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Properties of the 1/ cosh(t) Laser Pulse, Supersymmetry, and the sine-Gordon Equation
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In this Letter, we explain a well-known but little understood effect in Laser Physics: when a
two-level atom, initially in the ground state, is subjected to a 1/ cosh(t) laser pulse, it remains
in the ground state after the pulse has been applied, for any choice of the laser detuning. To
this end, we reinterpret the effect as the absence of reflection in a corresponding stationary wave
scattering problem and then—inspired by the numerous examples of the reflectionless scattering
in quantum mechanics, wave optics, and linearized mean-field many-body dynamics—identify a
two-step quantum-mechanical supersymmetric (QM SUSY) chain that links the Hamiltonian of the
system to a potential-free problem. At the same time, we observe that our problem trivially maps to
the first member of the Lax pair for the kink soliton solution of the sine-Gordon equation. This allows
us to conjecture that, by analogy with the Korteweg-deVries equation, the multi-soliton solutions
of the sine-Gordon equation can also be systematically generated via supersymmetric chains.

PACS numbers: 32.80.Qk, 03.65.Fd, 02.30.Jr

Introduction.– Historically, reflectionless problems
were first introduced and partially classified in the con-
text of light propagation in a spatially inhomogeneous di-
electric media [1]. Mathematically, this is equivalent to
finding reflectionless potentials for the one-dimensional
non-relativistic Schrödinger equation, as addressed in
Refs. [2, 3]. In a parallel development, an algorithm pro-
ducing multi-soliton solutions of the Korteweg-deVries
equation was proposed [4, 5] which was intimately con-
nected to the reflectionless potentials for the Schrödinger
equation. Another procedure for producing reflectionless
problems can be found in Ref. [6]. The relativistic Dirac
equation in scalar and pseudoscalar external potentials
is also shown to exhibit cases of reflectionless scattering
[7, 8].

The fact that the phenomenon of reflectionless scat-
tering is so peculiar and rare hints to a hidden non-
trivial algebraic structure. Indeed, in the aforemen-
tioned cases, the explanation comes from the alge-
bra of quantum-mechanical supersymmetry (QM SUSY)
[9], which links—via a finite number of intermedi-
ate steps—the reflectionless Hamiltonians to their re-
spective potential-free supersymmetric partners [10–14].
Potential-free Hamiltonians are, in turn, inherently re-
flectionless.

At least three examples of reflectionless problems out-
side of the standard stationary quantum mechanics (non-
relativistic or relativistic) are present in the literature.
No SUSY interpretation is known for any of them. The
reflectionless time-dependent perturbations to the time-
dependent Schrödinger equation were used to generate
multi-soliton solutions of the Kadomtsev-Petviashvili-I
equation [15]. Note that in this case, unlike in all other
known cases, the reflectionless problem is set in two spa-
tial dimensions. Next, the Bogoliubov-de Gennes (BdG)
Liouvillian, representing excitations above the ground
state of a one-dimensional attractive Bose condensate,

is reflectionless at all energies [16, 17].

The third example comes from Laser Physics. Con-
sider a two-level atom, initially in the ground state, and
apply a laser pulse of a finite duration. Generally, the
probability of finding the atom in the excited state after
the pulse is applied is an intricate function of the pulse
intensity, its duration, and the laser detuning. However,
it is known [18] that for pulses of a 1/ cosh(t) shape, the
excitation probability factorizes into a product of a func-
tion of the pulse area and a function of the detuning.
Furthermore, for a discrete series of values of the pulse
area the former function vanishes, and as a result, no
excitation is observed for any choice of detuning.

In this Letter, we reinterpret the no-excitation prop-
erty of the 1/ cosh(t) pulse as absence of reflection in
a stationary scattering problem with an effective non-
Hermitian Hamiltonian acting on two-component wave
functions. We show that our Hamiltonian is linked, via a
two-step SUSY chain, to a potential-free supersymmet-
ric partner; this provides an explanation for the reflec-
tionless property of the original Hamiltonian in question.
Furthermore, a trivial transformation links our scattering
problem to the first member of the Lax pair for the sine-
Gordon equation [19], with the sine-Gordon field in the
state of a stationary kink soliton. This observation in-
dicates that, similarly to the Korteweg-deVries case, the
solitonic solutions of the sine-Gordon equation could be
systematically generated using supersymmetric chains.

Two-Level System with 1/ cosh (t) Pulse.– Consider a
two-level atom subjected to a time-dependent pulse of
the form Veg(t) = V/ cosh (t/τ) and detuning detuning
∆. Here V is the amplitude of the pulse, τ is its dura-
tion, and |e〉 and |g〉 are the excited and ground states
respectively. The time-dependence of this system can be
solved exactly in terms of hypergeometric functions, and
it is known that for specific values of the pulse ampli-
tude, the transition probability is zero regardless of the
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detuning choice ∆ [18]. We consider the first of these
amplitudes given by V = h̄/τ . If we represent the prob-
ability amplitudes of the ground and excited states by
ψg and ψe, respectively, the dynamics of the system will
obey

i
d

dt
ψg = +

∆

2
ψg +

1

τ cosh (t/τ)
ψe

i
d

dt
ψe = +

1

τ cosh (t/τ)
ψg −

∆

2
ψe (1)

The remarkable property of this pulse is that if the pop-
ulation is prepared entirely in the ground state ψg at
t → −∞, then the whole population will return to the
ground state for t → +∞, for any value of ∆. Now, we
can regard the excited state population after the pulse
is applied (generally present, but absent in our case) as
a reflected wave in a scattering problem. Similarly, the
ground state populations before and after the pulse can
be regarded as the transmitted and incident waves, re-
spectively (note the order). To formalize the analogy,
we make the substitution x = −t/τ , u = ψg, v = −ψe,
λ = ∆τ/2. (Note that x is a dimensionless coordinate.)
Now the dynamics of the system can be rewritten as
a two-component spatial eigenvalue problem involving a
2× 2 Hamiltonian, Ĥ:

(

−i d
dx

1
cosh(x)

− 1
cosh(x) i d

dx

)

(

u
v

)

= λ

(

u
v

)

(2)

We will classify the eigenstates by their wavevector k
and by the eigenvalues of Ĥ . For each k we have two
eigenvalues λ = ±k:

| ψk〉
(λ=+k) ∝

(

ik − tanh(x)
2

−i
2 cosh(x)

)

eikx

| ψk〉
(λ=−k) ∝

(

−i
2 cosh(x)

ik − tanh(x)
2

)

eikx (3)

We can see from the eigenstates that Ĥ is reflectionless.
If one replaced the off-diagonal perturbation 1

cosh(x) in (2)

by a perturbation of a general position, the scattering
state | ψk〉

(λ=+k) (whose incident internal state is
(

1

0

)

)

would show a reflected wave,
(

0

1

)

e−ikx, corresponding

to the internal state
(

0

1

)

. The peculiar property of the
1

cosh(x) perturbation is exactly the absence of the reflected

wave. The second scattering state, | ψk〉
(λ=−k), shows

the same phenomenon, with the internal states reversed.
Quantum-Mechanical Supersymmetry and Reflec-

tionless Potentials.– Consider a version of quantum-
mechanical supersymmetry that applies to non-
Hermitian Hamiltonians. Let two Hamiltonians Ĥ0 and
Ĥ1 be related by

Ĥ0 = B̂Â+ ǫ

Ĥ1 = ÂB̂ + ǫ (4)

where ǫ is the factorization energy, and Â and B̂ are the
SUSY factors. Their eigenstates will still be related in
the usual way for supersymmetric partners:

Â | ψ0〉 ∝| ψ1〉

B̂ | ψ1〉 ∝| ψ0〉 (5)

where | ψ0〉 is an eigenstate of Ĥ0 and | ψ1〉 is an eigen-
state of Ĥ1 with the same energy.

A sequence of such supersymmetric relationships will
generate a chain of Hamiltonians:

Ĥ0 = B̂0Â0 + ǫ0

Ĥ1 = Â0B̂0 + ǫ0 = B̂1Â1 + ǫ1
...

Ĥn = Ân−1B̂n−1 + ǫn−1 (6)

For example, if we start with Ĥ0 = − d2

dx2 representing
kinetic energy (with h̄ = 2m = 1), such a sequence, with
ǫn = −n2, generates the chain [10]

Ĥn = −
d2

dx2
−
n (n+ 1)

cosh2 (x)
(7)

where, for any positive integer n, the potentials

Vn (x) = −
n (n+ 1)

cosh2 (x)
(8)

are reflectionless at all energies [20]. The case n = 1 is
the famous Pöschl-Teller potential. The eigenstates of
each potential are linked to the reflectionless eigenstates
of Ĥ0 via the map

| ψn〉 ∝ Ân−1Ân−2 · · · Â0 | ψ0〉 (9)

Each of the operators Âm = d
dx

+m tanh(x) asymptoti-
cally becomes a differential operator with constant coef-
ficients, as does their product. Therefore, the map be-
tween eigenstates locally converts plane waves to plane
waves conserving the direction of momentum. This fact
explains why every member of this SUSY chain is reflec-
tionless at all energies. In general, if a Hamiltonian is
linked to a potential-free Hamiltonian via a supersym-
metric chain, it is reflectionless.
SUSY Decomposition of the 1/ cosh(t) Pulse

Hamiltonian.– Using the known scattering solutions (3)
as a guide, we found that the Hamiltonian Ĥ in the
spatial-interpretation of the 1/ cosh (t) problem (2) is
linked to a potential-free Hamiltonian Ĥ0 via a two-step
supersymmetric chain:

Ĥ0 = B̂0Â0 − i/2

Ĥ1 = Â0B̂0 − i/2 = B̂1Â1 + i/2

Ĥ = Ĥ2 = Â1B̂1 + i/2 , (10)
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where

Ĥ0 =

(

−i d
dx

0
0 i d

dx

)

Ĥ1 =

(

−i d
dx

0
2e−x i d

dx

)

Ĥ = Ĥ2 =

(

−i d
dx

1
cosh(x)

− 1
cosh(x) i d

dx

)

Â0 =

(

d
dx

− 1
2 0

ie−x 1

)

B̂0 =

(

−i 0
e−x i d

dx
+ i

2

)

Â1 =

(

1 − i
2 cosh(x)

−ie−x d
dx

− tanh(x)
2

)

B̂1 =

(

−i d
dx

− i tanh(x)
2

1
2 cosh(x)

e−x i

)

(11)

Similar to the Eqn. (9), the map between the eigenstates
of Ĥ0 and Ĥ is given by

| ψ〉 ∝ Â1Â0 | ψ0〉

where

Â1Â0 =

(

d
dx

− tanh(x)
2 − i

2 cosh(x)

− i
2 cosh(x)

d
dx

− tanh(x)
2

)

(12)

which is fully consistent with the known form of the
eigenstates (3). Notice that each term in the map Â1Â0

asymptotically becomes a differential operator with con-
stant coefficients, similar to (9). This ensures that the
map preserves the reflectionless property of the plane
wave eigenstates of Ĥ0.
Additionally, there exists another supersymmetric

chain linking the Hamiltonians Ĥ0 and Ĥ . It can be
obtained if one reverses the order of the factorization en-
ergies ∓i/2 and uses another set of the SUSY factors
represented by Â′ = σ1Âσ1 and B̂′ = −σ1B̂σ1, where σ1
is the first Pauli matrix.
1/ cosh(t) Pulse Hamiltonian and sine-Gordon

equation.– We now explore another parallel between the
Schrödinger equation and our two-level time-dependent
problem. It is well known [4, 5] that reflectionless poten-
tials V (x) for the Schrödinger operator −(d2/dx2)+V (x)
produce multi-soliton solutions of the Korteweg-deVries
equation if used as initial states. Additionally, all of
the known reflectionless potentials for the Schrödinger
operator can be obtained via SUSY chains originating
from the potential-free Hamiltonian −(d2/dx2) [10–13].
In particular, the first (n = 1) member of the chain
(8) produces a single-soliton solution of the Korteweg-
deVries equation. The subsequent members of the chain
produce n-soliton solutions, where at t = 0 all solitons
are localized at the origin. In general, for any initial

configuration of the solitons, the corresponding initial
state can be obtained via a SUSY procedure.
Consider now the following trivial substitution: ζ =

−x, ψ1 = v, ψ2 = u. Replace the off-diagonal perturba-
tion 1/ cosh(x) in Eqn. (2) by a derivative of a function
of two variables, Φ(ζ, η). Eqn. (2) then becomes

d

dζ
ψ1 = +iλψ1 +

i

2

(

∂

∂ζ
Φ

)

ψ2

d

dζ
ψ2 = −iλψ2 +

i

2

(

∂

∂ζ
Φ

)

ψ1 (13)

This is nothing else but the first member of the Lax pair
for the sine-Gordon equation

∂2

∂ζ∂η
Φ = sin(Φ) (14)

(see [19]). Now notice that, exactly as in the Korteweg-
deVries case [10–13], the lowest relevant member of a su-
persymmetric chain (10),(11) produces the single soliton
solution,

Φ(ζ, η) = 4 arctan(exp(ζ + η)) (15)

of the sine-Gordon equation. Indeed, in this case
(

∂
∂ζ
Φ
)

|
η=0

= 1/ cosh(η), leading directly to system (2).

Summary and outlook.– In this Letter we use quantum-
mechanical supersymmetry to explain why a two level
atom cannot change its internal state under a 1/ cosh(t)
pulse for any value of the laser detuning. At the same
time, we show that the problem trivially maps to the first
member of the Lax pair for the sine-Gordon equation
[19], where the 1/ cosh(t) pulse corresponds to a single
kink soliton.
We conjecture that, by analogy with the Korteweg-

deVries equation [10–13], the multi-soliton solutions of
the sine-Gordon equation can also be obtained using su-
persymmetric chains. This constitutes one of our projects
for the near future.
The striking similarity between the reflectionless wave-

functions (3) for the 1/ cosh(t) pulse and the scattering
solutions of the Bogoliubov-de Gennes equations for a
Bose condensate in the presence of a bright soliton may
also indicate a SUSY mechanism for the absence of re-
flection in the latter case [16, 17]. Identifying this chain
constitutes another direction of future research.
We are grateful to Vanja Dunjko and Steven Jack-

son for enlightening discussions on the subject. This
work was supported by grants from the Office of Naval
Research (N00014-06-1-0455) and the National Science
Foundation (PHY-0621703 and PHY-0754942).
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