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ERROR ESTIMATES IN HOROCYCLE AVERAGES

ASYMPTOTICS:

CHALLENGES FROM STRING THEORY

MATTEO A. CARDELLA

Abstract. For modular functions of rapid decay, a classical result connects the
error estimate in their long horocycle average asymptotic to the Riemann hy-
pothesis. We study similar asymptotics, for modular functions with not that mild
growing conditions, such as of polynomial growth and of exponential growth at
the cusp. Hints on their long horocycle average are derived by translating the
horocycle flow dynamical problem in string theory language. Results are then
proved by designing an unfolding trick involving a Theta series, related to the
spectral Eisenstein series by Mellin integral transform. We discuss how the string
theory point of view leads to an interesting open question, regarding the behavior
of long horocycle averages of a certain class of automorphic forms of exponential
growth at the cusp.

1. Introduction

In this paper we use a new angle for obtaining insights on asymptotics of long
horocycle averages of certain classes of SL(2,Z)-invariant automorphic functions. We
focus on certain class of polynomial growing conditions, and on a certain class of
exponential growing conditions. Modular functions with such growing conditions do
appear in string theory, in perturbative (one-loop) closed string amplitudes. Re-
markably, their horocycle averages count graded numbers1 of physical particle-like
excitations of a closed string [C1],[CC],[ACER].

The advantage of translating the dynamical problem in string theory terms is in
the possibility of using consistency conditions from string theory to gain insights on
the horocycle average asymptotic. For the two classes of modular forms we will focus
on, the string theory perspective suggests a universal behavior of their long horocycle
average. On the other hand, this universal behavior appears somehow surprising from
the perspective of the theory of automorphic forms.

Once we obtain hints from string theory, we then devise an unfolding method
to prove theorems. This unfolding trick involves a Theta series which is connected
to the spectral Eisenstein series by Mellin integral transform. We shall compare
this Theta-unfolding device with the classical Rankin-Selberg method involving the
spectral Eisenstein series. We illustrate advantages of our methods for automorphic

1A genus one closed string amplitude A is given by the integral of a SL(2,Z) invariant function
f on the fundamental domain DDD ≃ SL(2,Z)\HHH, A =

∫
DDD

dµf . Numbers of closed string states

are encoded in the expansion of the automorphic function f horocycle average,
∫
1

0
dxf(x, y) =

∑
∞

n=0
(dBn − dFn )e−πm2

ny, where dBn (dFn ) is the number of bosonic(fermionic) states corresponding

to a (squared) mass m2
n. Convergence of the long horocycle limit y → 0 corresponds to a subtle

cancelation between bosonic and fermionic particle-like closed string excitations. This cancelation
was called asymptotic supersymmetry in [KS]. Quite interestingly, horocycle averages asymptotics
as (1.2) when translated in closed string theory terms do show intriguing dependence of asymptotic
supersymmetry on the Riemann hypothesis [C1], [CC], [ACER].
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forms of not so mild growing conditions at the cusp. In particular, we reobtain by our
methods results on analytic continuation of the Rankin-Selberg integral transform
for automorphic functions of polynomial growth, derived by different methods in
[Za2]. We then obtain asymptotics for long horocycle averages of modular functions
of polynomial growth including the error estimate, which parallel the rapid decay case
studied in [Za1].

Remarkably, for certain classes of automorphic forms a precise form of the error
estimate in their long horocycle average asymptotic is equivalent to the Riemann
hypothesis [Za1]. This result, originally proved for a certain class of modular functions
of rapid decay in [Za1], is extended here to modular function of polynomial growth.
When applied to modular function appearing in string theory, this result leads to
fascinating connections between enumerative properties of closed string spectra and
the Riemann hypothesis [C1],[CC],[ACER]. These connections extend to multi-loops
closed string amplitudes [CC],[CC2], and results for measure rigidity of unipotent
flows in homogenous spaces [Ra] are intertwined with properties of perturbative closed
string theory.

Let HHH = {z = x+ iy ∈ CCC|y > 0} be the upper complex plane, horocycles in HHH are
both circles tangent to the real axis in rational points (cusps), and horizonal lines,
(which can be thought as circles tangent to the z = i∞ cusp).

(

a b
c d

)

∈ SL(2,R) acts on z ∈ HHH through the Möbius transformation z → az+b
cz+d .

The following one-parameter action of the upper triangular unipotent subgroup UUU ⊂
SL(2,R)

(1.1) gggu :=
{

(

1 t
0 1

)

, |t| ≤ |u|,
}

, u ∈ R

generates motions along horizontal lines inHHH. Long horocycles inHHH do not exhibit
interesting dynamics, since the orbit gggu(x + iy) = {x+ t+ iy, |t| ≤ |u|} for u → ±∞
just escapes to infinity.

However, gggu(x + iy) has an interesting dynamics in the quotient space ΓΓΓ\HHH, ΓΓΓ ≃
SL(2,Z). The horocycle gggu=1(x + iy) is a closed orbit in ΓΓΓ\HHH with length 1/y, as
measured by the hyperbolic metric ds2 = y−2(dx2 + dy2). Quite remarkably, in the
long length limit y → 0, the horocycle gggu=1(x + iy) tends to cover uniformly the
modular domain ΓΓΓ\HHH. Equidistribution of long horocycles in ΓΓΓ\HHH was first seen to
follow by uniquely ergodicity of the horocycle flow [Fu][Da].

From a different angle, methods involving the theory of automorphic forms lead
to interesting results for horocycle flow asymptotic. Quite remarkable is the relation
between error estimates for asymptotics involving automorphic forms averages along
long horocycles and the Riemann hypothesis. By using the Rankin-Selberg method,
Zagier [Za1] has obtained the intriguing result

(1.2)

∫ 1

0

dxf(x, y) ∼ 3

π

∫

DDD

dµf +O(y1−
Θ
2 ), y → 0

when f is a smooth modular invariant function of rapid decay at the cusp y → ∞,
whose hyperbolic Laplacian ∆f is of bounded polynomial growth at the cusp, (see
section 2, proposition 3 for sufficient conditions on f for the asymptotic (1.2) to hold).
µ is the hyperbolic HHH measure, dµ = y−2dxdy, and the error estimate is governed by
Θ = Sup{ℜ(ρ)|ζζζ∗(ρ) = 0}, the superior of the real part of the non trivial zeros of the
Riemann zeta function ζζζ(s), (ζζζ∗(s) = π−s/2ΓΓΓ(s/2)ζζζ(s)).
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The error estimate for the convergence rate in (1.2) is remarkably linked to the
Riemann hypothesis (RH)2, indeed, RH is equivalent to the following condition

(1.3)

∫ 1

0

dxf(x, y) ∼ 3

π

∫

DDD

dµf +O(y3/4−ǫ), y → 0

for every f ∈ C∞
00 (ΓΓΓ\H). Up to date, the error term can be estimated to be O(y1/2+ǫ),

by using the bound Θ ≤ 1 on the real part of the Riemann zeta functions zeros ρ’s in
the critical strip 0 < ℜ(ρ) < 1.

Notation and Terminology

HHH = {z = x+ iy ∈ C, y > 0}, the upper complex plane.

ΓΓΓ ≃ SL(2,Z), the modular group.

DDD ≃ ΓΓΓ\HHH, the standard SL(2,Z) fundamental domain with cusp at z = i∞
ΓΓΓ∞ ⊂ ΓΓΓ, the subgroup of upper triangular matrices.

ζζζ(s) =
∑

n∈N
n−s, ℜ(s) > 1, the Riemann zeta function.

ζζζ∗(s) = π−s/2ΓΓΓ(s/2)ζζζ(s).

ΘΘΘt(z) =
∑

(m,n)∈Z2\{0} e
−πt |mz+n|2

y .

EEEs(z) =
1
2

∑

(c,d)∈Z2,(c,d)=1 y
s|cz + d|−2s.

EEE∗
s(z) = π−sΓΓΓ(s)

∑

(m,n)∈Z2\{0} y
s|mz + n|−2s.

ϑϑϑt(y) =
∑

n∈N>0
e−π t

y
n2

.

MMMy[ϕ](s) =
∫∞

0 dyys−1ϕ(y), the Mellin transform of the function ϕ.

P [ϕ](z) =
∑

γ∈ΓΓΓ∞\ΓΓΓ ϕ(ℑ(γ(z))), the Poincaré series of the function ϕ : R>0 → C.

aaa0(y) =
∫ 1

0 dxf(x, y), the constant term of the modular invariant function f(x, y) =
∑

n∈Z
aaan(y)e

2πinx.

〈f, g〉ΓΓΓ\HHH =
∫

DDD
dxdyy−2f̄(z)g(z), the Petersson inner product of the modular in-

variant functions f(z), g(z).

〈ϕ, ξ〉UUU\HHH =
∫∞

0 dyy−2ϕ̄(y)ξ(y), the inner product on the space of functionsUUU\HHH ≃
R>0 → C.

Due to ΓΓΓ∞ = UUU ∩ SL(2,Z) invariance, a modular invariant function f = f(x, y),
can be decomposed in Fourier series in the x variable, f(x, y) =

∑

n∈Z
aaan(y)e

2πinx.
The constant Fourier term aaa0(y) then equals the f average along the horocycleHHHy :=
(R+ iy)/ΓΓΓ∞

(1.4) aaa0(y) =

∫ 1

0

dxf(x, y) =
1

L(HHHy)

∫

HHHy

dsf,

where L(HHHy) = 1/y is the horocycle length, measured by the hyperbolic HHH metric,

ds = y−1
√

dx2 + dy2.

2See also [Sa], [Ve] for a study of horocycle flows and Eisenstein series for more general quotients
ΓΓΓ\HHH, where ΓΓΓ ⊂ SL(2,Z) is a lattice.
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We focus on two classes of growing conditions for SL(2,Z)-invariant functions.
Modular functions with polynomial growth at the cusp y → ∞:
(1.5)

CCCTypeII = {f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y, y → ∞, ci, αi ∈ C,ℜ(αi) < 1/2, ni ∈ N≥0},

and modular functions with bounded exponential growth at the cusp, whose horocycle
average aaa0(y) grows polynomially at the cusp y → ∞:

(1.6) CCCHeterotic = {f(x, y) ∼ yαeπβye2πiκx, y → ∞;β < 1, κ ∈ Z\{0},ℜ(α) < 1/2}.

For modular functions in both CCCTypeII and CCCHeterotic we address questions related
to the asymptotic of their long horocycle averages aaa0(y), y → 0. The choices of
symbols CCCTypeII and CCCHeterotic, reflect the appearance of modular functions with such
growing conditions respectively in type II string and heterotic string genus one closed
string amplitudes, (with no tachyons in the spectrum). Bounds on α and on β in
(1.5) and (1.6) are universal in string theory, and follow by consistency requirements
(unitarity) of the quantum worldsheet conformal field theory.

String theory suggests that both automorphic functions with growing conditions
in CCCTypeII and CCCHeterotic do have convergent horocycle average in the long limit
y → 0, and should exhibit asymptotic similar to (1.2). Those hints follow from the
following considerations: the exponentially growing part for a modular function f
in CCCHeterotic in string theory language corresponds to a ”non-physical tachyon ”, a
tachyonic state which is not in the physical spectrum. Indeed, the exponentially
growing part f(x, y) ∼ e2πiκxe2πβy, y → ∞, κ ∈ Z \ {0} does not contribute to the f
horocycle average, since

∫ 1

0

dx e2πiκxe2πβy = 0, κ ∈ Z \ {0}.

Non-physical tachyonic states are expected not to influence the physical properties
of the string. Therefore, one expects both Type II and Heterotic strings to have the
same qualitative asymptotic behavior of the spectrum, i.e. both to enjoy asymptotic
supersymmetry in the absence of physical tachyons in their spectra [KS]. This trans-
lates back in the expectation for modular functions in both CCCTypeII and CCCHeterotic to
have the same asymptotic for their long horocycle average aaa0(y) in the y → 0 limit.

In this paper we prove theorems for long horocycle average asymptotic of auto-
morphic functions in CCCTypeII . We also prove some weaker results for CCCHeterotic, and
leave open the complete answer on long horocycle averages for automorhic functions
in CCCHeterotic. We believe this is an interesting open question, since peculiar features
of the class of function CCCHeterotic and the bounds α and β do not seem to be directly
suggested from the theory of automorphic functions. A complete answer on the horo-
cycle average asymptotic for modular function in CCCHeterotic would probe the benefit
one may actually gain by translating the homogenous dynamics horocycle problem in
string theory terms.

In the rest of the introduction, we summarize our results and illustrate ideas and
methods employed to derive them. We shall start with a brief illustration on how the
asymptotic displayed in (1.2) for modular function of rapid decay is derived by the
Rankin-Selberg method [Za2], (more material on that is presented in §2).
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We then switch to modular functions of polynomial growth and discuss why their
long horocycle asymptotic behavior cannot be derived by the standard Rankin-Selberg
method. We then recall a result by Zagier [Za2], which extends the Rankin-Selberg
method in the polynomial growth case, by designing an unfolding method for modular
integrals on a truncated version of the fundamental domain DDD. We contrast Zagier’s
method with an alternative unfolding method we propose here, which relies on a
unfolding trick employing the theta series ΘΘΘt(τ). This theta series ΘΘΘt(τ) is related to
the spectral Eisenstein series EEEs(τ) by a Mellin transform. One of the advantages of
our method is in avoiding complications with unfolding on a truncated version of the
fundamental domain DDD.

1.1. Modular functions of rapid decay and the Rankin-Selberg method. Let
us consider the Rankin-Selberg integral

(1.7) 〈EEEs(z), f(z)〉ΓΓΓ\HHH =

∫

DDD

dxdyy−2EEEs(z) f(x, y),

when f = f(x, y) is a modular invariant function of rapid decay at the cusp y → ∞.

The spectral Eisenstein seriesEEEs(z) has a Poincaré series representation for ℜ(s) >
1

(1.8) EEEs(z) =
∑

γ∈ΓΓΓ∞\ΓΓΓ

ℑ(γ(z))s, ℜ(s) > 1,

where γ(z) = az+b
cz+d , with

(

a b
c d

)

∈ ΓΓΓ.

The possibility of exchanging the series with the integration on the fundamental
domain DDD

∫

DDD

dxdyy−2EEEs(z) f(x, y) =

∫

DDD

dxdyy−2 f(x, y)
∑

γγγ∈ΓΓΓ∞\ΓΓΓ

ℑ(γ(z))s

=
∑

γ∈ΓΓΓ∞\ΓΓΓ

∫

DDD

dxdyy−2 f(x, y)ℑ(γ(z))s,

(1.9)

amounts in being able to perform the unfolding trick. By using modular transfor-
mations γ ∈ ΓΓΓ∞\ΓΓΓ, one unfolds the integration domainDDD ≃ ΓΓΓ\HHH into the half-infinite
strip ΓΓΓ∞\HHH ≃ [−1/2, 1/2)× (0,∞) ⊂HHH.

When f = f(x, y) is of rapid decay at the cusp y → ∞, follows from the polynomial
behavior of EEEs(z) at the cusp

(1.10) EEEs(z) ∼ ys +
ζζζ∗(2s− 1)

ζζζ∗(2s)
y1−s + o(y−N ), y → ∞, ∀N > 0,

eq. (1.9) follows by Lebesgue dominated convergence theorem on the sequence of
products of partial sums of the series in (1.8) times the function f(x, y).

This leads to connect the Rankin-Selberg integral to the Mellin transform of the
function aaa0(y)/y

(1.11)

∫ ∞

0

dy ys−2aaa0(y) =

∫

DDD

dxdy y−2EEEs(z)f(x, y).
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A relevant issue at this point is to determine analytic properties of the integral in
the r.h.s. as a function of the complex variable s. Uniform convergence for y → ∞ of
the Rankin-Selberg integral with respect to the complex variable s, assures that the
integral function in the r.h.s. III(s) := 〈EEEs(z), f(z)〉ΓΓΓ\HHH inherits analytic properties of
EEEs(z). In the present case f is of rapid decay, and uniform convergence of the integral
function III(s) holds. Thus the Mellin transform in the l.h.s. of (1.11) inherits as a
function of the variable s ∈ C the same analytic properties of the Eisenstein series
EEEs(z).

The spectral Eisenstein seriesEEEs(z) has a simple pole in s = 1 with residue 1
2ζζζ∗(2) =

3
π , and poles in s = ρ

2 , where ρ’s are the non trivial zeros of the Riemann zeta function.
This leads to the following meromorphic continuation for the Mellin transform of

the function aaa0(y)/y

(1.12) 〈ys,aaa0(y)〉U\HHH =

∫ ∞

0

dy ys−2aaa0(y) =
C0

s− 1
+

∑

ζζζ∗(ρ)=0

Cρ

s− ρ/2
,

where

C0 = Ress→1

∫

DDD

dxdy y−2EEEs(z)f(z) =
3

π

∫

DDD

dxdy y−2f(z),

and

Cρ = Ress→ρ/2

∫

DDD

dxdy y−2EEEs(z)f(z),

(whenever ρ is a multiple non trivial zero of ζ(s), one has to raise the denominator
in (1.12) to a power equal the order of this zero ).

Finally, one obtains the y → 0 behavior of aaa0(y) displayed in (1.2) by using the
meromorphic continuation given in (1.12), and, (whenever the inverse Mellin trans-
form exists), by using the following proposition:

Proposition 1. Let ϕ = ϕ(y) be a function ϕ : (0,∞) → C, of rapid decay for
y → ∞, with Mellin transform MMM[ϕ](s).

Suppose, that MMM[ϕ](s) can be analytically continued to the meromorphic function

(1.13) MMM[ϕ](s) = −
l

∑

i=1

1

(αi − s)ni+1
, αi ∈ C, ni ∈ N≥0,

then the following asymptotic holds true

ϕ(y) ∼
l

∑

i=1

1

ni!
y−αi logni y + o(yN ) y → 0, ∀N > 0.

Therefore, if one supplies extra conditions on f , which guarantee convergence of the
inverse Mellin transform integral, (discussion on this matter is postponed to section
§2), then from eq. (1.12) and proposition 1, one can prove the asymptotic eq. (1.2).

In section §2 extra material on the rapid decay case is provided. There, we also
contrast horocycle average asymptotic of f of rapid decay with asymptotic and error
estimate of the rate of uniform distribution of the horocycle itself ΓΓΓ∞\(R+ iy) in DDD
in the limit y → 0.
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1.2. Modular functions of not-so-mild growing conditions. Let us start by
discussing what does not go through in the analysis presented in the previous section
when one considers modular functions which decay slower at the cusp then those of
rapid decay.

When f is in CCCTypeII (1.5), the Rankin-Selberg integral in (1.7) is convergent
for Max{αi} < ℜ(s) < 1 − Max{αi}, but it is not uniformly convergent. When
min{αi} > 0 this domain of convergence is disjointed from the strip ℜ(s) > 1 of
convergence of EEEs(z) as the Poincaré series (1.8). This implies that one cannot use
Lebesgue dominate convergence theorem for proving the unfolding trick (1.9), and
thus one cannot reach eq. (1.11).

Moreover, for f ∈ CCCTypeII , the Rankin-Selberg integral is not uniformly convergent
for y → ∞ with respect to the complex parameter s. This leads to the expectation that
III(s) does not inherits only analytic properties ofEEEs(z), but that III(s) had singularities
also depending on αi, ni.

Zagier [Za2] has designed a Rankin-Selberg method for automorphic functions of
polynomial behavior at the cusp by devising an unfolding trick for modular integral
restricted to a truncated version of the fundamental domain DDDT := {x+ iy ∈ DDD|y ≤
T, T > 1}. In this way, He connects analytic properties of the Rankin-Selberg integral
on DDDT , to various quantities involving the modular function f(x, y), and its constant
term aaa0(y). Then by studying the T → ∞ limit, He obtains analytic properties of
the following Rankin-Selberg integral transform RRR∗(f, s),

(1.14) RRR∗(f, s) := ζζζ∗(2s)

∫ ∞

0

dyys−2 (aaa0(y)− ϕ(y)) ,

where

ϕ(y) :=

l
∑

i=1

ci
ni!

yαi logni y

is the leading polynomial growing part for the f(x, y) y → ∞ asymptotic.
RRR∗(f, s) is the relevant integral transform for the polynomial growth case, which

parallels the Mellin transform (1.11) of the rapid decay case.
Analytic continuation of RRR∗(f, s) is given by the following theorem:

Theorem 1. (Zagier, [Za2]) Let f be a modular invariant function of polynomial
growth at the cusp

f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), y → ∞, ∀N > 0,

then the Rankin-Selberg transform (1.14) can be analytically continued to the mero-
morphic function

(1.15) RRR∗(f, s) =

l
∑

i=1

ci

(

ζζζ∗(2s)

(1− s− αi)ni+1
+

ζζζ∗(2s− 1)

(s− αi)ni+1
+

entire function of s

s(s− 1)

)

.

Eq. (1.15) parallels eq. (1.12) of the rapid decay case.

Below we present our methods which allow also to prove theorem 1 by a distinct
route. Our route avoids to use unfolding tricks on truncated versions of DDD as in [Za2].
With our route we will also prove various results of this paper. In order to illustrate
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our methods, and in the polynomial growing case, to contrast it with those in [Za2],
we start by introducing the following

Lattices series magic square:

(1.16)

ΘΘΘt(z)
MMMt−→ EEE∗

s(z)

↑ Py ↑ Py

ϑϑϑt(ℑ(z)) MMMt−→ EEE∗
s(z)

relating four functions of great relevance in analytic number theory. In the up-
per vertexes of the square sit two 2-dimensional lattices series, the dressed spectral
Eisenstein series EEE∗

s(z), and the 2-lattice theta series ΘΘΘt(z),

EEE∗
s(z) := π−sΓΓΓ(s)

∑

ω∈Λz

( |ω|2
ℑ(z)

)−s

,

ΘΘΘt(z) :=
∑

ω∈Λz

e
−πt

(

|ω|2

ℑ(z)

)

,

with Λz := {mz + n ∈ C, (m,n) ∈ Z2 \ {0}, z ∈ HHH} a two dimensional lattice,
with modular parameter z. These two 2-lattice series are related by Mellin integral
transform MMM

EEE∗
s(z) :=

∫ ∞

0

dt ts−1ΘΘΘt(z) =

∫ ∞

0

dt ts−1
∑

ω∈Λz

e
−πt

(

|ω|2

ℑ(z)

)

.

In the lower vertices of the magic square sit two 1-dimensional lattice N>0 series,
that are the homologous of the two dimensional ones

EEE∗
s(ℑ(z)) := π−sΓΓΓ(s)

∑

n∈N>0

(

n2

ℑ(z)

)−s

= ℑ(z)sζζζ∗(2s),

ϑϑϑt(ℑ(z)) :=
∑

n∈N>0

e
−πt

(

n2

ℑ(z)

)

.

The above two 1-dimensional lattice series are also related by a Mellin integral
transform

(1.17) EEE∗
s(ℑ(z)) :=

∫ ∞

0

dt ts−1ϑϑϑt(ℑ(z)).

The vertical arrows in the magic square uplift one dimensional lattice series to two
dimensional lattice series. This works through the relation Λz = N>0 ⊗ Λ̃z, where
Λ̃z := {cz+d|(c, d) ∈ Z2, (c, d) = 1} is the co-primed 2-lattice. The Λ̃z modular group
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is ΓΓΓ ∼ SL(2,Z) identified by the N>0 left action, i.e. ΓΓΓ∞\ΓΓΓ. Therefore

EEE∗
s(z) = π−sΓΓΓ(s)

∑

ω∈Λz

( |ω|2
ℑ(z)

)−s

,

= π−sΓΓΓ(s)
∑

n∈N>0

∑

ω̃∈Λ̃z

( |ω̃|2
ℑ(z)

)−s

=
∑

γ∈ΓΓΓ∞\ΓΓΓ

E∗
s (ℑ(γ(z))),

and by applying a reasoning as above

(1.18) ΘΘΘ∗
t (z) =

∑

γ∈ΓΓΓ∞\ΓΓΓ

ϑϑϑt(ℑ(γ(z))).

Given a modular invariant function f = f(x, y), for certain classes of growing
conditions at the cusp y → ∞, to be discussed below in this paper, by taking in-
ner products defined ΓΓΓ\HHH and for functions defined on UUU\HHH ≃ R>0 with functions
appearing in diagram (1.16), one finds a set of relations displayed by the following

Inner products magic square:

(1.19)

〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH
MMMt−→ 〈EEE∗

s(z), f(z)〉ΓΓΓ\HHH

↓ Unfolding ↓ Unfolding

〈ϑϑϑt(y),aaa0(y)〉U\HHH
MMMt−→ ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH.

The inner product on ΓΓΓ\HHH corresponds to the Petersson inner product between
two modular invariant functions. Given two modular functions f and g, it is defined
as follows

(1.20) 〈f, g〉ΓΓΓ\HHH :=

∫

ΓΓΓ\HHH

dxdy y−2f̄(z)g(z),

where f̄ is the complex conjugate of f . The inner product on UUU\HHH for a pair of
functions ϕ and ξ on R>0 with values in C is defined as

(1.21) 〈ϕ, ξ〉UUU\HHH :=

∫ ∞

0

dy y−2ϕ̄(y)ξ(y).

Vertical arrows in the diagram (1.19) correspond to the following unfolding trick,
which allows to identify the constant map aaa0 as the adjoint map of the Poincaré map
P with respect to the inner products (1.20) and (1.21)
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〈P [ϕ], f〉ΓΓΓ\HHH =

∫

ΓΓΓ\HHH

dxdy y−2P [ϕ](z)f(z),

=

∫

ΓΓΓ\HHH

dxdy y−2f(z)
∑

γ∈ΓΓΓ∞\ΓΓΓ

ϕ(ℑ(γ(z)))

=
∑

γ∈ΓΓΓ∞\ΓΓΓ

∫

Γ\HHH

dxdy y−2f(z)ϕ(ℑ(γ(z)))

=

∫ ∞

0

dy y−2ϕ̄(y)

∫ 1

0

dxf(z)

= 〈ϕ,aaa0[f ]〉U\HHH,

(1.22)

where aaa0[f ] is the constant map,

aaa0[f ](y) :=

∫ 1

0

dxf(z).

The constant map aaa0 in geometrical terms gives the horocycle average of the modular
invariant function f .

The above unfolding trick is equivalent of being able to exchange in the inner prod-
uct 〈P [ϕ], f〉ΓΓΓ\HHH the series over modular transformations in ΓΓΓ∞\ΓΓΓ, with integration
on the fundamental domain DDD ≃ ΓΓΓ\HHH. This possibility depends on the behavior
at the cusp of the product of the modular function f(z) with the Poincaré series
∑

γ∈ΓΓΓ∞\ΓΓΓ ϕ(ℑ(γ(z))).

In the rest of this introduction, we discuss and contrast the classical Rankin-Selberg
method, which we introduced in §1.1, and it corresponds to moving along the right
column of diagram 1.19 in the direction of the arrow, to a Theta unfolding method.
This latter method corresponds to moving along the left column of diagram 1.19 in
the direction of the vertical arrow, and then by using the horizontal lower arrow. For
various classes of growing conditions at the cusp, we shall contrast unfolding of a
modular integral of the product of a function f with the spectral Eisenstein series
E∗

s(z), with unfolding by using the double theta series ΘΘΘt(z). Discussions and results
of this paper should illustrate advantages of using the double theta series ΘΘΘt(z) for
the unfolding trick, when one considers modular invariant functions which have not-
so-mild growing conditions at the cusp. Whether EEE∗

s(z) grows polynomially at the
cusp, a subseries of terms of ΘΘΘt(z) decay exponentially at the cusp, and they are
indeed those terms which allow to perform the unfolding trick. This unfolding trick
allows a better control for modular functions with not-so-mild growing condition at
the cusp.

Our Theta method corresponds to the following route

(1.23)

〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH

↓ Unfolding

〈ϑϑϑt(y),aaa0(y)〉U\HHH
MMMt−→ ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH = RRR∗(f, s).
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The advantage of this route is that it does not require truncations of the domain
of integration DDD. Unfolding of the integration domain in the modular integral

(1.24) 〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH =

∫

DDD

dxdy y−2f(x, y)
∑

(m,n)∈Z2\{0}

e−
π
y
|mz+n|2 ,

follows from decomposition for the theta series ΘΘΘt(z)

(1.25)

ΘΘΘt(z) =
∑

(m,n)∈Z2\{0}

e−πt (mx+n)2+m2y2

y = 1+ϑϑϑt(ℑ(z))+
∑

γ∈ΓΓΓ∞\ΓΓΓ′

ϑϑϑt(ℑ(γ(z))), ΓΓΓ
′

:= ΓΓΓ \ {I},

with γ(z) := az+b
cz+d .

One uses modular transformations from contributions from the third term on the
r.h.s.. where terms of this subseries have the form

ϑϑϑt(ℑ(γ(z))) =
∑

r 6=0

e−π r2t
y

((cx+d)2+c2y2) c, d ∈ Z, c 6= 0, (c, d) = 1,

and correspond to the m 6= 0 subseries in (1.25), whose terms decay exponentially
for y → ∞. Thus, for f in CCCTypeII , by dominate convergence theorem one can
unfold the modular integral 〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH in the upper vertex of the triangular
diagram 1.23, and obtain the quantity in the left lower vertex 〈ϑϑϑt(y),aaa0(y)〉U\HHH. This
corresponds to prove the vertical arrow of the triangular diagram 1.23 to hold for
functions in the class CCCTypeII .

As a next step, in section 3, we estimate both the t → 0 and the t → ∞ asymptotics
of the function

(1.26) iii(t) := 〈ϑϑϑt(y),aaa0(y)〉U\HHH,

which appears in the left lower vertex of 1.23. Due to the arrow in the lower side
of the triangular diagram 1.23, knowledge of t → 0 and t → ∞ asymptotics of the
function iii(t) allows to reconstruct meromorphic expansion of its Mellin transform in
the right lower vertex of 1.23. Since the function in the right lower corner coincides
with the Rankin-Selberg transform of the constant term aaa0(y), this allows to prove
theorem 1. Moreover, the lower row of diagram (1.23) shows a simple connection
between the two functions iii(t) and aaa0(y). This allows to obtain the y → 0 asymptotic
of aaa0(y) by having proved the iii(t) asymptotic. By this route we shall prove the
following

Theorem 2. For a given f = f(x, y) modular invariant function with polynomial
behavior at the cusp

f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), y → ∞ ∀N > 0,

for ci, αi ∈ C, ℜ(αi) < 1/2, ni ∈ N≥0, the following asymptotic holds true

aaa0(y) ∼ C0+
∑

ζζζ∗(ρ)=0

Cρy
1− ρ

2 +

l
∑

i=1

ci
ni!

ζζζ∗(2αi − 1)

ζζζ∗(2αi)
y1−αi logni y+o(yN ), y → 0, ∀N > 0,
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where

C0 =
3

π

∫

DDD

dxdyy−2f(z).

We now sketch how we do prove asymptotics for the function iii(t). This is done in
two steps, first we need the following lemma

Lemma 1. Given a modular invariant function f = f(x, y) with finite integral on DDD,
C0 :=< 1, f >ΓΓΓ\HHH. Let aaa0(y) the f constant Fourier term, then the following relation
holds true

〈ϑϑϑt(y),aaa0(y)〉U\HHH =
1

t
〈ϑϑϑ1/t(y),aaa0(y)〉U\HHH +

C0

t
− C0.

Lemma 1 then allows to prove the following lemma on asymptotics of the function
iii(t)

Lemma 2. Let f = f(x, y) a modular invariant function with polynomial behavior at
the cusp

f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), y → ∞ ∀N > 0

where αi, ci ∈ C, ℜ(αi) < 1/2, ni ∈ N≥0.

Then, for the function iii(t) := 〈ϑϑϑt(y),aaa0(y)〉U\HHH the following asymptotics hold true

i) iii(t) ∼
l

∑

i=1

ci
ni!

ζζζ∗(2αi − 1)tαi−1 logni t+O
(

tA−1 logN−1 t
)

, t → ∞

ii) iii(t) ∼ −C0 +
C0

t
−

l
∑

i=1

ci
ni!

ζζζ∗(2αi − 1)t−αi logni t+O
(

t−a logn−1 t
)

, t → 0

where A := max{ℜ(αi)}, a := min{ℜ(αi)}, N := max{ni}, n := min{ni}, and

C0 =

∫

DDD

dxdyy−2f(z).

We then prove Zagier expansion (1.15) for the Rankin-Selberg transform RRR∗(f, s)
in theorem 1. Our proof uses lemma 2, the horizontal arrow in diagram 1.23 and
proposition 1. Thereafter, with all the collected results we prove theorem 2, on the
long horocycle average asymptotic of functions in CCCTypeII .

1.3. String inspired class of modular functions of exponential growth at

the cusp. Section 4 contains proofs for the class of modular function with growing
conditions in CCCHeterotic (1.6). Examples of functions with such exponentially growing
conditions do appear in one-loop amplitudes in heterotic string theory. We are able to
prove much weaker results on the y → 0 behavior of their horocycle average. However,
string theory suggests better converging behavior then what we managed to prove in
this paper. We leave string theory suggestions as open question at the end of section
§4. By following the route given by the arrows in diagram (1.23), we are able to
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prove the following bound on the growing of the long horocycle average for modular
functions in CCCHeterotic:

Theorem 3. Let f = f(x, y) a modular invariant function with growing conditions
in the class CCCHeterotic defined by eq. (1.6), then its constant term aaa0(y) in the y → 0
grows slower then any function of the form eC/y, ℜ(C) > 0

(1.27) aaa0(y) ∼ o(eC/y) y → 0, ∀c ∈ C, ℜ(C) > 0.

However, as discussed at the beginning of this introductive section, string theory
suggests a much stronger result, namely that in the y → 0 limit aaa0(y) be convergent
and to have asymptotic as in theorem 2. This leads to the following open question:

Open Problem 1. (Prove or disprove the following statement): Given f = f(x, y)
modular invariant function in the class CCCHeterotic (1.6), the following asymptotic holds
true

aaa0(y) ∼ C0 +
∑

ζζζ∗(ρ)=0

Cρy
1− ρ

2 +
ζζζ∗(2α− 1)

ζζζ∗(2α)
y1−α + o(yN ), ∀N > 0, y → 0,

where

C0 =
3

π

∫

DDD

dy

∫

dxy−2f(z).

where this integral is meant in the conditional sense, with integration along the real
axis performed first.

Besides discussing string theory connections and hints for the question in (1), at
the end of section 4 we also discuss the possibility of having a sort of rigidity in the
way the constant term aaa0(y) may grow in the y → 0 limit. The following result related
to this issue is given at the end of section 4:

Proposition 2. Given a SL(2,Z) invariant function f which grows as f(x, y) ∼
e2πβye2πiκx for y → ∞ for a certain non-zero integer κ ∈ Z \ {0}. Then

(1.28) aaa0(y) +
∑

r∈Z \ {0}

aaar(y)e
2πir a

c ∼ e−2πiκ d
c e2πβ

c2

y , y → 0,

for every pairs of Farey fractions a
c ,

d
c , a, c, d ∈ Z, (a, c) = 1, |a| < c, (d, c) = 1 |d| < c,

c > 0. aaar(y) are the Fourier modes in the expansion f(x, y) =
∑

r∈Z
aaar(y)e

2πirx.

We end up section 4 by discussing the possibility that proposition 2 together with
the bound given by theorem 3 may be of help in addressing the open question raised
in 1.

2. Rapid decay case: the Rankin-Selberg method and Zagier

connection to RH

This section contains a review in some details of the Rankin-Selberg method
[R-S] for automorphic functions of rapid decay, (some of the material contained in this
section overlaps with §1.1). We review in details, Zagier proof [Za1] of the dependence
of the error estimate in the horocycle average asymptotic of modular function of rapid
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decay on the Riemann hypothesis, displayed in eq. (1.2) of the introduction. Most of
the material is contained in [Za1], although we have expanded some of the discussions
in [Za1]. Material reported in this section is introductory for our proofs in sections 3
and section 4.

Given f = f(x, y) a modular invariant function of rapid decay at the cusp y → ∞,
the Rankin-Selberg integral is the following modular integral

(2.1) III(s) =

∫

DDD

dxdyy−2f(z)EEEs(z),

on the SL(2,Z) fundamental domain DDD, where

EEEs(z) =
∑

γ∈ΓΓΓ∞\ΓΓΓ

ℑ(γ(z))s = 1

2

∑

c,d∈Z,(c,d)=1

ys

|cz + d|2s ,

is the spectral Eisenstein series. This series is convergent for ℜ(s) > 1, and can
be analytically continued to the full plane s except for a simple pole in s = 1 with
residue 3

π , and poles in s = ρ/2, where ρ’s are the non trivial zeros of the Riemann
zeta function, ζζζ∗(ρ) = 0.

2.1. Unfolding and analytic heritage. The sequence of partial sums of EEEs(z)
times the function f(z) is dominated by EEEs(z)|f(z)|, a integrable function on DDD, for
ℜ(s) > 1. Thus, by dominated convergence Lebesgue theorem, one can exchange the
series with the integral, which amounts to use the unfolding trick for enlarging the
integration domain to half-infinite strip [−1/2, 1/2)× (0,∞) ⊂HHH

III(s) =

∫

DDD

dxdyy−2f(z)
∑

γ∈ΓΓΓ∞\ΓΓΓ

ℑ(γ(z))s

=
∑

γ∈ΓΓΓ∞\ΓΓΓ

∫

ΓΓΓ\HHH

dxdyys−2f(z)

=

∫ ∞

0

dyys−2aaa0(y).

The integral function III(s) inherits analytic properties of EEEs(z), since the modular
integral (2.1) is uniformly convergent for y → ∞ in the complex parameter s. In fact
EEEs(z) grows polynomially for y → ∞

EEEs(z) ∼ ys +
ζζζ∗(2s− 1)

ζζζ∗(2s)
y1−s y → ∞,

while f(x, y) is of rapid decay for y → ∞.

Uniform convergence of the modular integral for the complex parameter s on a set
AAA for z → i∞ means that given ǫ > 0 there exists a corresponding neighborhood Uǫ

of the cusp z = i∞ such that
∣

∣

∣

∣

∫

Uǫ

dxdyy−2f(z)∂n
sEEEs(z)

∣

∣

∣

∣

< ǫ ∀s ∈ AAA, ∀n.

In this case Uǫ = {z ∈ DDD|ℑ(z) > Mǫ}.
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2.2. Poles and Residues of EEEs(z). EEEs(z) has a simple pole in s = 1 with residue
3/π. In fact

EEE∗
s(z) = ζζζ∗(2s)EEEs(z) =

1

2
π−sΓΓΓ(s)

∑

(m,n)∈Z2\{0}

ys

|mz + n|2s ,

is the Mellin transform with respect to the variable t of the function ΘΘΘt(z)

(2.2) EEE∗
s(z) =

1

2

∫ ∞

0

dt ts−1ΘΘΘt(z).

Double Poisson summation gives

ΘΘΘt(z) = −1 +
1

t
+

1

t
ΘΘΘ1/t(z),

thus

ΘΘΘt(z) ∼ −1 +
1

t
t → 0,

while ΘΘΘt(z) is of rapid decay for t → ∞. Therefore by proposition 1, EEE∗
s(z) has a pole

in s = 0 with residue −1/2 and pole in s = 1 with residue 1/2.
Thus it follows that

EEEs(z) =
EEE∗

s(z)

ζζζ∗(2s)

has a pole in s = 1 with residue 1
2ζζζ∗(s) = 3/π and poles in ρ/2, where ρ’s are the

zeros of the Riemann zeta function ζζζ∗(ρ) = 0.

2.3. Zagier’s result on aaa0(y), y → 0 asymptotic. A sufficient condition for the
following y → 0 asymptotic to hold, (displayed in (1.2))

(2.3) aaa0(y) ∼ C +
∑

ζζζ∗(ρ)=0

Cρy
1−ρ/2 y → 0,

is f of rapid decay at the cusp y → ∞, plus some degree of smoothness of the function
f(x, y), and suitable y → ∞ growing conditions for ∆f , (where ∆ := y2(∂2

x + ∂2
y) is

the hyperbolic Laplacian). We make this precise, and derive a sufficient condition for
(2.3) to occur.

The starting point is the Rankin-Selberg integral

(2.4) III(s) =

∫

DDD

dxdy y−2EEEs(z)f(z).

Since the integral function III(s) inherits analytic properties of EEEs(z), III(s) has a mero-
morphic continuation with poles in s = 1, and s = ρ/2, with ρ’s such that ζζζ∗(ρ) = 0.
Define Θ := Sup{ℜ(ρ)|ζζζ∗(ρ) = 0}, 1/2 ≤ Θ < 1, then III(s) − C

s−1 is defined on

ℜ(s) > Θ/2.

Since III(s) = MMM[y−1aaa0(y)](s), a way to obtain (2.3) is to use an inverse Mellin
transform argument. The Mellin inverse-transform of III(s) is

(2.5) MMM−1[III(s)](y) =
1

2πi

∫ σ+i∞

σ−i∞

ds y−sIII(s) =
y−σ

2πi

∫ ∞

−∞

dt y−itIII(σ + it),

wherever III(σ + it) falls off as o(1/t) for t → ±∞.
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If f(z) is twice differentiable, then one can use ∆EEEs(z) = s(s − 1)EEEs(z) and by
integration by parts one finds

(2.6) III(s) = − 1

s(s− 1)

∫

DDD

dxdy y−2EEEs(z)∆f(z).

This shows that I(σ + it) falls off as t−2 for t → ±∞, whenever the integral r.h.s. of
(2.6) is convergent. For our purposes one has to check that this integral is convergent

in σ = Θ
2 + ǫ. For y → ∞, the Eisenstein series goes as Ez(s) ∼ ys + ζζζ∗(2s−1)

ζζζ∗(2s) y1−s,

and since 1/4 < σ = Θ
2 + ǫ < 1/2, indeed EΘ

2 +ǫ(z) ∼ y1−
Θ
2 −ǫ. Thus the integral

in (2.6) is convergent if ∆f(z) respects and upper bound for its polynomial growing
y → ∞, namely ∆f(z) . O(y1/4).

Alltogether, we have the following sufficient condition:

Proposition 3. Given f = f(x, y) a modular invariant function of rapid decay y →
∞. If f is twice differentiable and ∆f . O(y1/4) for y → ∞, then the following holds
true

aaa0(y) ∼ C +O(y1−
Θ
2 ) y → 0,

with Θ := Sup{ℜ(ρ)|ζζζ∗(ρ) = 0}.

2.4. Rate of uniform distribution of long horocycles. For the rate of uniform
distribution of horocyclesHHHy := (R+ iy)/ΓΓΓ∞ ⊂ DDD, in the modular surface DDD ≃ ΓΓΓ\HHH,
one can prove that

(2.7)
L(HHH1/y ∩UUU)
L(HHH1/y)

∼ A(UUU)
A(DDD)

+O(y1/2), y → 0

for every open setUUU ⊂ DDD. L indicates hyperbolic length, (L(γ) =
∫

γ y
−1

√

dx2 + dy2

for a given curve γ ⊂HHH), and A hyperbolic area A(UUU) =
∫

UUU dxdyy−2. Eq. (2.7) shows
that for every open set UUU contained in DDD, the portion of horocycleHHHy contained in UUU
in the limit y → 0 tends to become proportional to the ratio between the area A(UUU)
of UUU , and the area A(DDD) = π/3 of DDD.

The missing presence of Θ = Sup{ℜ(ρ)|ζζζ∗(ρ) = 0} and thus the missing link with
the Riemann hypothesis in the error estimate of (2.7) is due to the fact that some of
the arguments used to prove proposition (3) do not go through in the present case.
In fact, one has

(2.8)
L(HHH1/y ∩UUU)
L(HHH1/y)

=

∫ 1

0

dx χχχUUU (x+ iy),

where χχχUUU (z) is the characteristic function of UUU ⊂ DDD. Also, by using the Rankin-
Selberg method

(2.9) Iχχχ(s) :=MMM
(

1

y

L(HHH1/y ∩UUU)
L(HHH1/y)

)

(s) =

∫

DDD

dxdy y−2χχχUUU (z)EEEz(s).

Since χχχUUU (z) is not smooth, one cannot use the Laplacian ∆∆∆ argument as it was done
for deriving proposition 3. Thus, the inverse-Mellin argument does not go through,
and there is no connection between the rate of uniform distribution of long horocycles
in the modular surface ΓΓΓ\HHH and the Riemann hypothesis.
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3. Modular functions of polynomial growth

For a modular invariant function f of polynomial growth at the cusp

f(z) ∼ ϕ(y) + o(y−N ), y → ∞ ∀N > 0

where

(3.1) ϕ(y) :=

l
∑

i=1

ci
ni!

yαi logni y,

and

αi, ci ∈ C,ℜ(αi) < 1/2, ni ∈ N≥0.

Zagier [Za2] has proved analytic continuation and functional equation of the fol-
lowing Rankin-Selberg integral transform

RRR∗(f, s) : = ζζζ∗(2s)

∫ ∞

0

dyys−2(aaa0(y)− ϕ(y))

=

l
∑

i=1

ci

(

ζζζ∗(2s)

(1− s− αi)ni+1
+

ζζζ∗(2s− 1)

(s− αi)ni+1
+

entire function of s

s(s− 1)

)

.

(3.2)

Eq. (3.2) is obtained in [Za2] by a method which in terms of the following diagram

(3.3)

〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH
MMMt−→ 〈EEE∗

s(z), f(z)〉ΓΓΓ\HHH

↓ Unfolding ↓ Unfolding

〈ϑϑϑt(y),aaa0(y)〉U\HHH
MMMt−→ ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH,

corresponds in considering the Rankin-Selberg integral in the right upper vertex of
diagram 3.3, albeit with a regularization in the integration domain given by a cutoff
T > 1, DDDT = {z ∈ DDD|y < T, }. This truncation allows to apply a version of the
unfolding trick devised for truncated domains DDDT , and to move along the right col-
umn of this diagram. The obtained unfolded T -dependent quantity comprises several
terms, and a careful analysis of the T → ∞ limit [Za2] allows to extract informa-
tion on RRR∗(f, s) = ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH, in the lower right corner of the diagram 3.3.
This leads to prove equation (3.2) for the meromorphic continuation of RRR∗(f, s), plus
additional results on functional equation for the Rankin-Selberg transform RRR∗(f, s)
[Za2].

Here we employ an alternative method which leads us to prove (3.2). This method
allows us to obtain results on the long horocycle average of functions with grow-
ing conditions given in (3.1), i.e. functions in CCCTypeII . Our method comprises the
following two steps in the diagram
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(3.4)

〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH

↓ Unfolding

〈ϑϑϑt(y),aaa0(y)〉U\HHH
MMMt−→ ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH = RRR∗(f, s).

The advantage of this route is that it does not require regularization (truncations)
of the domain of integration DDD. In order to perform the unfolding of the integration
domain in the modular integral

(3.5) 〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH =

∫

DDD

dxdy y−2f(x, y)
∑

(m,n)∈Z2\{0}

e−
π
y
|mz+n|2 ,

from the decomposition for the theta series ΘΘΘt(z)

ΘΘΘt(z) =
∑

(m,n)∈Z2\{0}

e−πt (mx+n)2+m2y2

y = 1 +ϑϑϑ(t/y) +
∑

γ∈ΓΓΓ∞\ΓΓΓ′

ϑϑϑt(1/ℑ(γ(z))),

one uses contributions from the third term on the r.h.s., where ΓΓΓ
′

:= ΓΓΓ \ {I} is
the set of modular transformations minus the identity I. Each term in this series has
the form

ϑϑϑt(1/ℑ(γ(z))) =
∑

r 6=0

e−π r2

y
((cx+d)2+c2y2) c, d ∈ Z, c 6= 0, (c, d) = 1

and corresponds to the m 6= 0 subseries in (3.5), whose terms decay exponentially
for y → ∞. Thus by dominate convergence theorem one can unfold the modular
integral 〈ΘΘΘt(z), f(z)〉ΓΓΓ\HHH in the left upper entry of (3.4) and prove the vertical arrow
connecting the left upper entry with the left lower entry 〈ϑϑϑt(y),aaa0(y)〉U\HHH.

The unfolding trick is doable without using a truncated domain, since the integral in
the left upper corner of the diagram is convergent, under the assumptions ℜ(αi) < 1/2,
for the growing term ϕ(y) in (3.1). Indeed, by Poisson summation one can check that
ΘΘΘt(z) ∼ √

y for y → ∞. Moreover, ΘΘΘt(z) has series representation convergent for
every t > 0. Thus we have the following proposition for Theta-unfolding of a modular
invariant function f with growing conditions in CCCTypeII (1.5):

Proposition 4. Let f = f(x, y) a modular invariant function of polynomial growth
at the cusp y → ∞

f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), ∀N ≥ 0, y → ∞

with

αi, ci ∈ C,ℜ(αi) < 1/2, ni ∈ N≥0.

Then, the following Theta-unfolding relation holds true

(3.6)

∫

DDD

dxdy y−2f(x, y)ΘΘΘt(z) =

∫ ∞

0

dy y−2aaa0(y)ϑϑϑt(y).
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Proposition 4 states that the vertical arrow in diagram (3.4) holds true for modular
functions of polynomial growth class CCCTypeII .

The horizontal arrow in diagram (3.4) indicates that due to the relation between
the functions

(3.7) iii(t) := 〈ϑϑϑt(y),aaa0(y)〉U\HHH

and the function ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH through Mellin transform, knowledge of the
t → ∞ and t → 0 asymptotics for iii(t) implies knowledge of the meromorphic con-
tinuation with orders and locations of poles of the function ζζζ∗(2s)〈ys,aaa0(y)〉U\HHH of
complex variable s. We therefore prove iii(t) asymptotics in two steps, by the two
following lemmas.

Lemma. 1. Let f = f(x, y) a modular invariant functions with growing conditions
as in proposition 4. Let C0 :=< 1, f >ΓΓΓ\HHH, its integral over the fundamental domain
DDD, and let aaa0(y) be the f constant term.

Then, the following relation holds true

〈ϑϑϑt(y),aaa0(y)〉U\HHH =
1

t
〈ϑϑϑ1/t(y),aaa0(y)〉U\HHH +

C0

t
− C0

Proof. By double Poisson summation one finds ΘΘΘt(z) =
1
tΘΘΘ1/t(z)− 1

t − 1. The thesis
then follows by applying the Theta-unfolding in proposition 4, which corresponds of
using the left column in diagram 3.4.

�

By previous lemma, we are now in the position of proving the following lemma
on the asymptotics t → ∞ and t → 0 of the function iii(t) defined by (3.7), (which
appears in the left lower entry of diagram 3.4):

Lemma. 2. Let f = f(x, y) a modular invariant function with polynomial behavior
at the cusp

f(z) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), y → ∞ ∀N > 0

where αi, ci ∈ C, ℜ(αi) < 1/2, ni ∈ N≥0.

Then, for the function iii(t) := 〈ϑϑϑt(y),aaa0(y)〉U\HHH the following asymptotics hold true

i) iii(t) ∼
l

∑

i=1

ci
ni!

ζζζ∗(2αi − 1)tαi−1 logni t+O
(

tA−1 logN−1 t
)

, t → ∞

ii) iii(t) ∼ −C0 +
C0

t
−

l
∑

i=1

ci
ni!

ζζζ∗(2αi − 1)t−αi logni t+O
(

t−a logn−1 t
)

, t → 0

where A := max{ℜ(αi)}, a := min{ℜ(αi)}, N := max{ni}, n := min{ni}, and

C0 =

∫

DDD

dxdyy−2f(z).

Proof. We start by proving i), the function iii(t) is the following integral function

iii(t) =

∫ ∞

0

dyy−2aaa0(y)
∑

r∈Z\{0}

e−πr2 t
y ,
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by change of integration variable y → ty one finds

iii(t) =
1

t

∫ ∞

0

dyy−2aaa0(yt)
∑

r∈Z\{0}

e−π r2

y .

Therefore for t → ∞

iii(t) ∼
l

∑

i=1

ci
ni!

tαi−1

∫ ∞

0

dyy−2+αi (log y + log t)
ni

∑

r∈Z\{0}

e−π r2

y ,

∼
l

∑

i=1

ci
ni!

ζζζ∗(2αi − 1)tαi−1 logni t+O
(

tA−1 logN−1 y
)

.

In order to prove ii), we use lemma 3 which allows to rewrite iii(t) in the following
form

iii(t) =
1

t

∫ ∞

0

dyy−2aaa0(y)ϑϑϑ1/t(y) +
C0

t
− C0

=

∫ ∞

0

dyy−2aaa0(y/t)
∑

r∈Z\{0}

e−π r2

y +
C0

t
− C0,

also for t → 0
∫ ∞

0

dyy−2aaa0(y/t)
∑

r∈Z\{0}

e−π r2

y

∼
l

∑

i=1

ci
ni!

∫ ∞

0

dyy−2−αi (log y − log t)
ni

∑

r∈Z\{0}

e−π r2

y

∼ −
l

∑

i=1

ci
ni!

ζζζ∗(2αi − 1)t−αi logni t+O
(

t−a logn−1 t
)

�

In order to prove Zagier theorem 1 on the analytic continuation of the Rankin-
Selberg transform, from lemma 3 and from the lower row of diagram 3.3, we also need
proposition 1 on standard properties of Mellin transforms. Due to the lower row in
diagram 1.23, by applying proposition 1 on the asymptotics in lemma 3, we obtain
analytic continuation of the Rankin-Selberg transform, as in theorem 1.

From lower row of diagram 1.23, lemma 3 and proposition 1, we also prove the
following theorem on the asymptotic of the long horocycle average of a modular
function in CCCTypeII :

Theorem. 2. Let f = f(x, y) a modular invariant function of polynomial growth at
the cusp

f(x, y) ∼
l

∑

i=1

ci
ni!

yαi logni y + o(y−N ), y → ∞ ∀N > 0

where αi, ci ∈ C, ℜ(αi) < 1/2, ni ∈ N≥0.

The long length limit of the f horocycle average has the following asymptotic
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aaa0(y) ∼ C0+
∑

ζζζ∗(ρ)=0

Cρy
1− ρ

2 +

l
∑

i=1

ci
ni!

ζζζ∗(2αi − 1)

ζζζ∗(2αi)
y1−αi logni y+O

(

y1−A logn−1 y
)

y → 0,

where A := max{ℜ(αi)}, n := min{ni}, and

C0 =
3

π

∫

DDD

dxdy y−2f(z).

4. Modular functions of exponential growth

We now turn to discuss modular invariant functions in the class of growing con-
ditions CCCHeterotic, defined in (1.6). Proofs are obtained by using same methods we
employed in previous sections for the CCCTypeII case, which follow arrows in diagram
3.4.

We start by proving a bound on the growing of the long horocycle average for a
modular function in CCCHeterotic. Some of the ideas contained in the proof of theorem
3 are taken with some degree of re-elaboration them from [KS].

Theorem. 3. Let f = f(x, y) be a modular invariant function with the following
growing condition

f(x, y) ∼ yαe2πiκxeπβy y → ∞ κ ∈ Z \ {0}, β < 1, α ∈ C, ℜ(α) < 1/2.

Then the f long horocycle average aaa0(y) satisfies the following bound

aaa0(y) . o(eC/y) y → 0, ∀C ∈ C, ℜ(C) > 0.

Proof. We consider the following Theta-integral on the modular domain DDD

(4.1) III(t) :=

∫

DDD

dxdyy−2f(z)
∑

(m,n)∈Z2\{0}

e−
πt
y
|mx+n|2 ,

which corresponds to Petersson inner product of the theta series ΘΘΘt(z) with the
function f which appears in the left upper entry of diagram 3.4. Due to the f growing
conditions for y → ∞, the function III(t), for small t, has to be understood as the result
of an integration over DDD, with integration along the real axis performed first. In fact,
the modular integral is only conditionally convergent for z → i∞.

We employ the following decomposition for the theta series ΘΘΘt(z)

(4.2) ΘΘΘt(z) =
∑

(m,n)∈Z2\{0}

e−
πt
y
|mz+n|2 =

∑

Z\{0}

e−πt r2

y +
∑

ΓΓΓ∞\ΓΓΓ′

∑

Z\{0}

e−πt r2

ℑ(γ(z)) ,

where ΓΓΓ
′

= ΓΓΓ \ {I} is the modular group ΓΓΓ minus the identity I.

One has for γ ∈ ΓΓΓ∞\ΓΓΓ′

e−πt r2

ℑ(γ(z)) ∼ e−πtm2y, y → ∞,

with m = cr and c 6= 0 is the third entry of the modular transformation γ. Modular
transformations in γ ∈ ΓΓΓ∞\ΓΓΓ′

allow to unfold integration domain DDD ≃ ΓΓΓ\HHH in III(t)
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into the half-infinite strip ΓΓΓ∞\HHH. From Lebesgue dominated convergence theorem,
for t > 1 one finds
(4.3)

∫

DDD

dxdyy−2f(z)
∑

ΓΓΓ∞\ΓΓΓ′

∑

Z\{0}

e−πt r2

ℑ(γ(z)) =
∑

ΓΓΓ∞\ΓΓΓ′

∑

Z\{0}

∫

DDD

dxdyy−2f(z)e−πt r2

ℑ(γ(z)) .

This leads to the following Theta-unfolding relation (t > 1)
(4.4)

∑

ΓΓΓ∞\ΓΓΓ′

∑

Z\{0}

∫

DDD

dxdyy−2f(z)e−πt r2

ℑ(γ(z)) =

∫ ∞

0

dyy−2

∫ 1/2

−1/2

dxf(x, y)
∑

Z\{0}

e−πt r2

y .

Therefore, for t > 1, the following unfolding relation holds

(4.5) III(t) =

∫ ∞

0

dyy−2aaa0(y)
∑

Z\{0}

e−πt r2

y .

Moreover, one can prove that the function III(t) in her original incarnation (4.1), is
analytic on a strip t ∈ (0,∞)× (−δβ, δβ) ⊂ C, where δβ := 1 − β > 0. Proof of this
statement follows by Poisson summation

(4.6) III(t) =
1√
t

∫

DDD

dxdyy−3/2f(z)
∑

(m,n)∈Z2\{0}

e
−πy

(

m2

t
+n2t

)

e2πimnx,

and by the growing assumption we make on f(x, y) for y → ∞.

Due to analyticity of the l.h.s. in (4.4) on the strip t ∈ (0,∞) × (−δβ , δβ) ⊂ C,
where δβ = 1− β > 0, the r.h.s. cannot be divergent on this strip. This rules out the
following behavior

aaa0(y) =

∫ 1

0

dxf(x, y) ∼ eC/y y → 0 C ∈ C, ℜ(C) > 0,

since such a growing condition would make the integral function in the r.h.s. of (4.4)
to diverge for 0 < t < ℜ(C). �

As remarked already few times in the text, string theory suggests a much stronger
result than theorem 4, namely that in the y → 0 limit aaa0(y) be convergent and to
have asymptotic as in theorem 3.

This leads to the following open question:

Open Problem. 1. Given f = f(x, y) modular invariant function in the class
CCCHeterotic (1.6), prove or disprove that the following asymptotic holds true

aaa0(y) ∼ C0 +
∑

ζζζ∗(ρ)=0

Cρy
1− ρ

2 +
ζζζ∗(2α− 1)

ζζζ∗(2α)
y1−α + o(yN ), ∀N > 0, y → 0,

C0 =
3

π

∫

DDD

dy

∫

dxy−2f(z),

where this integral is meant in the conditional sense, with integration along the real
axis first performed.
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Finally, we would like to add few remarks, that may be relevant to address the
question raised in 1. We consider the possibility that there may be some kind of
rigidity in the ways the horocycle average can grow in the long length limit, for a
modular invariant function f with growing conditions in CCCHeterotic. Rigidity on the
way aaa0(y) grows in the y → 0 limit under growing conditions on f in CCCHeterotic, may
arise by proposition 2 below.

By using the following standard formulae for transformations of the real and imag-
inary part of z ∈ HHH under a SL(2,Z) modular transformation

γ(z) =
az + b

cz + d
,

with c 6= 0
One has

ℜ(γ(z)) = a

c

(x+ b/a)(x+ d/c) + y2

(x + d/c)2 + y2
,

ℑ(γ(z)) = 1

c

y

(x+ d/c)2 + y2
,

one can prove the following proposition for modular functions in CCCHeterotic

Proposition. 2. Given a SL(2,Z) invariant function f which grows as f(x, y) ∼
e2πβye2πiκx for y → ∞, κ ∈ Z \ {0}, Then

(4.7) aaa0(y) +
∑

r∈Z \ {0}

aaar(y)e
2πir a

c ∼ e−2πiκ d
c e2πβ

c2

y , y → 0

for every pair of Farey fractions a
c ,

d
c , a, c, d ∈ Z, (a, c) = 1, |a| < c, (d, c) = 1 |d| < c,

c > 0. aaar(y) are the Fourier modes in the expansion f(x, y) =
∑

r∈Z
aaar(y)e

2πirx.

Perhaps proposition 2 together with theorem 3 turn out to be sufficient to address
the open question 1. Another possibility is that question 1 holds true in the following
way. It may be that all the modular functions in the growing class CCCHeterotic split as
the sum of a modular invariant function in CCCTypeII plus a cusp function in CCCHeterotic,
(a function whose constant term aaa0(y) is identically vanishing) [Za3]. We are not able
to provide answers on this latter possibility, which may give a way to reconcile string
theory suggestions with results in the automorphic function domain.

Finally, it could be as well possible that question raised in 1 has an answer in
the negative. This latter possibility would open some interesting questions in string
theory, related a asymmetry in the ultraviolet limit between Type II and Heterotic
closed strings asymptotics for very massive graded number of states.
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