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JET SCHEMES OF TORIC SURFACES

ESPACES DE JETS DES SURFACES TORIQUES

HUSSEIN MOURTADA

Abstract. For m ∈ N,m ≥ 1, we determine the irreducible components of the m − th jet scheme of a toric
surface S. For m big enough, we connect the number of a class of these irreducible components to the number

of exceptional divisors on the minimal resolution of S.

RÉSUMÉ. Pour m ∈ N, m ≥ 1, on détermine les composantes irréductibles des m−espaces des jets d’une
surface torique S. Pour m assez grand, on relie le nombre d’une classe de ces composantes au nombre de
diviseur exceptionnel sur la résolution minimale de S.

1. Introduction

Nash has related the space of arcs centered in the singular locus of a variety to its resolution of singularities in
1968 (see [14]). Since the late nineties till nowadays, these schemes and their finite dimensional approximations
-Jet schemes- have generated much interest because of their appearence in motivic integration([8],[2]) and their
use in birationnal geometry [4].
Despite this appearence presence of these jet schemes in numerous articles and in many interesting questions,
few is known about their geometry for specific class of singularities, except for the following three classes:
monomial ideals [5], determinantal varieties [3], plane branches [11].
While arcs on toric varieties have been intensively studied ([7],[10],[1],[6]), jet schemes of such varieties are still
unknown. The subject of this note is the study of the jet schemes of toric surfaces. Beside being the simplest
toric singularities, this class of singularities is interesting from two points of view: on one hand these surfaces
are examples of varieties having rational singularities, but which are not necessary local complete intersection,
therefore we can not characterize their rationality by [13] via their jet schemes ; on the other hand, despite that
these singularities are not complete intersections and therfore we do not have a definition of non-degeneration
with respect to their Newton polygon in the sense of Kouchnirenko [9], they heuristically are non-degenerate
because they are desingularized with one toric morphism, so from a jet-scheme theoretical point of view, they
should not have vanishing components [11] (i.e. projective systems of irreducible components whose limit in the
arc space are included in the arc space of the singular locus) ; this follows from remark 2.3. For m ∈ N,m ≥ 1,
we determine the irreducible components of the m − th jet scheme Sm of a toric surface S. We give formulas
for their number and their dimensions in terms of m, and invariants of the cone that defines S. For a given m,
we classify these irreducible components by an integer invariant that we call index of speciality. We prove that
for m big enough, the components with index of speciality 1, is in 1 − 1 correspondance with the exceptional
divisors that appear on the minimal resolution of S. This is to compare with a result that we have obtained in
[12] for rational double point singularities.
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2. Jet schemes of toric surfaces

Let K be an algebraically closed field. Let X be a K-scheme of finite type over K and let m ∈ N. The
functor Fm : K− Schemes −→ Sets which to an affine scheme given by a K−algebra A associates

Fm(Spec A) = HomK(Spec A[t]/(tm+1), X)

is representable by a K−scheme Xm called the m−jet scheme of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→ A[t]/(tp+1) induces a canonical projection
πm,p : Xm −→ Xp. These morphisms clearly verify πm,p ◦ πq,m = πq,p for p < m < q. This yields an inverse
system whose limit X∞ is a scheme called the arc space of X. Note that X0 = X . We denote the canonical
projections Xm −→ X0 by πm and X∞ −→ Xm by Ψm. See [4] for more about jet schemes.
Let S be a singular affine toric surface defined over K by the cone σ ⊂ NR = R2 generated by (1, 0) and (p, q),
where 0 < p < q and p, q are relatively prime. Let (c2, . . . , ce−1) be the entries greater than or equal to two
occurring in the Hirzebruch-Jung continued fraction associated to q/p. Then the embedding dimension of S is
e ([15], section 1.6) . We suppose that e > 3, the case e = 3 i.e. the rational double point S = Ac2−1 is studied
in [12]. Analyzing the convex hull of σ∨ ∩M , where M is the dual lattice of N , Riemenschneider has exhibited
the generators of the ideal defining S in Ae = SpecK[x1, · · · , xe] in [16] ; these are:

Eij = xixj − xi+1x
ci+1−2
i+1 x

ci+2−2
i+2 · · ·x

cj−2−2
j−2 x

cj−1−2
j−1 xj−1, where 1 ≤ i < j − 1 ≤ e− 1.

Let f ∈ k[x1, . . . , xe] ; for m, p ∈ N such that p ≤ m, we set:

Contp(f)m(resp.Cont>p(f)m) := {γ ∈ Sm | ordγ(f) = p(resp. > p)},

Contp(f) = {γ ∈ S∞ | ordγ(f) = p},

where ordγ(f) is the t−order of f ◦ γ.
For a, b ∈ N, b 6= 0, we denote by ⌈a

b
⌉ the ceiling of a

b
. For i = 2, · · · , e−1, s ∈ {1, . . . , ⌈m

2 ⌉}(i.e. m ≥ 2s−1 ≥ 1)
and l ∈ {s, . . . ,ms

i}, where ms
i := min{(ci − 1)s, (m+ 1)− s}, we set

Ds,l
i,m := Conts(xi)m ∩ Contl(xi+1)m and Cs,l

i,m := Ds,l
i,m.

If R is a ring, I ⊆ R an ideal and f ∈ R, we denote by V (I) the subvariety of Spec R defined by I and by
D(f) the open set D(f) := Spec Rf .

Lemma 2.1. For i = 2, · · · , e− 1, s ≥ 1, the ideal defining Cs,s
i,2s−1 in Ae

2s−1 is

Is,si,2s−1 = (x
(b)
j , 1 ≤ j ≤ e, 0 ≤ b < s).

Note that Cs,s
i,2s−1 does not depend on i. For j = 1, e, we set Cs,s

j,2s−1 := Cs,s
i,2s−1, i = 2, · · · , e.

Proof. Let’s prove that Ds,s
i,2s−1 = V (Is,si,2s−1) ∩D(x

(s)
i x

(s)
i+1). Let γ ∈ Ae

2s−1 such that ordγxi = ordγxi+1 = s.

So, we have ordγx
ci
i = cis > 2s− 1 because ci ≥ 2. If moreover γ lies in S2s−1, then it satisfies Ei−1,i+1 mod

t2s, which is equivalent to ordγxi−1 ≥ s, because xci
i ◦ γ ≡ 0 mod t2s and ordγxi+1 = s. The same argument,

using Ei−2,i, Ei,i+2 and so on by induction, using the other Eji’s and Eij ’s, gives that ordγxj ≥ s. We deduce

Ds,s
i,2s−1 ⊂ V (Is,si,2s−1) ∩D(x

(s)
i x

(s)
i+1).

The opposite inclusion comes from the fact that a jet in V (Is,si,2s−1)∩D(x
(s)
i x

(s)
i+1) ⊂ Ae

2s satisfies all the equations

of S modulo t2s. Since V (Is,si,2s−1) ⊂ Ae
2s−1 is irreducible, the lemma follows.

Proposition 2.2. For i = 2, · · · , e − 1, m ∈ N, s ∈ {1, . . . , ⌈m
2 ⌉} and l ∈ {s, . . . ,ms

i}}, C
s,l
i,m is irreducible,

and its codimension in Ae
m is equal to

se+ (m− (2s− 1))(e − 2).

Proof. A similar argument to the one used in 2.1 shows that πm,2s−1(D
s,l
i,m) ⊂ Cs,s

i,2s−1. Using Syzigies among
Ejh, 1 ≤ j < h− 1 ≤ e− 1, we prove that

Ds,l
i,m = {γ ∈ A

e
m ; ordγxi = s, ordγxi+1 = l, ordγEj,h ≥ m+ 1 for (j, h) = (i− 1, i+ 1), j = i, h = i}.

This explicit description of Ds,l
i,m shows that its coordinate ring is isomorphic to a polynomial ring over

Spec K[x
(s)
i , x

(l)
i+1]x(s)

i
x
(l)
i+1

, therefore its closure Cs,l
i,m is irreducible. It also allows to compute its codimension.
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Remark 2.3. For i = 2, · · · , e − 1 and m, s ∈ N such that m ≥ 2s − 1 and l ∈ {s, . . . ,ms
i }, we have

Ψ−1
m (Ds,l

i,m) 6= ∅.

Proof. Actually we prove that if s ≤ l ≤ (ci − 1)s, then Conts(xi) ∩ Contl(xi+1) 6= ∅. Let ui, i = 1, · · · , e, be
the system of minimal generators of σ∨ ∩M, i.e. xui = xi. First note that since (ui, ui+1) is a Z−basis of M,
there exists a unic v ∈ N such that < ui, v >= s and < ui+1, v >= l. It is enough to prove that v ∈ σ. For
e = 4, this is easy to check, and the lemma follows by induction on e.

Proposition 2.4. Let m, s ∈ N such that m ≥ 2s− 1.

(1) For i = 1, e, we have that π−1
m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) is irreducible.

(2) For i = 2, · · · , e − 1, m ≥ 2s − 1, the irreducible components of π−1
m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) are the

Cs,l
i,m, l ∈ {s, · · · ,ms

i}.

Proof. We sketch the proof of (2), the proof of (1) is similar. We have already seen in the proof of proposition

2.2 that Ds,l
i,m ⊂ π−1

m,2s−1(C
s,s
i,2s−1∩D(x

(s)
i )) for l ∈ {s, · · · ,ms

i}. Using Syzigies among Ejh, 1 ≤ j < h−1 ≤ e−1,
we prove that

π−1
m,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) = {γ ∈ A

e
m ; ordγxj ≥ s for j = 1, · · · , e, ordγxi = s,

ordγEj,h ≥ m+ 1 for (j, h) = (i− 1, i+ 1), j = i, h = i}.

This implies that the coordinate ring of the above set is isomorphic to a polynomial ring over the coordinate
ring of the locally closed subset of the m−jets of the Aci−1 singularity defined by Ei−1,i+1, consisting of those
γ such that ordγxi = s, ordγxi−1 and ordγxi+1 ≥ s. The claim follows from the description of this latter.

Lemma 2.5. Cs,s
i,m = C

s,ms
i+1

i+1,m

Proof. This follows from the fact that an m−jet should verifie (Ei,i+2) modulo m+ 1, and from the explicit
description in the proposition 2.4.

Let S0
m := π−1

m (O), where O is the singular point of S. Note that π−1
m (S − {0}) is an irreducible component

of Sm of codimension (m+1)(e−2) in Ae
m ; We will see that the irreducible components of S0

m have codimension
less than or equal to (m+ 1)(e − 2), therefore they are irreducible components of Sm.

Proposition 2.6.

S0
m =

⋃

i∈{2,...,e−1},s∈{1,...,⌈m
2 ⌉},l∈{s,...,ms

i
}

Cs,l
i,m.

Proof. We first look at the case m=2n+1, n ≥ 0. We claim that

S0
2n+1 =

⋃

i∈{1,...,e},s∈{1,...,n}

π−1
2n+1,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) ∪Cn+1,n+1

i,2n+1 . (⋄)

The proof of the claim is by induction on n. By lemma 2.1, we have that S0
1 = C1,1

i,1 for any i = 1, ..., e, hence

the case n = 0. Using the inductive hypothesis for n− 1, and the fact that for s ∈ {1, . . . , n− 1} we have that
π2n−1,2s−1 ◦ π2n+1,2n−1 = π2n+1,2s−1, we obtain:

S0
2n+1 = π−1

2n+1,2n−1(S
0
2n−1) =

⋃

i∈{1,...,e},s∈{1,...,n−1}

π−1
2n+1,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
i )) ∪ π−1

2n+1,2n−1(C
n,n
i,2n−1).

The claim follows from the stratification
Cn,n

i,2n−1 =
⋃

j=1,··· ,e(C
n,n
i,2n−1 ∩D(x

(n)
j )) ∪ (Cn,n

i,2n−1 ∩ V (x
(n)
1 , · · · , x

(n)
e )),

and from the fact that by lemma 2.1 π−1
2n+1,2n−1(C

n,n
i,2n−1 ∩ V (x

(n)
1 , · · · , x

(n)
e )) = Cn+1,n+1

i,2n+1 .

We then conclude the proposition for m = 2n+ 1 in two steps : First by using proposition 2.4 (2). Second, by
deducing from that fact that the vector (s, s) ∈ σ, hence Conts(x1)∩Conts(x2) 6= ∅, that π−1

2n+1,2s−1(C
s,s
i,2s−1 ∩

D(x
(s)
2 ))∩π−1

2n+1,2s−1(C
s,s
i,2s−1∩D(x

(s)
1 )) 6= ∅ ; since by 2.4 (1) this latter is irreducible, its generic point coincides

with the generic point of one of the irreducible compnents of π−1
2n+1,2s−1(C

s,s
i,2s−1 ∩D(x

(s)
1 )).
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The case m =2(n+1), n ≥ 0 : by (⋄) we just need to prove that

π−1
2(n+1),2n+1(C

n+1,n+1
i,2n+1 ) = ∪{i=2,··· ,e−1 ; l=n+1,··· ,mn+1

i
}C

n+1,l
i,2(n+1).

The proof is by induction on the embedding dimension. We show below the case e = 4 :
If c2 = c3 = 2, then mn+1

i = n + 1 and by lemma 2.1, π−1
2(n+1),2(n+1)−1(C

n+1,n+1
i,2(n+1)−1) is defined in Ae

2(n+1) by

In+1,n+1
i,2(n+1)−1 whose generators are coordinates and the ideal

(x
(n+1)
1 x

(n+1)
3 − x

(n+1)2

2 , x
(n+1)
1 x

(n+1)
4 − x

(n+1)
2 x

(n+1)
3 , x

(n+1)
2 x

(n+1)
4 − x

(n+1)2

3 ).

Therefore π−1
2(n+1),2(n+1)−1(C

n+1,n+1
i,2(n+1)−1) is irreducible (the above ideal is isomorphic to the ideal which defines

the surface S) and is equal to Cn+1,n+1
j,2(n+1) , j = 2, 3, since Dn+1,n+1

2,2(n+1) = Dn+1,n+1
3,2(n+1) is dense in both. The subcases

(c2 = 2 and c3 6= 2) and (c2 6= 2 and c3 6= 2) follow also easily.

Theorem 2.7. Let m ∈ N, m ≥ 1. Modulo the identifications Cs,s
i,m = C

s,ms
i+1

i+1,m , the irreducible components of

S0
m := π−1

m (0) are the Cs,l
i,m, i = 2, · · · , e− 1, s ∈ {1, . . . , ⌈m

2 ⌉} and l ∈ {s, . . . ,ms
i}}.

Proof. By proposition 2.6, S
(0)
m is covered by the Cs,l

i,m. But apart from the identifications above, Cs,l
i,m 6⊂ Cs,l′

i′,m,
because by proposition 2.4, there exist hyperplane coodinates that contain the one but not the other, and

by proposition 2.2 they have the same dimension. On the other hand Cs,l
i,m 6⊂ Cs′,l′

i′,m, if s < s′, because by

proposition 2.4 the Cs,l
i,m has non-empty intersection with D(x

(s)
i ), but Cs′,l′

i′,m ⊂ V (x
(s)
i ). Finally, Cs′,l′

i′,m 6⊂ Cs,l
i,m,

because by proposition 2.2 the codimension of the first one is less than or equal to the codimension of the
second one, and the theorem follows.

Remark 2.8. Given Theorem 2.7, remark 2.3 means that there are no vanishing components.

Definition 2.9. Let m ∈ N, m ≥ 1, and let C be an irreducible component of S0
m. By Theorem 2.7, there

exist s ∈ {1, . . . , ⌈m
2 ⌉}, l ∈ {s, . . . ,ms

i} and i ∈ {2, · · · , e− 1} such that C = Cs,l
i,m. We say that C has index of

speciality s. Note that s = ordγ(M) := minf∈M{ordγ(f)} where M is the maximal ideal of the local ring OS,0

and γ the generic point of C.

For a, b ∈ N, b 6= 0, we denote by [a
b
] the integral part of a

b
. For c,m ∈ N, let m = qcc+ r be the euclidian

division of m by c. We set

Ns
c (m) := (sc− (2s− 1)), for s = 1, ..., qc ; Ns

c (m) := m− (2s− 2), for s = qc + 1, ..., ⌈
m

2
⌉.

For m ∈ N, m ≥ 1, we call N(m) the number of irreducible component of S0
m. Then counting the irreducible

components in the Theorem 2.7 we find

Corollary 2.10. If all the ci are equal to 2, then N(m) = ⌈m
2 ⌉. Otherwise let ci1 , ..., cih be the elements in

{c2, . . . , ce−2} different from 2, then we have N(m) =
∑⌈m

2 ⌉
s=1 (N

s
ci1

(m) + (Ns
ci2

(m)− 1) + . . .+ (Ns
cih

(m)− 1)).

Corollary 2.11. For m ≥ max{ci, i = 2, · · · , e− 1}, the number of irreducible components of S0
m, with index

of speciality s = 1, is equal to the number of exceptional divisors that appear on the minimal resolution of S.

Proof. This comes from the comparaison of corollary 2.10 with corollary 1.23 in [15] page 29. �
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