, a prime
of F is a discrete valuation ring R ⊂ F that contains k and has field of fractions F .
Denote the maximal ideal of R by P ; we often refer to both P and R as a prime of F .
We may extend the valuation on R to a multiplicative function vP : F ∗ → Z, which
we call the P -adic valuation. The primes of F consist of the usual prime ideals of O
plus finitely many primes that when restricted to k(t) yield the ring R = k[1/t]. We
call the former the finite primes and the latter the primes at infinity. For all primes
P of F , the P -adic valuation satisfies the strong triangle inequality: for x, y ∈ F ∗,
vP (x + y) ≥ max{vP (x), vP (y)}, with equality holding if vP (x) 6= vP (y). Moreover, if
x ∈ O and P is a prime at infinity, then vP (x) ≤ 0 and vP (x) = 0 if and only if x ∈ k.

Theorem 4.1. Let F be a function field over a finite field k of odd characteristic, and

let O be the integral closure of k(t) in F . Suppose that there is an infinite prime Q1

and a finite prime Q2 with vQ1
(m) and vQ2

(m) both odd. Let n ≥ 3, f0(x) = x2 +m,

take γ = m2n−1 − fn
0 (0), and set f(x) = (x− γ)2 + γ +m. Then fn is irreducible over

F but fn is reducible for each finite prime of F .
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Proof. Suppose that vQ2
(m) = c, which is odd by hypothesis. By the proof of Propo-

sition 2.4, vQ2
(f i

0(0)) = c for all i ≥ 1, and hence

vQ2

(

fn−1(γ)− γ ±
√

fn(γ)

2

)

= vQ2
(fn−1

0 (0)±m2n−1

) = c.

Hence neither of (fn−1(γ)− γ ±
√

fn(γ))/2 is a square in F .

Now note that for n ≥ 3 we have fn
0 (0) = m2n−1

+ 2n−2m2n−1−1 + · · · , and thus
vQ1

(γ) = (2n−1 − 1)vQ1
(m), which is odd. Moreover, for i < n,

vQ1
(f i

0(0)) = (2i−1)vQ1
(m) > vQ1

(γ),

where the final inequality follows since vQ1
(m) is negative and n ≥ 3 ensures 2i−1 <

2n−1 − 1. Because f i(γ) = f i
0(0) + γ, it follows that vQ1

(f i(γ)) = vQ1
(γ), and hence

f i(γ) is not a square in F . Hence by Theorem 2.3, fn is irreducible over F . On the

other hand, since m2n−1

and m belong to O, we may take c = 1 in Theorem 2.5, giving
that fn is reducible modulo all finite primes of F . �

Remark. Unlike Theorems 3.2 and 3.3, the conclusion of Theorem 4.1 doesn’t necessar-
ily hold for f i with i ≥ n. Clearly f i is reducible modulo all finite primes for i ≥ n, but
the lack of an equivalent of Theorem 3.1 means we can’t conclude that f i is irreducible.
Proposition 2.4 can’t be used in the setting of Theorem 4.1, since vP (γ) = vP (m) for
all primes P dividing m.

When F = k(t), we can use the product formula to simplify the hypotheses of
Theorem 4.1.

Corollary 4.2. Let k be a finite field of odd characteristic, F = k(t), O = k[t], and

suppose that m ∈ O has odd degree. Let n ≥ 3, f0(x) = x2+m, take γ = m2n−1−fn
0 (0),

and set f(x) = (x− γ)2 + γ +m. Then fn is irreducible over F but fn is reducible for

each finite prime of F .

Proof. The product formula gives
∑

P

vP (m) = 0,

where the sum runs over all primes P of F . In the present case, there is only one prime
Q1 at infinity, and by hypothesis vQ1

(m) is odd. Hence by the product formula there
must be a finite prime Q2 with vQ2

(m) odd. The Corollary then follows from Theorem
4.1. �

To illustrate Corollary 4.2, let n = 3 and m = t. Then γ = t4 − (t4 + 2t3 + t2 + t) =
−2t3 − t2 − t. Take

f(x) = (x− γ)2 + γ + t = x2 + (4t3 + 2t2 + 2t)x+ 4t6 + 4t5 + 5t4.
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Then f 3(x) is irreducible over F but reducible modulo all finite primes of F . In other
words, for any c in the algebraic closure of k, the specialization of f 3(x) at t = c is
reducible over k(c), even though f 3(x) is irreducible over F .

We note that Theorem 4.1 doesn’t apply when n = 2, since then fn
0 (0) = m2 +m,

which means according to the recipe of Theorem 4.1, γ = −m. But then γ +m = 0,
and so f is reducible. However, this may be remedied by choosing r with r/2 a non-
quadratic residue in k and taking γ = (m+ r)2−m2−m. Then f 2(γ) = γ+m2+m =
(m+r)2. Moreover, −f(γ) = −(γ+m) = −(2rm+r2). Because r/2 is not a quadratic
residue, r 6= 0, and thus −(2rm+ r2) has odd Q1-adic valuation, and so is not a square
in F . Therefore f is irreducible. Finally, we have

−m+
√

f 2(γ))

2
=

r

2
,

which is not a square in F , showing that f 2 is irreducible by Theorem 2.3. It is worth
noting that if we extend the field of constants of F to be k(

√

r/2) then f 2 becomes
reducible.

5. the number of stable primes

The purpose of this section is to investigate, for given monic, quadratic f defined
over a global field F , the number of primes of F for which f is stable. For simplicity
let us suppose that f is defined over O, which we take to be the ring of integers of
F in the number field case and the integral closure of k[t] in the case where F is a
function field over the finite field k (of odd characteristic). Then f(x) may be written
as (x−γ)2+γ+m, with γ ∈ 1

2
O and m ∈ 1

4
O. In the function field case the reductions

γ and m are defined for all primes, while in the number field case they are defined
for all primes not lying over 2. For the latter, f cannot be stable, as indeed its third
iterate must always be reducible [1].

Theorem 5.1. Let F be a global field, and f ∈ F [x] monic and quadratic with critical

point γ. Let S = {−f(γ), f 2(γ), f 3(γ), . . .}.
(1) If S contains a square, then there is an iterate of f that is reducible modulo all

primes.

(2) If S is finite and does not contain a square, then f is stable for a set of primes

of density at least 2−|S|.

Note that in Theorem 5.1, (1) implies that f is stable for no primes, while (2) implies
f is stable for infinitely many primes. In assertion (2), we use the notion of natural
density for sets of primes in number fields and Dirichlet density for sets of primes in
function fields. When S is finite, f is known as post-critically finite or critically finite.
In the case F = Q, the positive-density set of primes referenced in (2) is by quadratic
reciprocity the union of congruence classes for some fixed modulus.
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Proof of Theorem 5.1. Assertion (1) follows easily from Theorem 2.2 and the fact that
γ and m are both defined for all primes we need consider.

To prove assertion (2), suppose that S is finite and does not contain a square. Let T
be the set of primes p such that no element of S is a square in O/p. By Theorem 2.2,
f is stable for all p ∈ T . Consider the extension E of F obtained by adjoining to F the
square roots of all elements of S. Then E is a Galois extension of F with Gal (E/F )
an elementary abelian 2-group. There is a unique Galois element σ with σ(

√
s) = −√

s
for all s ∈ S, and p ∈ T if and only if Frobp = σ. By the Chebotarev density theorem
(see [13, p. 545] for the number field case, [18, p. 125] for the function field case), the
density of p with Frobp = σ is 1/|Gal (E/F )|. By Kummer theory |Gal (E/F )| is the
order of the subgroup of F ∗/F ∗2 generated by S, which is at most 2|S|. �

Conjecture 5.2. Let F be a global field, and f ∈ F [x] monic and quadratic with

critical point γ. Let S = {−f(γ), f 2(γ), f 3(γ), . . .}. If S is infinite and does not

contain a square, then f is stable for only finitely many primes.

Conjecture 5.2 appears difficult to prove. However, the following heuristic suggests
that it is true. For p ∈ O, denote by Np the the number of elements of O/p := Fp. We
need two main assumptions: that the elements of the orbit of γ behave like a random
orbit of a random self-map of Fp and that the elements of S are close to multiplicatively
independent. The orbit of a random point under a random self-map of Fp has length

bounded below by
√

Np [9] (See also [19, Section 6]). Hence f is stable for p if none

of −f(γ), f 2(γ), f 3(γ), . . . f j(γ) is a square in Fp, for some j ≥
√

Np. As in the proof
of Theorem 5.1, the set of primes for which this is true has density 1/r, where r is the
order in F ∗/F ∗2 of 〈S〉. In general, r = 2j. Thus the “probability” that f is stable is at

most 2−
√

Np. Assuming independence, this gives that the expected number of primes
for which f is stable is

(7)
∑

p

2−
√

Np.

When F is a number field, let d = [F : Q], and note that for a given rational prime
p, the sum (2) taken over p | (p) can be at most d/2

√
p, which occurs when (p) splits

completely in F . Hence the full sum in (7) is at most
∑

p d/2
√
p, which is less than

d
∑

n 1/2
√
n. Separating this last sum into the pieces i2 ≤ n ≤ (i+1)2 − 1, we see that

it is bounded above by d
∑

i(2i+ 1)/2i, which converges. A similar argument holds in
the function field case.

It would be very interesting to prove Conjecture 5.2 for any single polynomial. We
consider for a moment the case of F = Q, f(x) = x2 + 1, and give evidence that
Conjecture 5.2 holds in this case. Odoni [16] first observed that f is stable for p = 3,
and also remarked on the central role that the sequence −f(γ), f 2(γ), f 3(γ), . . . plays
in the Galois theory of iterates of f(x). His work paved the way for Stoll’s proof that
the Galois groups of iterates of f(x) are as large as possible [20].
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Conjecture 5.3. Let F = Q and f(x) = x2 + 1. Then f is stable for p = 3 and for

no other primes.

Using MAGMA, one computes that the first 20 elements of −f(γ), f 2(γ), f 3(γ), . . .
are all non-squares modulo p for 42 of the 50, 847, 534 primes ≤ 109. Apart from 3,
each of these primes has fn(γ) a square modulo p for some n ≤ 25, thereby verifying
Conjecture 5.3 for primes ≤ 109. As further evidence, we give the following result,
though we first define some terminology. Let a, f(a), f 2(a), . . . be a finite orbit, and
take f 0(a) = a. let r be the minimal positive integer with f r(a) = f s(a) for some
0 ≤ s < r. Then the tail of the orbit is a, f(a), . . . f s−1(a) when s > 0, and is empty
otherwise. By the length of the tail, we mean s.

Proposition 5.4. Let f(x) = x2+1, and suppose that f is stable for a prime p. Then
the orbit of 0 under f has tail of length two.

Proof. To ease notation, let an = f
n
(0) for n ≥ 0, and note that a0 = 0 and an =

a2n−1 + 1 for n ≥ 1. Let r be minimal with ar = as for some s < r. If s = 0 then

ar = 0, and hence f is not stable. If s = 1 then ar = 1, and hence ar−1 = 0, so again
f is not stable. So assume s ≥ 2. Then a2r−1 = a2s−1. But by the minimality of r, we
must have ar−1 6= as−1. Hence ar−1 = −as−1. Note that not all of as−1,−as−1, and −1
can be non-squares in Z/pZ. Because −1 = −a1, this shows that as−1, ar−1, or −a1 is
a square in Z/pZ. If the square is ar−1 or −a1, or if s > 2, then one of −a1, a2, a3, . . . is
a square, and f is not stable by Theorem 2.2. Therefore if f is stable then s = 2. �

We note that if s = 2, then f
r
(0) = 2 for some r ≥ 2, and indeed f

r−1
(0) = −1,

since otherwise f
r−1

(0) = 1 = f
1
(0), contradicting s = 2. Thus the only p for which f

has a chance of being stable are those with fn(0) ≡ −1 mod p for some n. By factoring
fn(0) + 1 for 1 ≤ n ≤ 9 using MAGMA, one sees that apart from 3, all primes with
fn(0) ≡ −1 mod p for 1 ≤ n ≤ 9 are congruent to 1 modulo 4, and thus −1 is a square
modulo p, so already f(x) is reducible. However, there are factors of fn(0) + 1 with
n = 10, 11 that are congruent to 3 modulo 4.

We note that fn(0) + 1 may be obtained from fn−1(0) + 1 by applying g(x) =
(x − 1)2 + 2. Indeed, gn(1) = fn(0) + 1, so the only primes for which x2 + 1 has
a chance of being stable are those dividing some element of the forward orbit of the
critical point of g.

As a final remark, we note that assertion (3) of Conjecture 5.2 implies that the
subgroup of F ∗/F ∗2 generated by S is infinite, which already is not known in general.
This statement does follow in certain special cases where fn(γ) is a rigid divisibility
sequence or the orbit of 0 under f is finite. Indeed, in these cases one can prove the
stronger assertion that for infinitely many n, there is a prime dividing fn(γ) with odd
multiplicity but not dividing f i(γ) for any i < n. See [11] for details.
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