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AND FRACTAL DIMENSIONS OF SOME MULTIPLE

RECURRENCE SETS

YURI KIFER

INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY OF JERUSALEM

Abstract. We provide conditions which yield a strong law of large num-

bers for expressions of the form 1/N
∑

N

n=1
F
(

X(q1(n)), · · · ,X(qℓ(n))
)

where
X(n), n ≥ 0’s is a sufficiently fast mixing vector process with some moment
conditions and stationarity properties, F is a continuous function with poli-
nomial growth and certain regularity properties and qi, i > m are positive

functions taking on integer values on integers with some growth conditions.
Applying these results we study certain multifractal formalism type questions
concerning Hausdorff dimensions of some sets of numbers with prescribed as-
ymptotic frequencies of combinations of digits at places q1(n), ..., qℓ(n).

1. Introduction

Nonconventional ergodic theorems which attracted substantial attention in er-
godic theory (see, for instance, [3], [12] and [2]) studied the limits of expressions

having the form 1/N
∑N

n=1 T
q1(n)f1 · · ·T qℓ(n)fℓ where T is a weakly mixing mea-

sure preserving transformation, fi’s are bounded measurable functions and qi’s are
polynomials taking on integer values on the integers. While, for instance, [3] and
[12] were interested in L2 convergence, other papers such as [2] provided conditions
for almost sure convergence in such ergodic theorems. Originally, these results
were motivated by applications to multiple recurrence for dynamical systems tak-
ing functions fi being indicators of some measurable sets.

Introducing stronger mixing or weak dependence conditions enabled us in [20]
and [21] to obtain central limit theorems and invariance principles for even more
general expressions of the form

(1.1)
1√
N

[Nt]
∑

n=1

(

F (X(q1(n)), ..., X(qℓ(n))− F̄
)

where X(n), n ≥ 0 is a sufficiently fast mixing vector valued process with some
moment conditions and stationarity properties, F is a locally Hölder continuous
function with polinomial growth, F̄ =

∫

Fd(µ × · · · × µ) and µ is the distribution
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2 Yu.Kifer

of X(0). In order to ensure existence of limiting variances and covariances we had
to impose another assumption concerning the functions qj(n), j ≥ 1 saying that
qj(n) = jn for j = 1, ..., k while qj(n), j ≥ k are positive functions taking on integer
values on integers with some (faster than linear) growth conditions.

In this paper we are concerned with strong laws of large numbers (SLLN) for
expressions of the form

(1.2)
1

N

N
∑

n=1

F (X(q1(n)), ..., X(qℓ(n))

which can be proved under milder conditions that those required for central limit
theorem type results. We still impose some mixing or weak dependence conditions
but now the functions qj(n), n ≥ 1 are allowed to be of much more general form
than in [21], in particular, because we do not have to take care about limiting vari-
ances. Recall, that the machinery of nonconventional ergodic theorems employed
in [3], [12], [2] and other papers can only work when the functions qj , j = 1, ..., ℓ
are polinomials while our methods do not require any algebraic structure of them.
We pay a price for this, namely, imposing stronger mixing assumptions which are
satisfied though for important classes of stochastic processes and dynamical sys-
tems.

In order to obtain our strong laws of large numbers we represent the sum in (1.2)
as a sum of certain mixingales and then rely on the SLLN for mixingales obtained
in [22]. Another approach which works in this situation under more or less the same
assumptions is a martingale approximation similar to [21] together with a SLLN
for martingales (see, for instance, Section 2.6 in [16]).

Among more specific applications of our setup we can consider F (x1, ..., xℓ) =

x
(1)
1 · · ·x(ℓ)ℓ , xj = (x

(1)
j , ..., x

(ℓ)
j ), X(n) = (X1(n), ..., X|ell(n)), Xj(n) = IAj

(T nx)

for a dynamical system {T n} or Xj(n) = IAj
(ξn) for a Markov chain {ξn} where

IA is the indicator of a set A. Then the expression (1.2) measures the frequency of
arrivals of T nx or of ξn to the sets Aj at the respective times qj(n). Recall, that the
m-base and continued fraction expansions can be obtained via the multiplication by
m and the Gauss transformations, i.e. Tx = {mx} and Tx = {1/x}, respectively,
which are both exponentially fast ψ-mixing with respect to many invariant measures
(see [15] and [1]) and satisfy our assumptions. Denote by ζj(x) the j-th digit of
x ∈ [0, 1) in one of these expansions. Then we can study the frequency of k-th
such that the ℓ-tuple (ζq1(k)(x), ..., ζqℓ(k)(x)) coincides with a prescribed ℓ-tuple of
digits (a1, ..., aℓ). For a full Lebesgue measure of points x ∈ [0, 1) such frequencies
are determined by our SLLN and other frequencies may occur only for x belonging
to sets of zero measure. This leads to an interesting question about Hausdorff
dimensions of such exceptional sets which we study in the last section of this paper.

2. Preliminaries and main results

Our setup consists of a ℘-dimensional stochastic process {X(n), n = 0, 1, ...} on
a probability space (Ω,F , P ) and of a family of σ-algebras Fkl ⊂ F , 0 ≤ k ≤ l ≤ ∞
where we assume that F00 is a trivial σ-field and Fkl ⊂ Fk′l′ if k

′ ≤ k and l′ ≥ l.
We extend Fkl also to negative k ≥ −∞ by defining Fkl = F0l for k < 0 and l ≥ 0.
The dependence between two sub σ-algebras G,H ⊂ F is measured often via the
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quantities

(2.1) ̟q,p(G,H) = sup{‖E
[

g|G
]

− E[g]‖p : g is H−measurable and ‖g‖q ≤ 1},
where the supremum is taken over real functions and ‖ ·‖r is the Lr(Ω,F , P )-norm.
Then more familiar α, ρ, φ and ψ-mixing (dependence) coefficients can be expressed
in the form (see [9], Ch. 4 ),

α(G,H) = 1
4̟∞,1(G,H), ρ(G,H) = ̟2,2(G,H)

φ(G,H) = 1
2̟∞,∞(G,H) and ψ(G,H) = ̟1,∞(G,H).

The relevant quantities in our setup are

(2.2) ̟q,p(n) = sup
k≥0

̟q,p(F−∞,k,Fk+n,∞)

and accordingly

α(n) =
1

4
̟∞,1(n), ρ(n) = ̟2,2(n), φ(n) =

1

2
̟∞,∞(n) and ψ(n) = ̟1,∞(n).

Our assumptions will require certain speed of decay as n → ∞ of both the mixing
rates ̟q,p(n) and the approximation rates defined by

(2.3) βp(n) = sup
m≥0

‖X(m)− E
(

X(m)|Fm−n,m+n

)

‖p.

Furthermore, we do not require stationarity of the process X(n), n ≥ 0 assuming
only that the distribution µ of X(n) does not depend on n which we write for
further references by

(2.4) X(n)
d∼ µ

where Y
d∼ Z means that Y and Z have the same distribution.

Next,let F = F (x1, ..., xℓ), xj ∈ R
℘ be a function on R

℘ℓ such that for some
ι,K > 0, κ ∈ (0, 1] and all xi, yi ∈ R

℘, i = 1, ..., ℓ,

(2.5) |F (x1, ..., xℓ)− F (y1, ..., yℓ)| ≤ K
(

1 +

ℓ
∑

j=1

|xj |ι +
ℓ

∑

j=1

|yj|ι
)

ℓ
∑

j=1

|xj − yj |κ

and

(2.6) |F (x1, ..., xℓ)| ≤ K
(

1 +

ℓ
∑

j=1

|xj |ι
)

.

Our assumptions on F are motivated by the desire to include, for instance, products
F (x1, ..., xℓ) = x11x22 · · ·xℓℓ, where xi = (xi1, ..., xiℓ) ∈ R

ℓ, which are important in
the study of multiple recurrence as described in Introduction.

Our setup includes also a sequence of positive functions q1(n) < q2(n) < · · · <
qℓ(n) taking on integer values on integers and such that for some positive ε ≤ 1,

(2.7) qi(n) ≥ qi−1(n) + εn, i = 2, ..., ℓ and qi(n+ 1) ≥ qi(n) + ε for all n ≥ 1.

In order to give a detailed statement of our main result as well as for its proof it
will be essential to represent the function F = F (x1, x2, . . . , xℓ) in the form

(2.8) F = F0 + F1(x1) + · · ·+ Fℓ(x1, x2, . . . , xℓ)

where

(2.9) F0 = F̄ =

∫

F (x1, ..., xℓ) dµ(x1) · · · dµ(xℓ),
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Fi(x1, . . . , xi) =
∫

F (x1, x2, . . . , xℓ) dµ(xi+1) · · · dµ(xℓ)(2.10)

−
∫

F (x1, x2, . . . , xℓ) dµ(xi) · · · dµ(xℓ)
for 0 < i < ℓ and

Fℓ(x1, x2, . . . , xℓ) = F (x1, x2, . . . , xℓ)−
∫

F (x1, x2, . . . , xℓ) dµ(xℓ)

which ensures, in particular, that

(2.11)

∫

Fi(x1, x2, . . . , xi−1, xi) dµ(xi) ≡ 0 ∀ x1, x2, . . . , xi−1.

These enable us to write

(2.12) S(N) =

N
∑

n=1

F (X(q1(n)), ..., X(qℓ(n))) =

ℓ
∑

i=0

Si(N)

where S0(N) = NF̄ and for 1 ≤ i ≤ ℓ,

(2.13) Si(N) =
∑

1≤n≤N

Fi(X(q1(n)), . . . , X(qi(n))).

Following [22] we say that a sequence {an, n ≥ 0} is of size −1/2 if there exists
a positive eventually nondecreasing sequence {Ln, n ≥ 0} such that

∑

n≥0

(nLn)
−1 <∞, Ln − Ln−1 = O(Ln/n) and an = O

(

(n1/2Ln)
−1

)

.

For instance, any sequence with asymptotics O
(

n1/2 logn(log logn)1+δ
)−1

for some
δ > 0 is of size −1/2. For each r > 0 set

(2.14) γrr = ‖X‖rr = E|X(n)|r =
∫

‖x‖rdµ.

Our main result relies on

2.1. Assumption. With d = (ℓ − 1)℘ there exist p, q ≥ 1 and θ,m > 0 such that
θ < κ− d

p ,

(2.15)
1

2
≥ 1

p
+
ι+ 2

m
+
θ

q
and γm + γ2q(ι+2) <∞

and the sequence ̟p,q(n) + βθ
q (n), n ≥ 1 is of size −1/2.

2.2. Theorem. Suppose that Assumption 2.1 holds true. Then with probability one

(2.16) lim
N→∞

1

N
S(N) = F̄ .

Our method relies on estimates from [21] which enable us to view for each i ≥
1 the sequence of pairs {Fi(X(q1(n)), ..., X(qi(n))), F−∞,qi(n)}∞n=1 as a mixingale
sequence, and so a strong law of large numbers for mixingales from [22] can be
employed. This gives an almost sure convergence of 1

N Si(N) to 0 and by (2.12)
Theorem 2.2 follows. Another approach which works in our situation is to rely
on a martingale approximation of Si(N) similarly to [21] and then to employ a
strong law of large numbers for martingales (see, for instance, Section 2.6 in [16]).
This method has to deal with approximations of Fi(X(q1(n)), ..., X(qi(n))) by their
conditional expectations and in order to avoid double limits as in [21] we can make
this approximations with increasing in n precision.
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In order to understand our assumptions observe that ̟q,p is non-increasing in q
and non-decreasing in p. Hence, for any pair p, q ≥ 1,

̟q,p(n) ≤ ψ(n).

Furthermore, by the real version of the Riesz–Thorin interpolation theorem (see,
for instance, [14], Section 9.3) if δ ∈ [0, 1], 1 ≤ p0, p1, q0, q1 ≤ ∞ and

1

p
=

1− δ

p0
+

δ

p1
,
1

q
=

1− δ

q0
+

δ

q1

then

̟q,p(n) ≤ 2(̟q0,p0(n))
1−δ(̟q1,p1(n))

δ.

Since, clearly, ̟q1,p1 ≤ 2 for any q1 ≥ p1 it follows for pairs (∞, 1), (2, 2) and
(∞,∞) that for all q ≥ p ≥ 1,

̟q,p(n) ≤ (2α(n))
1
p
− 1

q , ̟q,p(n) ≤ 21+
1
p
− 1

q (ρ(n))1−
1
p
+ 1

q

and ̟q,p(n) ≤ 21+
1
p (φ(n))1−

1
p .

We observe also that by the Hölder inequality for q ≥ p ≥ 1 and α ∈ (0, p/q),

β(q, r) ≤ 21−α[β(p, r)]αγ1−α
pq(1−α)
p−qα

with γr defined in (2.14). Thus, we can formulate Assumption 2.1 in terms of more
familiar α, ρ, φ, and ψ–mixing coefficients and with various moment conditions.

The conditions of Theorem 2.2 hold true for many important models. Let, for
instance, ξn be a Markov chain on a space M satisfying the Doeblin condition
(see, for instance, [17], p.p. 367–368) and fj, j = 1, ..., ℓ be bounded measurable
functions on the space of sequences x = (xi, i = 0, 1, 2, ..., xi ∈ M) such that
|fj(x) − fj(y)| ≤ Ce−cn provided x = (xi), y = (yi) and xi = yi for all i =
0, 1, ..., n where c, C > 0 do not depend on n and j. In fact, some polinomial
decay in n will suffice here, as well. Let X(n) = (X1(n), ..., Xℓ(n)) with Xj(n) =
fj(ξn, ξn+1, ξn+2, ...) and take σ-algebras Fkl, k < l generated by ξk, ξk+1, ..., ξl then
our condition will be satisfied considering {ξn, n ≥ 0} with its invariant measure
as a stationary process. In fact, our conditions hold true for a more general class
of processes, in particular, for Markov chains whose transition probability has a
spectral gap which leads to an exponentially fast decay of the ρ-mixing coefficient.

Important classes of processes satisfying our conditions come from dynamical
systems. Let T be a C2 Axiom A diffeomorphism (in particular, Anosov) in a
neighborhood of an attractor or let T be an expanding C2 endomorphism of a
compact Riemannian manifoldM (see [8]), fj’s be Hölder continuous functions and
let X(n) = (X1(n), ..., Xℓ(n)) with Xj(n) = fj(T

nx). Here the probability space
is (M,B, µ) where µ is a Gibbs invariant measure corresponding to some Hölder
continuous function and B is the Borel σ-field. Let ζ be a finite Markov partition for
T then we can take Fkl to be the finite σ-algebra generated by the partition ∩l

i=kT
iζ.

In fact, we can take here not only Hölder continuous fj ’s but also indicators of sets
from Fkl. A related example corresponds to T being a topologically mixing subshift
of finite type which means that T is the left shift on a subspace Ξ of the space of
one-sided sequences ξ = (ξi, i ≥ 0), ξi = 1, ..., l0 such that ξ ∈ Ξ if πξiξi+1 = 1 for all
i ≥ 0 where Π = (πij) is an l0× l0 matrix with 0 and 1 entries and such that Πn for
some n is a matrix with positive entries. Again, we have to take in this case fj to be
Hölder continuous bounded functions on the sequence space above, µ to be a Gibbs
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invariant measure corresponding to some Hölder continuous function and to define
Fkl as the finite σ-algebra generated by cylinder sets with fixed coordinates having
numbers from k to l. The exponentially fast ψ-mixing is well known in the above
cases (see [8]). Among other dynamical systems with exponentially fast ψ-mixing
we can mention also the Gauss map Tx = {1/x} (where {·} denotes the fractional
part) of the unit interval with respect to the Gauss measure G(Γ) = 1

ln 2

∫

Γ
1

1+xdx

(see [15]), as well as with respect to many other Gibbs invariant measures (see [1]).
The latter enables us to consider the numberNa(x, n), a = (a1, ..., aℓ) of k’s between
0 and n such that the qj(k)-th digit of the continued fraction of x equals certain
integer aj, j = 1, ..., ℓ. Then Theorem 2.2 implies a strong law of large numbers for
Na(x, n) considered as a random variable on the probability space ((0, 1],B, G). In
fact, our results rely only on sufficiently fast α or ρ-mixing which holds true for
wider classes of dynamical system, in particular, those with a spectral gap (such
as many one dimensional not necessarily uniformly expanding maps) which ensures
an exponentially fast ρ-mixing. We will show how to derive from Theorem 2.2 the
following result.

2.3. Corollary. Let T be either a C2 Axiom A diffeomorphism on a compact Rie-
mannian manifold M considered in a neighborhood of an attractor or a C2 expand-
ing endomorphisms of a compact Riemannian manifold M or the Gauss map of
the unit interval and let µ be an equilibrium state (Gibbs measure) corresponding
to a Hölder continuous function in the first two cases or an exponentially fast ψ-
mixing T -invariant (in particular, Gauss’) measure (see Corollary 4.7.8 in [1]) in
the latter case. Let Xj(n) = fj(T

nx), j = 1, ..., ℓ where fj is either a continuous
function or fj(x) = IΓj

(x) where Γj is a measurable set whose boundary ∂Γj has
zero µ-measure. Finally, let F = F (x1, ..., xℓ) satisfies conditions of Theorem 2.2
which means just that F is Hölder continuous since its arguments are bounded here.
Then the conclusion of Theorem 2.2 holds true.

Next, we discuss a continuous time version of our theorem. Our continuous
time setup consists of a ℘-dimensional process X(t), t ≥ 0 on a probability space
(Ω,F , P ) whose one dimensional distributions do not depend on time and of a
family of σ-algebras Fst ⊂ F , −∞ ≤ s ≤ t ≤ ∞ such that Fst ⊂ Fs′t′ if s

′ ≤ s and
t′ ≥ t. For all t ≥ 0 we set

(2.17) ̟q,p(t) = sup
s≥0

̟q,p(F−∞,s,Fs+t,∞)

and

(2.18) β(p, t) = sup
s≥0

‖X(s)− E
[

X(s)|Fs−t,s+t

]

‖p.

where ̟q,p(G,H) is defined by (2.1). It will suffice for our purposes to rely on
Assumtion 2.1 concerning ̟q,p(t) and β(p, t) considered only for integer t. Let
q1(t) < q2(t) < · · · < qℓ(t) be increasing positive functions satisfying the conditions
(2.7) with t in place of n. Set

(2.19) S(t) =

∫ t

0

F (X(q1(s)), ..., X(qℓ(s)))ds =

ℓ
∑

i=0

Si(t)
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where S0(t) = tF̄ ,

(2.20) Si(t) =

∫ t

0

Fi(X(q1(s)), . . . , X(qi(s)))ds

and F, F̄ , Fi are the same as in (2.5), (2.6) and (2.8)–(2.11). Then we obtain

2.4. Corollary. Under the conditions above with probability one

lim
t→∞

1

t
S(t) = F̄ .

Next, we discuss the fractal dimensions part of this paper. Recall that the
multifractal formalism deals with computations of Hausdorff dimensions of sets
having the form

{x : lim
n→∞

1

N

N
∑

n=1

f(T nx) = ρ}.

In our setup it is natural to study Hausdorff dimensions of more general sets

Gρ = {x : lim
N→∞

1

N

N
∑

n=1

F (f1(T
q1(n)x), ..., fℓ(T

qℓ(n)x)) = ρ},

say, under the conditions of Corollary 2.3. When

ρ =

∫

...

∫

F (f1(x1), ..., fℓ(xℓ))dµ(x1) · · · dµ(xℓ)

then µ(Gρ) = 1 by Corollary 2.3 while otherwise µ(Gρ) = 0 and it is natural to
inquire about the Hausdorff dimension of Gρ.

We will not study here this general problem but consider a more specific ques-
tion about Hausdorff dimensions of sets of numbers with prescribed frequencies of
specific combinations of digits in m-expansions. Namely, for any x ∈ [0, 1] and an
integer m > 1 we can write

x =

∞
∑

i=1

ai−1(x)

mi
where aj(x) ∈ {0, 1, ...,m− 1}, j = 0, 1, ...

and we allow zero tails of expansions but not tails consisting of all (m − 1)’s.
This convention affects only a countable number of points, and so it does not
influence Hausdorff dimensions computations. For each x ∈ [0, 1] and an ℓ-word
α = (α1, α2, ..., αℓ) ∈ {0, 1, ...,m− 1}ℓ define
(2.21) Nα(x, n) = #{k > 0, k ≤ n : (aq1(k)(x), ..., aqℓ(k)(x)) = α}
where #Γ denotes the number of elements in the set Γ. Denote byAℓ = {0, 1, ...,m−
1}ℓ the set of all ℓ-words and let pα ≥ 0, α ∈ Aℓ satisfy

∑

α∈Aℓ
pα = 1. For such a

probability vector p = (pα, α ∈ Aℓ) ∈ R
mℓ

define

(2.22) Up = {x ∈ (0, 1) : lim
n→∞

1

n
Nα(x, n) = pα for all α ∈ Aℓ}.

We want to deal with the question of computation of the Hausdorff dimension
HD(Up) of Up. When ℓ = 1 and q1(k) = k we arrive at the classical question
studied in [3] and [10] by combinatorial means and in [6] via the ergodic theory.

In order to relate the limit of n−1Nα(x, n) to the nonconventional strong law of
large numbers (ergodic theorem) discussed before define the transformation Tx =
{mx} where {·} denotes the fractional part. Identifying 0 and 1 we can view T as an
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expanding map of the circle. Now ai(x) = a0(T
ix) and if α = (α1, α2, ..., αℓ) ∈ Aℓ

and Γj = {x : a0(x) = j} then

(2.23) Nα(x, n) =

n
∑

k=1

IΓα1
(T q1(k)x)IΓα2

(T q2(k)x) · · · IΓαℓ
(T qℓ(k)x).

Taking into account that {Γj, j = 0, 1, ...,m− 1} is the Markov partition for T in
this simple situation we arrive at the setup of Corollary 2.3 with F (x1, ..., xℓ) =
x1x2 · · ·xℓ and fj(x) = IΓαj

(x), j = 1, ..., ℓ. Observe that in place of the dynamical

systems setup described above we could rely in this situation on the fact that that
the digits an, n ≥ 0 are independent identically distributed (i.i.d.) random variables
with respect to the Lebesgue measure on [0, 1], and so IΓαj

◦ T n = Ian=αj
, i =

1, ..., ℓ, n = 0, 1, ... are also i.i.d. random variables so that mixing conditions of
Assumption 2.1 trivially hold true. The following result answers our question in a
specific situation.

2.5. Proposition. Suppose that q1(k) = k for all k and there exists a probability

vector r = (r0, r1, ..., rm−1) such that pα =
∏ℓ

i=1 rαi
for any α = (α1, ..., αℓ) ∈ Aℓ.

Then

(2.24) HD(Up) =
−∑m−1

j=0 rj ln rj

lnm

with the convention 0 ln 0 = 0.

2.6. Remark. In view of (2.23) for any T -invariant probability measure µ on [0, 1]
with mixing properties fulfilling conditions of Theorem 2.2 it follows that µ-almost
everywhere

lim
n→∞

1

n
Nα(x, n) =

ℓ
∏

i=1

µ(Γαi
).

Hence, if p = (pα, α ∈ Aℓ) and there exists no probability vector r =

(r0, r1, ..., rm−1) such that pα =
∏ℓ

i=1 rαi
then µ(Up) = 0 for any µ as above,

and so such µ cannot be used for computation of the Hausdorff dimension of Up

(by one of methods where measures are involved) which complicates the study in
this case.

Now, consider a bit more complex situation. For each x ∈ [0, 1] and α =
(α1, α2, ..., αℓ), β = (β1, α2, ..., βℓ) ∈ {0, 1, ...,m− 1}ℓ set

Nα,β(x, n) = #{k > 0, k ≤ n : (aq1(k)(x), ..., aqℓ(k)(x)) = α

and (aq1(k)+1(x), ..., aqℓ(k)+1(x)) = β}
and for each nonnegative matrix P = (pαβ , α, β ∈ Aℓ) with

∑

α,β pαβ = 1 define

(2.25) UP = {x ∈ (0, 1) : lim
n→∞

1

n
Nα,β(x, n) = pα,β for all α, β ∈ Aℓ}.

Again, we can write Nαβ in the form suitable for application of Theorem 2.2,
namely,

(2.26) Nα,β(x, n) =

n
∑

k=1

IΓα1β1
(T q1(k)x)IΓα2β2

(T q2(k)x) · · · IΓαℓβℓ
(T qℓ(k)x)

where Γij = {x : a0(x) = i, a1(x) = j}. Then we obtain the following result.
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2.7. Proposition. Suppose that q1(k) = k and there exists a nonnegative matrix
R = (rij ; i, j = 0, 1, ...,m− 1) satisfying the following conditions:

(i) some power of R is a positive matrix; (ii)
∑

i,j rij = 1, qi =
∑m−1

j=0 rij =
∑m−1

j=0 rij ; (iii) pαβ =
∏ℓ

i=1 rαiβi
.

Then q = (q0, q1, ..., qm−1) is a positive stationary vector of the m×m irredicible
aperiodic probability matrix Q = (qij), qij = q−1

i rij and under the convention
0 ln 0 = 0,

(2.27) HD(UP ) =
−∑m−1

i,j=0 qiqij ln qij

lnm
.

2.8. Remark. Somewhat surprisingly Proposition 2.5 and 2.7 claim that in our
circumstances the sets Up and UP have the same Hausdorff dimensions as if we
were prescribing frequencies not of the whole ℓ-words or pairs of such words but
just of their first digits or pairs of their first digits.

2.9. Remark. It is easy to see that unless
∑

β pαβ =
∑

β pβα the set UP is empty,

and so the condition (ii) in Proposition 2.7 is a necessary one.

Next, we consider a similar to Proposition 2.5 problem concerning integer digits
a0(x), a1(x), ... > 0 of infinite continued fraction expansions

1

a0(x) +
1

a1(x) +
1

a2(x) + ...

for irrational numbers x ∈ (0, 1). We define again Nα(x, n) and Up by (2.21)
and (2.22) taking into account that now there are infinitely many words α =
(α1, ..., αℓ) ∈ {1, 2, 3, ...}ℓ = Aℓ and, correspondingly, we have to prescribe in-
finitely many frequencies pα ≥ 0, α ∈ Aℓ with

∑

α∈Aℓ
pα = 1. We recall that the

Gauss map Tx = { 1
x} acts so that ai(Tx) = ai+1(x), i = 0, 1, 2, ..., and so Nα(x, n)

can be represented again in the form (2.23). For each infinite probability vector
r̄ = (r1, r2, ...) denote by N (r̄) the set of T -invariant ergodic probability measures
µ such that

(2.28)

∫

| log x|sµ(x) <∞ and µ[(j + 1)−1, j−1) = rj for all j ≥ 1.

Here, [(j + 1)−1, j−1) = {x ∈ (0, 1) : a0(x) = j} and for any n we set
I(i0, i1, ..., in−1) = {x ∈ (0, 1) : a0(x) = i0, ..., an−1(x) = in−1} which is called

a rank-n basic interval. Denote by N̂ (r̄) the subset of N (r̄) consisting of measures
ν such that for ν-almost all x and all α = (α1, ..., αℓ) ∈ Aℓ,

(2.29) lim
n→∞

1

n
Nα(x, n) =

ℓ
∏

i=1

rαi
.

By (2.23) and (2.28) we see that N̂ (r̄) contains all measures ν ∈ N (r̄) with sufficient
mixing which make the process Xα(n) = Xα(x, n) = (IΓα1

(T nx), ..., IΓαℓ
(T nx)) on

the probability space ((0, 1), ν) to satisfy conditions of Theorem 2.2. We observe
that not only the Gauss measure G(Γ) = 1

ln 2

∫

Γ
dx
1+x , which is exponentially fast

ψ-mixing according to [15], but also many other T -invariant Gibbs measures con-
structed in [23] have sufficiently good mixing properties to satisfy conditions of
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Theorem 2.2. Actually, the rank-1 basic intervals form a Markov partition for T
whose action is essentially equivalent to the full shift on a sequence space with
infinite alphabet. For such Markov transformations Corollary 4.7.8 from [1] gives
conditions for their Gibbs invariant measures to be exponentially fast ψ-mixing.

2.10. Proposition. Suppose that q1(k) = k and there exists an infinite probability

vector r̄ = (r0, r1, ...) such that pα =
∏ℓ

i=1 rαi
for any α = (α1, ..., αℓ) ∈ Aℓ. Then

(2.30)

max
(1

2
, sup
ν∈N̂ (r̄)

hν
2
∫

| lnx|dν(x)
)

≤ HD(Up) ≤ max
(1

2
, sup
ν∈N (r̄)

hν
2
∫

| lnx|dν(x)
)

where hµ denotes the entropy of T with respect to µ and ”sup” is set to be zero if
N (r̄) = ∅.
2.11. Remark. All results of this paper can be extended under appropriate con-
ditions to random transformations and processes in random (dynamical) environ-
ment. Namely, suitable (random) mixing conditions can be introduced similarly
to [19] and the corresponding relative strong law of large numbers can be proved
relying on martingale approximations constructed combining methods of [19] and
[21]. A relative version of Proposition 2.5 can be proved in the spirit of random
base expansions from [18].

3. Mixingale representation and proof of SLLN

We rely on the following result which is part of Corollary 3.6 from [21].

3.1. Lemma. Let G and H be σ-subalgebras on a probability space (Ω,F , P ), X
and Y be d-dimensional random vectors and f = f(x, ω), x ∈ R

d be a collection of
random variables measurable with respect to H and satisfying

(3.1) ‖f(x, ω)− f(y, ω)‖q ≤ C(1+ |x|ι+ |y|ι)|x− y|κ and ‖f(x, ω)‖q ≤ C(1+ |x|ι)
where g ≥ 1. Set g(x) = Ef(x, ω). Then

(3.2) ‖E(f(X, ·)|G)− g(X)‖υ ≤ c(1 + ‖X‖ι+2
b(ι+2))(̟q,p(G,H) + ‖X − E(X |G)‖θq)

provided κ− d
p > θ > 0, 1

υ ≥ 1
p +

1
b +

θ
q with c = c(C, ι, κ, θ, p, q, υ, d) > 0 depending

only on parameters in brackets. Moreover, let x = (v, z) and X = (V, Z), where V
and Z are d1 and d−d1-dimensional random vectors, respectively, and let f(x, ω) =
f(v, z, ω) satisfy (3.1) in x = (v, z). Set g̃(v) = Ef(v, Z(ω), ω). Then

‖E(f(V, Z, ·)|G)− g̃(V )‖υ ≤ c(1 + ‖X‖ι+2
b(ι+2))(3.3)

×
(

̟q,p(G,H) + ‖V − E(V |G)‖θq + ‖Z − E(Z|H)‖θq
)

.

Set Ȳi(n) = Fi(X(q1(n)), ..., X(qi(n)))−EFi(X(q1(n)), ..., X(qi(n))) and denote

G(i)
n = F−∞,qi(n) for n ≥ 0 while taking G(i)

n to be the trivial σ-algebra {∅,Ω} for
n < 0. Then by (2.5), (2.6), (2.15) and (3.3) of Lemma 3.1 we obtain that for some
C1 > 0 and all n,m and i = 1, ..., ℓ,

(3.4) ‖E(Ȳi(n)|G(i)
n−m)‖2 ≤ C1

(

̟p,q(ρi(m,n)) + βθ
q (ρi(m,n))

)

where p, q, θ satisfy conditions of Assumption 2.1 and

ρi(m,n) = min
([qi(n)− qi−1(n)

3
,
] [qi(n)− qi(n−m)

3

])

.
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Observe that E(Ȳi(n)|G(i)
n−m) = 0 ifm > n and if 0 ≤ m ≤ n then ρi(m,n) ≥ [εm/3]

by (2.7). Hence,

(3.5) ‖E(Ȳi(n)|G(i)
n−m)‖2 ≤ C1

(

̟p,q([εm/3]) + βθ
q ([εm/3])

)

.

It follows also from (2.3) and (2.5)–(2.7) and the Hölder inequality (see Lemmas
4.1 and 4.2 together with Theorem 4.4 from [21]) that

∥

∥Ȳi(n)− E(Ȳi(n)|Gn+m)‖2 ≤ K
∥

∥

(

1 +
∑ℓ

i=1(|X(qi(n))|ι(3.6)

+|E(X(qi(n))|G(i)
n+m)|ι)

)
∑ℓ

i=1

∣

∣X(qi(n)) − E(X(qi(n))|G(i)
n+m)

∣

∣

κ∥
∥

2
≤ C2β

θ
q (m)

for some C2 > 0. The estimates (3.5) and (3.6) yield that Ȳi(n), n ≥ 1 is a mixingale
sequence as defined in [22] and under Assumption 2.1 the conditions of Corollary
1.9 from there are satisfied yielding that with probability one for i = 1, ..., ℓ,

(3.7) lim
N→∞

1

N
(Ξi(N)− EΞi(N)) = 0.

Set ai(n) = (qi−1(n) + qi(n))/2. By (2.11) and (3.3) we obtain that
∣

∣EFi(X(q1(n)), ..., X(qi(n)))
∣

∣ =
∣

∣EE
(

Fi(X(q1(n)), ..., X(qi(n)))|F−∞,ai(n)

)
∣

∣(3.8)

≤ C
(

̟q,p([
1
4 (qi(n)− qi−1(n))]) + βδ

q ([
1
4 (qi(n)− qi−1(n))])

)

→ 0 as n→ ∞

by (2.7) and Assumption 2.1. It follows that for i = 1, ..., ℓ,

(3.9) lim
N→∞

1

N
EΞi(N) = 0, and so lim

N→∞

1

N
Ξi(N) = 0 a.s.

by (3.7) yielding Theorem 2.2 in view of (2.12). �

In order to derive Corollary 2.3 we recall that Hölder continuous functions can be
uniformly approximated by functions which are constant on elements ∩n

i=−nT
iGki

of the partition
∨n

i=−n T
iζ (where Gk are elements of a Markov partition ζ)

with an error decaying exponentially fast in n. Thus Theorem 2.2 holds when
Xj(n) = fj(T

nx) and fj , j = 1, ..., ℓ are Hölder continuous. Then Theorem 2.2
holds true also for continuous functions fj , j = 1, ..., ℓ since they can be uniformly
approximated by Hölder continuous ones and F is Hölder continuous. Next, let

fj = IΓj
with µ(∂Γj) = 0. Given a Markov partition ζ denote by Γ̃

(l)
j the set con-

sisting of elements of the partition
∨l

i=−l T
iζ which intersect Γj . Here we assume

that Γj lie on a hyperbolic invariant set itself though the argument can be easily
extended to a neighborhood of a hyperbolic attractor. For any δ > 0 there exists

lδ such that µ(Γ̃
(l)
j \Γj) < δ for each l ≥ lδ. For such an l set gj = I

Γ̃
(l)
j

, j = 1, ..., ℓ.

Since F is Hölder continuous we obtain that
∣

∣

∑N
n=1 F (f1(T

nx), ..., fℓ(T
nx)) −∑N

n=1 F (g1(T
nx), ..., gℓ(T

nx))
∣

∣(3.10)

≤ C
∑ℓ

j=1

∑N
n=1(IΓ̃(l)

j

(T nx)− IΓj
(T nx))

and the remaining part of Corollary 2.3 follows by the ergodic theorem applied to
the right hand side of (3.10). �

In the continuous time case we set

(3.11) Ȳi(n) =

∫ n+1

n

(

Fi(X(q1(s)), ..., X(qℓ(s)))− EFi(X(q1(s)), ..., X(qℓ(s)))
)

ds
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and check similarly to (3.4)–(3.6) that
(

Ȳi(n),G(i)
n

)∞

n=1
is a mixingale sequence

where G(i)
n is the same as in (3.4)–(3.6). Now Corollary 2.4 follows from [22] as

before. �

4. Application to fractal dimensions

Set
N

(1)
i (x, n) = #{k > 0, k ≤ n : ak(x) = i},

N
(1)
ij (x, n) = #{k > 0, k ≤ n : ak(x) = i, ak+1(x) = j},

U (1)
r (x, n) = {x ∈ (0, 1) : lim

n→∞

1

n
N

(1)
i (x, n) = ri for all i} and

U
(1)
R (x, n) = {x ∈ (0, 1) : lim

n→∞

1

n
N

(1)
ij (x, n) = rij for all i, j}.

Since
N

(1)
i (x, n) =

∑

α2,...,αn

Niα2...αn
(x, n) and

N
(1)
ij (x, n) =

∑

α2,...,αn,β2,...,βn

Niα2...αn;jβ2...βn
(x, n)

then for

ri =
∑

α2,...,αn

piα2...αn
and rij =

∑

α2,...,αn,β2,...,βn

piα2...αn;jβ2...βn

we obtain that

Up(x, n) ⊂ U (1)
r (x, n) and UP (x, n) ⊂ U

(1)
R (x, n)

provided p = (pα, α ∈ Aℓ) and P = (pαβ , α, β ∈ Aℓ). Hence, the upper bounds
of Propositions 2.5, 2.7 and 2.10 follow from the corresponding upper bounds from
[5], [10] and [13]. Still, we provide below an argument yielding the upper bounds
in Propositions 2.5 and 2.7 by the reason explained in Remark 4.1.

Denote by Ξ the space of sequences ξ = (ξ0, ξ1, ...) with ξi ∈ {0, 1, ...,m − 1}
for all i ≥ 0. For each probability vector r = (r0, r1, ..., rm−1) denote by µr =
(r0, r1, ..., rm−1)

N the corresponding product measure on Ξ, i.e. the probability
mesure which gives the weight rα0rα1 · · · rαn

to each cylinder set Ξα0α1...αn
= {ξ =

(ξ0, ξ1, ...) ∈ Ξ : ξi = αi for i = 0, 1, ..., n}. Observe that the map ϕ : Ξ → [0, 1]
acting by the formula ϕ(ξ) =

∑∞
i=1m

−iξi−1 is one-to-one except for a countable
set of points and since µr has no atoms ϕ maps µr to an atomless measure ϕµr on
[0, 1]. Since µr is invariant with respect to the left shift θ : Ξ → Ξ acting by θ(ξ) = ξ̃

with ξ̃i = ξi+1 then ϕµr is invariant with respect to Tx = {mx} and ϕ provides
an isomorphism between (Ξ, µr, θ) and ([0, 1], ϕµr, T ). Clearly, the conditions of
Theorem 2.2 are satisfied here and applying it (see also Remark 2.6) we conclude
from (2.23) that for ϕµr almost all x ∈ [0, 1],

limn→∞
1
nNα(x, n) = limn→∞

1
n

∑n
k=1 IΓα1

(T q1(k)x)IΓα2
(T q2(k)x)(4.1)

× · · · × IΓαℓ
(T qℓ(k)x) =

∏ℓ
i=1 ϕµr(Γαi

) =
∏ℓ

i=1 rαi
.

It follows that
(4.2)

ϕµr(Up) = 1 if p = (pα, α ∈ Aℓ) and pα =

ℓ
∏

i=1

rαi
whenever α = (α1, ..., αℓ).
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Suppose that rij > 0, j = 1, ..., k while ri = 0 if i 6= ij for any j. Set

U+ = {x ∈ Up : aj(x) ∈ {i1, i2, ..., ik} for any j = 0, 1, 2...}.
Then by (4.2) and the definition of µr,

(4.3) ϕµr(U
+) = 1.

Observe that Iα0α1...αn−1 = ϕΞα0α1...αn−1 is a subinterval of [0, 1] and let In(x) =
Iα0α1...αn−1 if x ∈ Iα0α1...αn−1. Set mj(x, n) = #{i ≥ 0, i < n : ai(x) = j}. Then
for any x ∈ U+ we can write

(4.4) lnϕµr(In(x)) =

m−1
∑

j=0

mj(x, n) ln rj .

Clearly, |In(x)| = m−n where |I| denotes the length of I. Observe that if x ∈ Up

with p = (r0, r1, ..., rm−1) then

(4.5) lim
n→∞

1

n
mj(x, n) = lim

n→∞

1

n

∑

0≤α2,...,αℓ≤m−1

Njα2,...,αℓ
(x, n) = rj .

Hence, for any x ∈ U+,

(4.6) lim
n→∞

lnϕµr(In(x))

ln |In(x)|
= −

∑m−1
j=0 rj ln rj

lnm

which together with (4.2) implies (see Theorem 14.1 in [6] or Section 10.1 in [11])
that

(4.7) HD(Up) ≥ HD(U+) = −
∑k

j=1 rij ln rij

lnm
= −

∑m−1
i=1 ri ln ri
lnm

with the convention 0 ln 0 = 0.
Set l = m − k which is the number of j ∈ {0, 1, ...,m − 1} such that rj = 0.

Choose δ > 0 so small that

(4.8) rj > δk−1 if rj > 0 ln(δl−1) ≤ k−1
∑

j:rj>0

ln(rj − δk−1).

Set r(δ) = (r
(δ)
0 , r

(δ)
1 , ..., r

(δ)
m−1) where r

(δ)
j = rj − δk−1 if rj > 0 and r

(δ)
j = δl−1 if

rj = 0. Observe that by (4.8),

(4.9)

m−1
∑

j=0

rj ln r
(δ)
j ≥

m−1
∑

j=0

r
(δ)
j ln r

(δ)
j .

Set

W (δ) =
{

x ∈ [0, 1] : lim sup
n→∞

(

− 1

n
lnϕµr(δ)(In(x))

)

≤ −
m−1
∑

j=0

r
(δ)
j ln r

(δ)
j

}

.

where µr(δ) is the Bernoulli measure constructed by r(δ) in the same way as µr is
constructed by r. As in (4.4),

(4.10) lnϕµr(δ)(In(x)) =

m−1
∑

j=0

mj(x, n) ln r
(δ)
j ,
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and so by (4.4), (4.5), (4.9) and (4.10),

(4.11) Up ⊂ {x ∈ [0, 1] : lim
n→∞

(

− 1

n
lnϕµr(δ)(In(x))

)

= −
m−1
∑

j=0

rj ln r
(δ)
j } ⊂W (δ).

If Up(δ) is constructed by p(δ) = (p
(δ)
α , α ∈ Aℓ) with p

(δ)
α =

∏ℓ
i=1 r

(δ)
αi and α =

(α1, ..., αℓ) in the same way as Up is constructed by p then similarly to (4.2) it

follows that ϕµr(δ)(Up(δ)) = 1 and since Up(δ) ⊂ W (δ) we conclude from here and
(4.11) that

(4.12) ϕµr(δ)(W
(δ)) = 1 and HD(Up) ≤ HD(W (δ)).

Again, since |In(x)| = m−n then it follows from the definition of W (δ) by the well
known argument (see Theorem 2.3 in [5] or the proof of Theorem 14.1 in [6] or
Proposition 4.9 in [11] which also can be adapted to our situation) that

(4.13) HD(W (δ)) ≤ −
∑m−1

j=0 r
(δ)
j ln r

(δ)
j

lnm
.

Letting δ → 0 we obtain

HD(Up) ≤ −
∑m−1

j=0 rj ln rj

lnm

which together with (4.7) completes the proof of Proposition 2.5. �

4.1. Remark. Many papers and several books disregard the fact that the argu-
ment in the first part of the proof above due to Billingsley works only when all
rj ’s are positive while without this assumption it leads only to the lower bound
of dimension. This gap was noticed and repaired first only in [18] (though it ap-
peared in later papers, as well). The problem here is that when, say, rj0 = 0 then
ϕµr(In(x)) = 0 provided ai(x) = j0 for some i < n and for such x the right hand
side of (4.4) becomes −∞ which leads nowhere. In other words, the measure ϕµr

”disregards” such points while, on the other hand, the set of points x which have
zero frequency of appearences of j0 in their m-expansions is not countable and it
cannot be disregarded in the Hausdorff dimension computation. In order to prove
the result for general probability vectors (r0, ..., rm−1) it is necessary to obtain here
an appropriate upper bound for the Hausdorff dimension either by a combinatorial
argument not related to Billingsley’s ergodic theory one as in [10] or by a simpler
perturbation argument above due to my student Z.Hellman which appeared in a
more general form in [18].

Next, we prove Proposition 2.7. Since for some n the matrix Rn is a positive
matrix then, clearly, each qi =

∑

j rij must be positive and for each i, j there exists a
sequence i1, i2, ..., in−1 such that rii1ri1i2 · · · rin−1j > 0. Then qii1qi1i2 · · · qin−1j > 0,
and so Qn is a positive matrix, as well. Clearly,

∑

i qiqij = qj , and so q is the unique
stationary vector of Q. Set ΞQ = {ξ = (ξ0, ξ1, ...) : qi,i+1 > 0 for all i ≥ 0} where
Q = (qij , i, j = 0, 1, ...,m − 1). Let µQ be the Markov measure on Ξq,Q which
assigns the weight qα0qα0α1qα1α2 · · · qαn−1αn

to each cylinder set Rα0α1...αn
with all

αi ∈ A+. Then µQ is invariant with respect to the left shift on Ξq,Q and its image
ϕµQ on [0, 1] is invariant with respect to T . Under assumptions of Proposition 2.7
the probability matrix Q is a transition matrix of an exponentially fast ψ-mixing
(finite) Markov chain (satisfying Doeblin’s condition), and so the conditions of
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Theorem 2.2 hold true here. We can also rely on Corollary 2.3 since µQ is a Gibbs
measure for the left shift on Ξ constructed by the function ψ(ξ) = − ln qξ0ξ1 , ξ =
(ξ0, ξ1, ...) (see [8]). Since ϕµQ(Γij) = qiqij = rij we conclude from here together
with (2.16), (2.26) and the definition of UP that ϕµQ(UP ) = 1. If VQ = ϕΞQ then
taking into account that µQ(ΞQ) = 1 we obtain also that ϕµQ(UP ∩ VQ) = 1.

Now, for any x ∈ VQ and In(x) as above

(4.14) lnϕµQ(In(x)) = ln qa0(x) +

m−1
∑

i,j=0

mij(x, n) ln qij

where mij(x, n) = #{k ≥ 0, k < n : ak−1(x) = i and ak(x) = j}. If x ∈ UP then
similarly to (4.5),

(4.15) lim
n→∞

1

n
mij(x, n) = rij = qiqij .

It follows that for any x ∈ UP ∩ VQ,

(4.16) lim
n→∞

lnϕµQ(In(x))

ln |In(x)|
= −

∑m−1
i,j=0 qiqij ln qij

lnm
.

and so similarly to (4.7),

(4.17) HD(UP ) ≥ HD(UP ∩ VQ) = −
∑m−1

i,j=0 qiqij ln qij

lnm
.

For the lower bound above we dealt only with points x ∈ VQ where qai(x)ai+1(x) >
0 for all i ≥ 0. In order to obtain the upper bound we employ again a perturbation
argument which in this case seems to be new. Let li, i = 0, 1, ...,m − 1 be the
number of j = 0, 1, ...,m− 1 such that rij = 0 and set ki = m − li. Choose δ > 0
so small that for all i, j = 0, 1, ...,m− 1,

(4.18) rij > k−1
i δ if rij > 0 and ln(l−1

i δ) ≤ k−1
i

∑

j:rij>0

ln((rij − k−1
i δ)q−1

i ).

Set r
(δ)
ij = rij−k−1

i δ if rij > 0 and r
(δ)
ij = l−1

i δ if rij = 0. Observe that
∑m−1

j=1 r
(δ)
ij =

qi and define q
(δ)
ij = r

(δ)
ij q

−1
i yielding a positive m ×m probability matrix Q(δ) =

(q
(δ)
ij ). By (4.18) we have

(4.19)

m−1
∑

i,j=0

rij ln q
(δ)
ij ≥

m−1
∑

i,j=0

r
(δ)
ij ln q

(δ)
ij .

Set

W (δ) = {x ∈ [0, 1] : lim supn→∞

(

− 1
n lnϕµQ(δ) (In(x))

)

≤ −∑m−1
i,j=0 r

(δ)
ij max(1, q

(δ)
i q−1

i ) ln q
(δ)
ij

where µQ(δ) is the Markov measure constructed by Q(δ) and its unique stationary

vector q(δ) (i.e. q(δ)Q(δ) = q(δ)) in the same way as µQ was constructed by Q and
q. As in (4.14),

(4.20) lnϕµQ(δ)(In(x)) = ln q
(δ)
a0(x)

+

m−1
∑

i,j=0

mij(x, n) ln q
(δ)
ij ,
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and so by (4.14), (4.15), (4.19) and (4.20),

(4.21) UP ⊂ {x ∈ [0, 1] : lim
n→∞

(

− 1

n
lnϕµQδ (In(x))

)

= −
m−1
∑

i,j=0

rij ln q
(δ)
ij } ⊂W (δ).

Let

Û = {x ∈ [0, 1] : lim
n→∞

1

n
Nαβ(x, n) =

ℓ
∏

i=1

q(δ)αi
q(δ)αiαj

for all α, β ∈ Aℓ}.

Then for any x ∈ Û ,
(4.22)

lim
n→∞

1

n
mij(x, n) = lim

n→∞

1

n

∑

0≤α2,β2,...,αℓ,βℓ≤m−1

Ni,α2,...,αℓ,j,β2,...,βℓ
(x, n) = q

(δ)
i q

(δ)
ij

and by (4.20) for any x ∈ Û ,

(4.23) lim
n→∞

1

n
lnϕµQ(δ)(In(x)) =

m−1
∑

i,j=0

q
(δ)
i q

(δ)
ij ln q

(δ)
ij =

m−1
∑

i,j=0

q
(δ)
i q−1

i r
(δ)
ij ln q

(δ)
ij .

By Theorem 2.2 (or by Corollary 2.3) we obtain that µQ(δ)(Û) = 1 and since

Û ⊂ W (δ) by (4.23) and the definition of W (δ) it follows that µQ(δ)(W (δ)) = 1.
Relying again on Theorem 2.3 in [5] (or see the proof of Theorem 14.1 in [6]) we
conclude that

(4.24) HD(UP ) ≤ HD(W (δ)) ≤ −
∑m−1

i,j=0 r
(δ)
ij max(1, q

(δ)
i q−1

i ) ln q
(δ)
ij

lnm
.

Since q is the unique probability vector satisfying qQ = q then q(δ) → q as δ → 0
and letting δ → 0 in (4.24) we arrive at

(4.25) HD(UP ) ≤ −
∑m−1

i,j=0 rij ln qij

lnm
.

which together with (4.17) completes the proof of Proposition 2.7. �

Concerning Proposition 2.10 we explained already at the beginning of this section
that the upper bound there follows from the upper bound derived in [13]. Next, we
obtain the lower bound

HD(Up) ≥
hν

2
∫

| lnx|dν(x)

for any ν ∈ N̂ (r̄) in the same way as in Theorem 1 from [7] since in addition
to arguments there concerning continued fractions themselves we need only that
ν(Up) = 1 (actually, already ν(Up) > 0 is enough) which follows from (2.29).

The remaining bound HD(Up) ≥ 1
2 can be proved similarly to Section 4 in [13].

Namely, we construct first points z ∈ Up with an(z) ≤ n for all n ≥ 1. In order to

do this choose probability vectors (r
(n)
1 , r

(n)
2 , ...) such that r

(n)
k > 0 when 1 ≤ k ≤ n,

∑n
k=1 p

(n)
k = 1 and limn→∞ r

(n)
k = rk for any k ≥ 1. Consider independent integer

valued random variables Y1, Y2, ... such that P{Yn = k} = r
(n)
k . Applying Theorem

2.2 we conclude similarly to (4.1) that for any ℓ-word α = (α1, ..., αℓ) ∈ Aℓ and
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P -almost all ω,

(4.26) lim
n→∞

1

n

n
∑

k=1

Iα1(Yq1(k)(ω))Iα2(Yq2(k)(ω)) · · · Iαℓ
(Yqℓ(k)(ω)) =

ℓ
∏

i=1

rαi
.

Now, in order to satisfy our conditions we can take any z whose continued fraction
expansion have digits an(z) = Yn(ω), n = 1, 2, ... with ω such that (2.26) holds
true.

Next, let 0 ≤ m(k) ≤ ℓ be integers such that k2+m(k) 6= qi(k) for all k ≥ 1 and
i = 1, ..., ℓ. For z ∈ Up constructed above and b > 1 define the set

Gz(b) = {x ∈ (0, 1) : ak2+m(k)(x) ∈ (bk
2

, 2bk
2

) and

an(x) = an(z) if n 6= k2 +m(k) for some k}.
Then, clearly, Gz(b) ⊂ Up. Following [13] we construct a measure µ onGz(b) setting
for each rank-m basic interval Im(x) containing x,

µ(Im(x)) =

n
∏

k=1

b−k2

provided n2 ≤ m < (n+1)2. Now, in the same way as in [13] we can show that for
any θ > 0 there exists b > 1 such that for all x ∈ Gz(b),

lim inf
r→0

lnµ(x − r, x+ r)

ln r
≥ 1

2
− θ.

It follows (see, for instance, Theorem 2.3 in [5] or Proposition 4.9 in [11]) that
HD(Up) ≥ HD(Gz(b)) ≥ 1

2 − θ and since θ > 0 is arbitrary we obtain the required

bound. Finally, we observe that if
∑∞

j=1 rj ln j = ∞ then HD(Up) = 1
2 which

follows from the latter lower bound and the upper bound of [13]. �
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