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JET SCHEMES OF TORIC SURFACES

ESPACES DE JETS DES SURFACES TORIQUES

HUSSEIN MOURTADA

ABSTRACT. For m € N;m > 1, we determine the irreducible components of the m — th jet scheme of a toric
surface S. For m big enough, we connect the number of a class of these irreducible components to the number
of exceptional divisors on the minimal resolution of S.

RESUME. Pour m € N,m > 1, on détermine les composantes irréductibles des m—espaces des jets d’une
surface torique S. Pour m assez grand, on relie le nombre d’une classe de ces composantes au nombre de
diviseur exceptionnel sur la résolution minimale de S.

1. INTRODUCTION

Nash has related the space of arcs centered in the singular locus of a variety to its resolution of singularities in
1968 (see [I4]). Since the late nineties till nowadays, these schemes and their finite dimensional approximations
-Jet schemes- have generated much interest because of their appearence in motivic integration([8],[2]) and their
use in birationnal geometry [4].

Despite this appearence presence of these jet schemes in numerous articles and in many interesting questions,
few is known about their geometry for specific class of singularities, except for the following three classes:
monomial ideals [5], determinantal varieties [3], plane branches [I1].

While arcs on toric varieties have been intensively studied ([7],[I0],[I],[6]), jet schemes of such varieties are still
unknown. The subject of this note is the study of the jet schemes of toric surfaces. Beside being the simplest
toric singularities, this class of singularities is interesting from two points of view: on one hand these surfaces
are examples of varieties having rational singularities, but which are not necessary local complete intersection,
therefore we can not characterize their rationality by [13] via their jet schemes ; on the other hand, despite that
these singularities are not complete intersections and therfore we do not have a definition of non-degeneration
with respect to their Newton polygon in the sense of Kouchnirenko [9], they heuristically are non-degenerate
because they are desingularized with one toric morphism, so from a jet-scheme theoretical point of view, they
should not have vanishing components [I1] (i.e. projective systems of irreducible components whose limit in the
arc space are included in the arc space of the singular locus) ; this follows from remark 223l For m € N,m > 1,
we determine the irreducible components of the m — th jet scheme S, of a toric surface S. We give formulas
for their number and their dimensions in terms of m, and invariants of the cone that defines S. For a given m,
we classify these irreducible components by an integer invariant that we call index of speciality. We prove that
for m big enough, the components with index of speciality 1, is in 1 — 1 correspondance with the exceptional
divisors that appear on the minimal resolution of S. This is to compare with a result that we have obtained in
[12] for rational double point singularities.
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2. JET SCHEMES OF TORIC SURFACES

Let K be an algebraically closed field. Let X be a K-scheme of finite type over K and let m € N. The

functor F, : K — Schemes — Sets which to an affine scheme given by a K—algebra A associates
Fn(Spec A) = Homg(Spec At]/ (™), X)

is representable by a K—scheme X, called the m—jet scheme of X.
For m,p € N,m > p, the truncation homomorphism A[t]/(t™1) — A[t]/(tP*1) induces a canonical projection
Tm,p : Xm — Xp. These morphisms clearly verify 7y, , o mg.m = mgp for p < m < ¢. This yields an inverse
system whose limit X, is a scheme called the arc space of X. Note that Xy = X. We denote the canonical
projections X,,, — X by 7, and Xoo — X, by ¥,,,. See [] for more about jet schemes.
Let S be a singular affine toric surface defined over K by the cone 0 C Ng = R? generated by (1,0) and (p, q),
where 0 < p < ¢ and p, ¢ are relatively prime. Let (cz,...,ce—1) be the entries greater than or equal to two
occurring in the Hirzebruch-Jung continued fraction associated to ¢/p. Then the embedding dimension of S is
e (18], section 1.6) . We suppose that e > 3, the case e = 3 i.e. the rational double point S = A.,_; is studied
in [12]. Analyzing the convex hull of ¢¥ N M, where M is the dual lattice of N, Riemenschneider has exhibited
the generators of the ideal defining S in A® = SpecK[z1, - ,z.] in [16] ; these are:

cit1—2 ¢ 2 cj—2—2 cj_1—2 . .
Eij = zizj — vy wly T ew s T Ty, where 1<i<j—1<e—1.

Let f € klx1,..., 2] ; for m,p € N such that p < m, we set:
Cont?(f)m(resp.Cont™P(f)m) :={y € Sm | ord,(f) = p(resp. > p)},
Cont?(f) ={v € Sw | ord,(f) = p},
where ord. (f) is the t—order of fo~.

For a, bEN b;éO we denote by [#] the ceiling of ¢. Fori=2,--- e—=1,s € {1,...,[F]|}({ie m>2s—12>1)
andle{s .,m?}, where m$ := mm{(q 1)s,(m+ 1) — s}, we set

D= Cont®(x;)m N Cont (Tit1)m and Cfﬂln = D!

If Ris aring, I C R an ideal and f € R, we denote by V(I) the subvariety of Spec R defined by I and by
D(f) the open set D(f) := Spec Ry.

Lemma 2.1. Fori=2,---,e—1, s > 1, the ideal defining C 125 1 m A5, s

15y = (; W1<j<e0<b<s).

Note that Cy5, , does not depend on i. For j = 1,e, we set C7y, | 1= C5, 4, i =2, e

Proof. Let’s prove that D;5 = V(I]5, ;)N D(xz(-s) z(j-)1> Let v € A, such that ordyx; = ordyzit1 = s.

So, we have ord,z;" = ¢;s > 2s — 1 because ¢; > 2. If moreover ~ lies in Sas_1, then it satisfies F;_; ;41 mod

2%, which is equivalent to ord,x;—; > s, because z{" oy = 0 mod t** and ord,z;y1 = s. The same argument,

using F;_2;, F; ;42 and so on by induction, using the other Ej;’s and F;’s, gives that ord,xz; > s. We deduce
Df,.;s 1 - V( 15255 1) N D( (S) Efi-)l)

The opposite inclusion comes from the fact that a jet in V/(I75, ;)N D(z; 2t Ei)l) C AS, satisfies all the equations

of S modulo ¢**. Since V (I} 5s_1) C A5, is irreducible, the lemma follows.

Proposition 2.2. Fori=2,---,e—1, meN, sc {l,...,[5]} andl € {s,...,m{}}, Cffn 18 irreducible,
and its codimension in AS is equal to

se+ (m—(2s—1))(e—2).

Proof. A similar argument to the one used in 2] shows that 7Tm,2571(Df7’,ln) C G}y, ;- Using Syzigies among
E;,,1<j<h—-1<e—1, we prove that

Df)’fn ={y €A, ; ordyz; =s, ordyziz1 =1, ordyE;, > m+1for (j,h)=(i—1,i+1), j =1, h=1i}.
This explicit description of fon shows that its coordinate ring is isomorphic to a polynomial ring over

Spec K|z; (S) E le] (=), , therefore its closure C7 fn is irreducible. It also allows to compute its codimension.
Ti " Tita ’
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Remark 2.3. For i = 2,--- ;e — 1 and m,s € N such that m > 2s — 1 and | € {s,...,mi}, we have
U (D) # 0.

Proof. Actually we prove that if s <1 < (¢; — 1)s, then Cont®(z;) N Cont'(z;41) # 0. Let u;,i=1,--- ,e, be
the system of minimal generators of ¢¥ N M, i.e. 2% = x;. First note that since (u;,u;1+1) is a Z—basis of M,

there exists a unic v € N such that < u;,v >= s and < u;y1,v >= [. It is enough to prove that v € o. For
e = 4, this is easy to check, and the lemma follows by induction on e.

Proposition 2.4. Let m,s € N such that m > 2s — 1.
(1) Fori=1,e, we have that 7'y, 1 (Cy,_1 N D(xgs))) is irreducible.

m,2s—1

(2) Fori = 2,---,e—1, m > 2s — 1, the irreducible components of w;}2571(0i7§571 N D(a:l(-s))) are the
col e {s, -, ms).

i,m?

Proof. We sketch the proof of (2), the proof of (1) is similar. We have already seen in the proof of proposition
22 that fon C w;?stl(Ci’;s_lﬂD(xES))) forl € {s,---,mj}. Using Syzigies among Ej;,1 < j <h—1<e—1,
we prove that

-t (Cie 1 N D(a:z(-s))) ={veA; ; ordyx; >sforj=1,--- e, ordyz; =s,

m,2s—1 [ m
ordyEjn > m—+1for (j,h)=(i—1,i+1), j=1i, h=1}.
This implies that the coordinate ring of the above set is isomorphic to a polynomial ring over the coordinate
ring of the locally closed subset of the m—jets of the A, 1 singularity defined by E;_1 41, consisting of those
v such that ord,z; = s, ordyx;—1 and ord,x;41 > s. The claim follows from the description of this latter.

8,8 Sxmf+1
Lemma 2.5. C;}, =Ciiy ),

Proof. This follows from the fact that an m—jet should verifie (E; ;+2) modulo m + 1, and from the explicit
description in the proposition [Z.4]

Let S9, := 7,1 (O), where O is the singular point of S. Note that 7,,' (S — {0}) is an irreducible component
of S, of codimension (m+1)(e—2) in A%, ; We will see that the irreducible components of S, have codimension

less than or equal to (m + 1)(e — 2), therefore they are irreducible components of S,.

Proposition 2.6.
S = U Con-
i€{2,....e—1},s€{1,....,[ B }.I€{s,....m]}

Proof. We first look at the case m=2n+1, n > 0. We claim that

-1 ) +1,n+1
Somy1 = U Toms1,25—1(Cins_1 N D(fcgs))) UC it - (¢)
i€{l,...,e},se{1,...,n}

The proof of the claim is by induction on n. By lemma 21l we have that S) = Cl-l”f for any i = 1, ..., e, hence

the case n = 0. Using the inductive hypothesis for n — 1, and the fact that for s € {1,...,n — 1} we have that
Ton—1,25—1 © M2n41,2n—1 = M2n41,2s—1, We obtain:

0 -1 0 _ —1 ,8 (s) -1 n,n
Sont1 = Tontt.on-1(93,-1) = U Tont1.25-1(Cios—1 N D(@;7)) UTgpi 0,-1(Ciiay 1)
i€{l,....e},s€{l,...n—1}

The claim follows from the stratiﬁcat(io)n - -
02721:171 = Uj:l,m ,6(02727:171 ND(z - ) U (Ciné?zfl n V(xln ye T )

J :
and from the fact that by lemma BTl 7, 5, 1 (Clgn_1 0 Vi, 2y = it

3

We then conclude the proposition for m = 2n + 1 in two steps : First by using proposition 241 (2). Second, by
deducing from that fact that the vector (s, s) € o, hence Cont®(x1) N Cont®(z2) # 0, that 7T2_711+1728_1(C;’25571 N

D(xés)))ﬁw;llﬂ_rzsfl (Ciyes ND(2$%)) # 0 ; since by @71 (1) this latter is irreducible, its generic point coincides

K2

with the generic point of one of the irreducible compnents of 7T2_nl+1,2571(0i,’255—1 N D(args))).
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The case m =2(n+1), n > 0 : by (o) we just need to prove that
—1 +1,n+1y _ +1,1
ﬂé(n+1%2n+l((7;2n+q ) —'Lﬁ¢:2,~,e—1 ;k:n+1ynﬂn?+l}cgk(n+ly
The proof is by induction on the embedding dimension. We show below the case e =4 :

If ¢ = c3 = 2, then m™" = n + 1 and by lemma 2T 7T2(1z+1),2(n+1)—1(CZ;(;ZIF)I—I) is defined in A5, ) by

Il";r(:l_ff)l_l whose generators are coordinates and the ideal
2 2
(xgn-i-l)zgn-i-l) _ Ign-i-l) ,IYH_I)IE;H_U _ Ign-l-l)xgn—i-l), Ign+1)$51n+l) _ xén—i—l) )
Therefore 71'2_&I +1),2(n +1)_1( Z";r(il:f)l_l) is irreducible (the above ideal is isomorphic to the ideal which defines

: +1n+l . +1,n+1 +1,n+1
the surface S) and is equal to 022(7111) ,j = 2,3, since D;z(n’il) = D;z(n’il)

(c2 =2 and ¢35 # 2) and (c2 # 2 and c¢3 # 2) follow also easily.

is dense in both. The subcases

8,MG 4 . .
i+1.m » the irreducible components of

i=2,---,e—1,sc{l,....[Z]|} andl € {s,...,m}}.

Theorem 2.7. Let m € N, m > 1. Modulo the identifications Cfni =
S0 = 7-1(0) are the C*!

i,m?
Proof. By propositionZ8, S\ is covered by the c; 'L . But apart from the identifications above, c; g Cis,’l;n,

because by proposition 4] there exist hyperplane coodinates that contain the one but not the other, and
by proposition they have the same dimension. On the other hand C} fn z¢ C; o4

' mo
proposition 2.4] the C’ffn has non-empty intersection with D(a:z(-s)), but C’f,l;l?; C V(xl(»s)). Finally, C5 " Cf’;il,

because by proposition the codimension of the first one is less than or equal to the codimension of the
second one, and the theorem follows.

if s < s, because by

Remark 2.8. Given Theorem 2.7 remark 2.3 means that there are no vanishing components.

Definition 2.9. Let m € N, m > 1, and let C be an irreducible component of S°,. By Theorem 27 there
exist s € {1,...,[%]}, le{s,...,m{} andi € {2,---,e — 1} such that C = C’ffn We say that C' has index of
speciality s. Note that s = ord, (M) := mingenr{ord,(f)} where M is the maximal ideal of the local ring Og g
and v the generic point of C.

For a,b € N, b # 0, we denote by [{] the integral part of §. For ¢,m € N, let m = g.c + r be the euclidian
division of m by c. We set

NZ(m):=(sc— (2s = 1)), for s=1,..,q.; Ni(m):=m—(2s—=2), for s=q.+1,..., (%1
For m € N, m > 1, we call N(m) the number of irreducible component of S,. Then counting the irreducible
components in the Theorem 2.7 we find

Corollary 2.10. If all the ¢; are equal to 2, then N(m) = [F]. Otherwise let ¢;,,...,c;,
{ca, ... ,ce2} different from 2, then we have N(m) = ZL:%J (NE, (m) + (N, (m) = 1) + ...+ (N, (m) —1)).

be the elements in

Corollary 2.11. For m > maz{c;, i = 2,--- ,e — 1}, the number of irreducible components of SO, with index
of speciality s = 1, is equal to the number of exceptional divisors that appear on the minimal resolution of S.

Proof. This comes from the comparaison of corollary 210 with corollary 1.23 in [I5] page 29. 0
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