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Local structure of the set of steady-state solutions to the 2D

incompressible Euler equations

Antoine Choffrut∗ Vladimı́r Šverák†

Abstract

It is well known that the incompressible Euler equations can be formulated in a very

geometric language. The geometric structures provide very valuable insights into the

properties of the solutions. Analogies with the finite-dimensional model of geodesics on

a Lie group with left-invariant metric can be very instructive, but it is often difficult

to prove analogues of finite-dimensional results in the infinite-dimensional setting of

Euler’s equations. In this paper we establish a result in this direction in the simple case

of steady-state solutions in two dimensions, under some non-degeneracy assumptions. In

particular, we establish, in a non-degenerate situation, a local one-to-one correspondence

between steady-states and co-adjoint orbits.
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1 Introduction

1.1 Background

We consider the 2d Euler equations for inviscid incompressible fluid in a smooth bounded

domain Ω ⊂ R
2:

ut + (u · ∇)u+ ∇p = 0

div u = 0

}

in Ω , (1.1)

u ·N = 0 at ∂Ω , (1.2)

where N denotes a unit normal to ∂Ω. It is well-known that the equations have a rich ge-

ometric structure, coming from their interpretation as equations for a geodesic flow in the

group Dvol(Ω) of volume preserving diffeomorphisms. The modern mathematical investiga-

tions exploring this geometric structure were initiated by the 1966 paper of V. I. Arnold [1].

The geometric point of view has lead to important insights about Euler’s equations, often by

analogies with the finite-dimensional situation of the geodesic flow on a Lie group equipped

with a left-invariant metric. [1] The passage from such finite-dimensional models to the

infinite-dimensional setting of Euler’s equations is often impeded by a common difficulty in

infinite dimensions: the assumptions which are needed for straightforward generalizations

of basic results of finite-dimensional Calculus (such as the Implicit Function Theorem) are

too strong to be satisfied in situations of interest. For important advances in this direction,

see for example [4, 5, 13, 16].

Our goal in this paper is to establish rigorously, in certain cases, a geometric picture of

the structure of the set of steady-states of Euler’s equations (1.1), (1.2) suggested by the

[1]We refer the reader to monograph [2] for examples.
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finite-dimensional situation. The main theorem will be for the case when Ω is diffeomorphic

to an annulus, but it seems reasonable to set up the problem in greater generality.

Our results are best described in the vorticity formulation of the equations. We assume

that Ω ⊂ R
2 is a bounded smooth domain. The connected components of ∂Ω will be denoted

by Γ0,Γ1, . . . ,Γl, with Γ0 bordering the unbounded connected component of R2 \ Ω.

Any (smooth) divergence-free velocity field u in Ω satisfying u · N = 0 at ∂Ω can be

represented by a stream function ψ, defined by

u = ∇⊥ψ =

(

−ψx2
ψx1

)

. (1.3)

Clearly, ψ is defined uniquely by u up to a constant. Therefore, without loss of generality

we set ψ|Γ0 = 0. The vorticity ω is defined by

ω = u2,x1 − u1,x2 = ∆ψ . (1.4)

The stream function ψ is determined by ω and suitable boundary conditions. To identify

these boundary conditions, we note first from (1.2) that, for each fixed time, ψ is constant

also on any other boundary component. However, the constants can depend on time, i.e.

ψ|Γi may not, in general, be constant during the evolution for i = 1, . . . , l. But by Kelvin’s

theorem on conservation of circulation of u, γi =
∫

Γi
∂ψ
∂N

are constant along the flow. (Note

that, by the Gauss-Green theorem and the divergence-free condition in (1.1), the circulation

γ0 around Γ0 is determined by γi, 1 ≤ i ≤ l.) The constants γi, 1 ≤ i ≤ l will be considered

as fixed parameters throughout the paper. Therefore, denoting by τ the unit tangent vector

to the boundary given by rotating the normal N by π/2, our boundary conditions will be

ψ|Γ0 = 0, (1.5)

∂ψ

∂τ
|Γi = 0, i = 1, . . . , l , (1.6)

∫

Γi

∂ψ

∂N
= γi, i = 1, . . . , l . (1.7)

We introduce the subspace

Uγi = {ψ ∈ C∞
Ω

satisfying (1.5) − (1.7)}, (1.8)

of the space of stream functions

U = {ψ ∈ C∞
Ω

satisfying (1.5) − (1.6)}. (1.9)

Together with ω and the equation

∆ψ = ω (1.10)
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the boundary conditions (1.5)-(1.7) uniquely determine ψ (see [10]). Denoting by

{f, g} = fx1gx2 − fx2gx1 (1.11)

the 2d Poisson bracket, equation (1.1) can be rewritten as

ωt + {ψ, ω} = 0 , (1.12)

where ψ is determined by ω through (1.10) and the boundary conditions (1.5)– (1.7). Equa-

tion (1.12) describes the transport of ω = ω(t) by the group Dvol(Ω): we have

ω(t) = ω(0) ◦ η−1(t) , (1.13)

where η(t) ∈ Dvol(Ω) represents the particle trajectories and η−1 denotes the inverse of η.

In other words, letting for each smooth function ω on Ω

Oω = {ω ◦ η−1 : η ∈ Dvol(Ω)} , (1.14)

and

ω0 = ω(0), (1.15)

the solution of (1.12) always stays on Oω0 . Moreover, equation (1.12) can be thought of

(formally) as a Hamiltonian system on Oω0 , with the Hamiltonian given by the usual energy

E(ω) =

∫

Ω

1

2
|∇ψ|2 =

∫

Ω
−

1

2
ωψ +

l
∑

j=1

1

2
γjψ|Γj . (1.16)

The (formal) symplectic structure on Oω0 is of course of great independent interest, but we

will not be concerned with it in this work. We will only study the equilibria, and these are

(formally) characterized as the critical points of the restriction of E to the orbits Oω. [2]

To summarize, we formally have the following situation: the space of vorticities is foliated

by the orbits Oω, and the equilibria are the critical points of E restricted to the orbits. In

finite dimension a routine application of the Implicit Function Theorem would imply that if

Oω̄ is smooth near ω̄ and ω̄ is a non-degenerate critical point of E on Oω̄, then, near ω̄, the

equilibria form a manifold transversal to the foliation by the orbits, of dimension equal to

[2]It is important to point out that the space of vorticities is formally a Poisson manifold, not a symplectic

manifold. The orbits Oω can be considered as symplectic leaves of this Poisson manifold. See e. g. [11] for

details. See also [8, 17]. The quantities If =
∫

Ω
f(ω) are Casimir functions. They will also be conserved if

E is replaced by any other Hamiltonian, and they do not generate any symmetries. Such situation typically

arises in the process of symplectic reduction, and our situation is an example of this: Euler’s equations

appear as a result of the reduction of the geodesic flow in the co-tangent bundle of Dvol by the group Dvol.

The space of vorticities can be identified with the dual of the Lie algebra of Dvol, and the orbits Oω are the

orbits of the co-adjoint representation of Dvol.
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the co-dimension of the orbits. In other words, in a non-degenerate situation, the equilibria

are locally in one-to-one correspondence with the orbits.

Our goal is to establish an analogue of this correspondence in the context of (1.12).

Several obstacles have to be overcome: the orbits Oω are typically not sub-manifolds of the

space of vorticities if we work with the usual Banach spaces used in PDEs; certain linearized

operators suffer from loss of derivatives; it is not clear what are good “coordinates” in which

to do calculations. Our main result is, roughly speaking, that the difficulties can be resolved

for steady-states for which the vorticity ω has no critical points in Ω̄. This assumption is

of course restrictive. However, it is likely that in some situations the critical points of ω

can genuinely complicate the picture and lead to some degeneracies, especially in the case

of hyperbolic critical points. Elliptic critical points seem to be less dangerous. They still

lead to difficulties for our method (namely certain linear maps are no longer “tame”, see

Section 1.3), but these might perhaps be manageable.

We now outline the main points of our approach. We start with the classical observation

that any function ψ satisfying

∆ψ = F (ψ) (1.17)

with the boundary conditions (1.5)– (1.7) gives a steady-state. This is easily seen from (1.12).

Moreover, if ψ̄ and F̄ solve (1.17), (1.5)– (1.7), and if ω̄ = F̄ (ψ̄) has no critical points, then

any nearby steady-state can be obtained in this way. This is one reason for the restriction on

the geometry of Ω: the condition that ω̄ has no critical points imply that Ω is diffeomorphic

to an annulus, as ω̄ is constant on ∂Ω. (For the case where ω has a single elliptic critical

point in a simply connected domain Ω, a refinement of our method seems necessary.) The

boundary of Ω consists then of an inner and outer boundary components,

∂Ω = Γi ∪ Γo. (1.18)

This is one characterization of the steady-states in the situation we wish to investigate: we

see that they are, in some sense, locally parametrized by the functions F such that

F ′ 6= 0. (1.19)

The map F 7→ ψ, defined via (1.17) and (1.5)– (1.7) is not quite one-to-one, since changes

to F̄ outside the range of ψ̄ do not change the solution ψ̄, but this is not a serious problem.

It is worth remarking that steady-states of the form (1.17) with F ′ 6= 0 naturally arise

in the statistical theories of 2D Euler flows, see [12, 18, 21], and in Shnirelman’s theory of

mixing, see [20].

Our plan is to establish the correspondence between the functions F in (1.22) and the

orbits Oω. By contrast with the finite-dimensional case, there is a simple obstacle showing
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that we cannot really consider all orbits Oω: for any steady-state solution satisfying (1.5)–

(1.7) the vorticity ω must be constant along each boundary component. We introduce the

space

F = {ω ∈ C∞
Ω

|
∂ω

∂τ |∂Ω
= 0}. (1.20)

Our main result (Theorem 1) establishes a local correspondence between the functions F

and the orbits contained in F , i.e. with constant values of ω at the boundary components.

We need to introduce some (local) parametrization of the “space of orbits” Oω. The

distribution functions Aω defined by

Aω(λ) = |{x ∈ Ω | ω(x) < λ}| (1.21)

provide a good option for those orbits Oω ⊂ F with constant values of ω on the boundary

components, and for which ω has no critical points, see Proposition 8. (The assumption

that ω has no critical points surfaces again and imposes on Ω to be diffeomorphic to an

annulus.) In fact it will be better to work with the inverses A−1
ω , for several reasons. One is

that their domain, which is the interval [0, |Ω|], does not change, and another is the identity

A−1
ω = F ◦ A−1

ψ (1.22)

satisfied by the solutions of (1.17) in the case when F ′ > 0 (when F ′ < 0 a similar identity

holds; in the proof we will perform computations assuming F ′ > 0 for simplicity, the case

F ′ < 0 being completely analogous). This identity will be crucial for the analysis for the

following reason: it shows that there is a chance for establishing some correspondence be-

tween F and A−1
ω . The right-hand side of (1.22) is non-linear in F (as ψ depends on F ), but

the non-linear part comes in only through ψ and hence it is regularized by equation (1.17).

In some sense, the leading part of the dependence of A−1
ω on F behaves as a composition of

F with a fixed function, which, for many purposes, is almost the same as identity. Heuris-

tically, the function A−1
ω can be thought of as being obtained from F by applying a kind

of non-linear Fredholm map to F . This “Fredholmness” of the map F 7→ A−1
ω is crucial for

our approach. On the other hand, the linearization of A−1
ω suffers from loss of derivatives,

and (1.22) shows it quite clearly:

δ(F ◦ A−1
ψ ) = (δF ) ◦ A−1

ψ + (F ′ ◦ A−1
ψ ) · δ(A−1

ψ ) . (1.23)

The first term on the right-hand side is very good, but the second term contains F ′. This

does not seem to be easy to avoid, and it can be overcome by working with the Nash-Moser

Implicit Function Theorem, which will enable us to establish a good local correspondence

between F and A−1
ω mentioned above, see Theorem 1. The correspondence between F and

A−1
ω cannot be one-to-one, as already noted above, but only for the trivial reason that
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in (1.17) the behavior of F outside the range of ψ does not affect the solution. Theorem 1

does contain an injective part, though, which says that, if two nearby steady-states have

same distribution functions, then they are identical. Also, some natural non-degeneracy

assumptions are needed, in the form of transversality conditions for linearized operators.

Some conditions of this form are needed even in the finite-dimensional situation.

1.2 Statement of main result

We first introduce the two non-degeneracy assumptions of Theorem 1.

We will denote ψ̄, F̄ , and ω̄ = F (ψ) the quantities associated with a reference steady-

state. The function F in (1.17) gives a good (local) parametrization of steady-states when

F ′ 6= 0 (modulo the lack of injectivity mentioned above). For this reason Ω is assumed to

be diffeomorphic to an annulus. However, a well-defined map F 7→ ψ returning a solution

to

∆ψ = F (ψ), ψ|Γo = 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l (1.24)

can be constructed in a neighborhood of F , modulo some non-degeneracy condition dis-

cussed shortly, for an arbitrary number l of boundary components. Thus for the construc-

tion of the map F 7→ ψ we will make no restriction on the topology of Ω.

The map F 7→ ψ is well-defined provided the linear map

∆φ− F ′(ψ)φ = k, φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0 (1.25)

is invertible for each k ∈ C∞
Ω

and for each F in a neighborhood of F . In fact, it is enough

to make this assumption at the reference steady-state only :

(ND1)































the reference steady-state ω = F (ψ) is non-degenerate in the sense that

∆φ− F
′
(ψ)φ = 0, φ|Γo = 0, ∂φ

∂τ |Γi
= 0,

∫

Γi
∂φ
∂N

= 0, 1 ≤ i ≤ l

has only the trivial solution φ ≡ 0.

By the Fredholm alternative, the operator ∆ − F
′
(ψ) is invertible with the boundary con-

ditions of (ND1). Since we do not work in a Banach-space setting but with Fréchet spaces,

it is not automatic that (ND1) implies that ∆ − F ′(ψ) is invertible in C∞ for F near F .

See [7] for a discussion of this crucial point and counterexamples, in particular Section I.5.5

of Part I.

The second non-degeneracy condition says that the steady-states and the co-adjoint

orbits intersect trivially. (Since now we are using the parametrization of the “space of
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orbits” via the distribution functions Aω, we will need to impose that Ω is diffeomorphic to

an annulus since then it is crucial that ω has no critical points.) More precisely, a tangent ν

to the set of steady-states at ω is a solution to the linearized steady-state equation ω = F (ψ),

i.e. ν = ∆φ where φ solves, for some f ,

∆φ = F ′(ψ)φ+ f(ψ), φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0. (1.26)

A function ν is tangent to the co-adjoint orbit Oω at ω if there exists a stream function

α ∈ U such that ν = {ω,α}. (This is immediate by linearizing ω ◦ η at η = Id.) The second

non-degeneracy condition is as follows:

(ND2)































if φ satisfies the linearized steady-state equation (1.26) at ω = F (ψ)

and if ν = ∆φ is tangent to O(ω) at ω, i.e. ν = {ω,α} for some α ∈ U ,

then φ = 0.

Again, we emphasize that this non-degeneracy assumption is made at the reference steady-

state only and not in an entire neighborhood.

Theorem 1 Let Ω ⊂ R
2 be diffeomorphic to an annulus with inner and outer boundary

components Γi, Γo respectively. Consider a smooth steady-state solution to Euler’s equation

on Ω with vorticity ω and stream function ψ without critical points. Let F and γi such that

∆ψ = F (ψ), ψ|Γ0
= 0,

∂ψ

∂τ |Γi
= 0, γi =

∫

Γi

∂ψ

∂N
(1.27)

(in particular F
′
6= 0). Assume further that (ND1) and (ND2) are satisfied. Then, there

exists a neighborhood W of ω in C∞
Ω

∩ F such that each co-adjoint orbit intersecting W

contains exactly one smooth steady-state solution there.

Remark W can be taken to be a ‖ · ‖11-neighborhood. See Proposition 19 (proving

the injective part of Theorem 1) and the Remark after the statement of Theorem 21 in the

Appendix (on the existence part of the Nash-Moser Inverse Function Theorem).

An important aspect of the proof of Theorem 1 is that both non-degeneracy assumptions

(ND1) and (ND2), which are made at the reference steady-state, are sufficient to imply non-

degeneracy for steady-states in an entire neighborhood. It turns out that (ND1) and (ND2)

are of exactly the same type, and the proof that DT (F )f has a tame right-inverse will

parallel the proof that ∆φ − F ′(ψ)φ = k (with the boundary conditions of (1.26)) has a
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tame inverse. There is a kind of Fredholmness at work in both cases. To understand (ND1),

consider the linear elliptic equation

∆φ+ cφ = k (1.28)

parametrized by c and with the same boundary conditions as in (1.26). The second term

K(c)φ = cφ is a “compact” perturbation of ∆φ in the sense that, for each n ≥ 0, cφ is Cn+2,α

when ∆φ is Cn,α (assuming c is smooth). Assume that c is non-degenerate in the sense that

∆+c has trivial kernel in C∞. Then, ∆+c is also non-degenerate if ‖c−c‖0,α is sufficiently

small. This comes from the estimate ‖(c− c)φ‖n,α ≤ C‖c− c‖0,α‖φ‖n,α+C‖c− c‖n,α‖φ‖0,α.

In addition, the elliptic estimates are easily converted into tame estimates for the inverse.

The main thrust in using the Nash-Moser theorem (see Theorem 3) is to show that

the derivative DT has a tame right-inverse. For the problem at hand, this boils down to

showing that a map of the form

h = g +K(F )g (1.29)

has a tame inverse (see Proposition 18 of Section 4.3). This is possible since, here again,

the second term K(F )g is a “compact perturbation” in the sense that, for each n ≥ 0,

K(F )g is Cn+2,α when g is Cn,α (and F is smooth). On the other hand, estimates on

‖K(F )g−K(F )g‖n,α are considerably more difficult to establish than those on ‖(c−c)φ‖n,α.

Again, estimates for h = g +K(F )g yield easily tame estimates for the inverse.

The special case F ′ > 0

When F ′ > 0, it is clear that (ND1) is automatically satisfied at ω = F (ψ) (multiply

(1.26) and integrate by parts). It turns out that (ND2) is also automatically satisfied. Let

ν = {ω,α} satisfy (1.26). Then
∫

Ω

ν2

F ′(ψ)
=

∫

Ω
φν +

∫

Ω

f(ψ)

F ′(ψ)
{ω,α}. (1.30)

The second term of the right-hand side vanishes using (1.47). Integrating by parts,
∫

Ω

(

ν2

F ′(ψ)
+ |∇φ|2

)

= 0 (1.31)

which forces φ = 0 when F ′ > 0.

Theorem 1 is a statement about the local structure of the set of steady-states. However,

the proof suggests that a global statement should hold in the case where F
′
> 0. Namely

one might speculate that the entire collection of steady-states satisfying F ′ > 0 is in one-

to-one correspondence with their co-adjoint orbits. In other words, on any orbit containing

a steady flow with F ′ > 0, this flow might be unique with this property. Note that this is

certainly true for radial flows since the profile of ω and Aω are the same up to a change of

variables. In this case, (1.24) reduces to a second order ODE with two boundary conditions.
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1.3 The Nash-Moser Inverse Function Theorem and tame estimates

The Nash-Moser Inverse Function Theorem for tame Fréchet spaces (see Theorem 3) bears

certain important differences with the classical Inverse Function Theorem in Banach spaces.

These differences concern in particular the notion of differentiability (which is in a sense

weaker than the usual one for Banach spaces), the notion of tameness, and the fact that

a right-inverse to the first derivative is assumed to exist in an entire neighborhood of F

and not just at F . The aim of this Section is to address these differences by giving precise

definitions and clarifying certain assumptions. See Theorem 21 in the Appendix for the

existence part of the Nash-Moser Inverse Function Theorem.

Our terminology and definitions mosly follow [7].

Smooth maps of Fréchet spaces

Let the topology on a Fréchet space X be defined by a countable family of semi-norms | · |n,

n = 0, 1, 2, . . . We will be exclusively concerned with spaces C∞
K of smooth functions on a

compact manifold K (possibly with boundary), and the semi-norms will be either the norms

‖ · ‖n-norms (i.e. the sup-norms of derivatives up to n-th order) or the ‖ · ‖n,α-norms (i.e.

the Hölder-norms of derivatives up to n-th order). Two gradings on X (i.e. two families of

semi-norms | · |n and | · |′n, n = 0, 1, 2, . . . ) are equivalent if they define the same topology.

Let now X ,Y be Fréchet spaces with semi-norms | · |n, n = 0, 1, 2, . . . (for simplicity,

we will use the same notation for the gradings of X and Y). Let B be an open set and

P : (B ⊂ X ) → Y a map between these Fréchet spaces. Continuity is defined as usual.

In particular, when X and Y are of the form C∞
K , then P is continuous on B if, for each

n, there exists m = m(n) such that P : (B, | · |m(n)) → (Y, | · |n) is continuous. Also, two

gradings are equivalent if the identity maps

Id : (X , {| · |n}n) → (X , {| · |′n}n), Id : (X , {| · |′n}n) → (X , {| · |n}n) (1.32)

are both continuous. Clearly the Ck- and the Ck,α-gradings are equivalent on C∞
K . The

corresponding topology is called the C∞-topology. For the spaces of the form C∞
K , we will

prove continuity of maps using whichever grading is more convenient (the Ck,α-grading for

operators involving elliptic equations, the Ck-grading otherwise).

The notion of differentiability, on the other hand, is in a sense weaker than the usual

notion for maps of Banach spaces. The map P is differentiable at u ∈ B if for each v ∈ X

the limit

DP (u)v := lim
t→0

P (u+ tv) − P (u)

t
(1.33)

exists in the Fréchet-topology, that is, there exists an element DP (u)v ∈ Y such that

lim
t→0

∣

∣

∣

∣

P (u+ tv) − P (u)

t
−DP (u)v

∣

∣

∣

∣

n

= 0 for each n = 0, 1, 2, . . . (1.34)
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In other words, P has Gâteaux-derivatives at u in all directions. P is continuously dif-

ferentiable in B if the map
{

(B ⊂ X ) × X

u v
−→

Y

DP (u)v

}

(1.35)

is continuous jointly in the two variables u and v. In the case the spaces are Banach spaces,

this definition of differentiability is weaker than continuous Fréchet-differentiability, which

is a usual assumption for the classical Inverse Function Theorem there. Partial derivatives

for maps of several variables are defined in the usual way, as well as derivatives of higher

order, e.g. (when they exist)

D2P (u)(v1, v2) = lim
t→0

DP (u+ tv2)v1 −DP (u)v1
t

(1.36)

the limit again taken in the Fréchet-topology. A map is smooth if derivatives of all orders

exist and are continuous. All maps will turn out to be smooth, but we will only need

at most two derivatives in order to apply the Nash-Moser Inverse Function Theorem, see

Theorem 3. (Specifically, we will prove that T , DT , D2T , and a right-inverse L to DT are

continuous.) Thus, we will call these maps smooth even though we only establish that they

have continuous derivatives of order at most two.

A piece of terminology. If a map P (u, v) is linear in v, then we will say that it is a family

of linear maps and write it as P (u)v to emphasize linearity in v. (Similar terminology

and notations apply for maps of more than two variables.)

Many rules of the usual calculus apply. In particular, the first derivative DP (u)v is

linear in v (see [7], Section 3.2 of Part I) the chain rule and the Fundamental Theorem of

Calculus hold (see [7], Section 2 of Part I, for a definition and properties of Fréchet-space

valued integrals), as well as Taylor’s formula with integral remainder (see Theorem 3.5.6,

p. 82 in Part I of [7]):

P (u+ v) = P (u) +DP (u)v +

∫ 1

0
(1 − t)D2P (u+ tv)(v, v)dt. (1.37)

Also, the Open Mapping Theorem holds: if a continuous linear map of Fréchet spaces

is invertible, then it is a linear isomorphism, i.e. its inverse is again a continuous map of

Fréchet spaces. On the other hand, if for a smooth family of linear maps, P (u)v is invertible,

then it is not true in general that P (u)v has an inverse for u in a neighborhood of u. This

is in contrast to the Banach-space setting, where the set of invertible operators is open

(this is related to the fact that the set of bounded linear maps on Banach spaces is itself a

Banach space). This explains why the invertibility of the first derivative DT (u)v for u in an

entire neighborhood must be assumed in order to apply the Nash-Moser Inverse Function

Theorem.
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The tame Fréchet category

For our purposes (see [7], Section II.1, for a more general notion), a tame Fréchet space

X is a Fréchet space, with semi-norms | · |n, n = 0, 1, 2, . . . , which comes with a family of

smoothing operators {S(t)}t>0 such that, for all t > 0 and u ∈ X ,

|S(t)u|m ≤ Ctm−l|u|l, |u− S(t)u|l ≤ Ctl−m|u|m, m ≥ l, (1.38)

where the constants depend on m, l, but not on t nor u. Spaces of the form C∞
K are tame,

see [7], Part II, Theorem 1.3.6, p. 137 and Corollary 1.3.7, p. 138. It is interesting, see

[19], as well as Corollary 1.4.2, p. 176, Part II of [7], that the estimates (1.38) imply the

interpolation inequalities

|u|i ≤ C|u|
l−i
l−m
m |u|

i−m
l−m

l , m ≤ i ≤ l (1.39)

where the constants depend on i,m, l. These inequalities can otherwise be verified directly

“by hand” in the Ck-, Ck,α-, or Hk-gradings, for example, see [3], [7] (Theorem 2.2.1, p. 143,

Part II), [9].

A continuous map P : (B ⊂ X ) → Y of tame Fréchet spaces is tame if, for each u0 ∈ B

there exist a neighborhood V of u0 in B, r ∈ N (the degree), b ∈ N (the base), and

constants Cn such that

|P (u)|n ≤ Cn(|u|n+r + 1), n ≥ b (1.40)

for any u ∈ V. These are called tame estimates for P . We will usually suppress the

dependence on n for the constants and simply write C (even though this dependence on n

is, of course, crucial). It can be proven, see Proposition 2 below, that, if a linear map L is

tame with degree r and base b, then tame estimates can be derived in the form

|Lu|n ≤ C|u|n+r, n ≥ b (1.41)

for all u ∈ X without any restriction. A map is smooth tame if it is smooth and derivatives

of all orders are tame.

We say that a grading {| · |′n}n is tame equivalent to {| · |n}n if the identity maps (1.32)

are both tame. (Obviously, this defines an equivalence relation.) In this case, the smoothing

operators S(t) satisfy again inequalities of the form (1.38) with | · |n replaced by | · |′n. A

map P : (B ⊂ X ) → Y of tame Fréchet spaces remains tame if one replaces the gradings on

X and Y with tame equivalent gradings. Note though that the degrees may be different in

different gradings, and thus the choice of grading in which the tame estimates are derived

should be made with care. We will derive tame estimates for all maps in the same grading,

and our choice will be the Cn,α-grading in order to take full advantage of elliptic regularity

12



afforded by the elliptic system (1.24). (Clearly, the Cn- and Cn,α-gradings on C∞
K are tame

equivalent.)

Further remarks on tame estimates

Clearly, a tame map with degree r also has degree r′ ≥ r. In turn, it is possible to choose

the neighborhood V in which (1.40) holds to be a | · |r+b-neighborhood (by making r larger

and V smaller). Composition of tame maps is again a tame map.

On the other hand, the Open Mapping Theorem does not hold in the tame Fréchet

category: if a tame linear map is invertible, then an inverse exists and is continuous, but it

need not be tame. See [7], Section 1.5.5, Part I, for counterexamples.

For a map of several variables, these are allowed to have different degrees, e.g.

|P (u1, u2)|n ≤ Cn(|u1|n+r1 + |u2|n+r2 + 1), |u|r1+b < δ1, |u|r2+b < δ2, n ≥ b. (1.42)

For a family of linear maps, it is possible to do away with the restriction on the variables

in which the map is linear (see Lemma 2.1.7, p. 143, Part II of [7])

Proposition 2 (Tame estimates for families of linear maps) Let P (u)v be a family

of linear maps. Then there exist constants Cn such that

|P (u)v|n ≤ Cn(|u|n+r + |v|n+s + 1), n ≥ b (1.43)

for u in a | · |r+b-neighborhood and v in a | · |s+b-neighborhood if and only if there exist

constants C ′
n such that

|P (u)v|n ≤ C ′
n(|u|n+r|v|s + |v|n+s), n ≥ b (1.44)

for u in a | · |r+b-neighborhood and any v (without restriction).

This generalizes to maps linear in more than one variable. In our proof, we will systemati-

cally derive tame estimates in the format (1.44) when relevant.

The Nash-Moser Inverse Function Theorem

Theorem 3 (Surjective part of the Nash-Moser theorem) Let T : (B ⊂ X ) → Y be

a map of tame Fréchet spaces. Suppose that T possesses first and second derivatives DT and

D2T , that DT has a right-inverse L, and that all these maps are continuous and satisfy tame

estimates. Then, for any x0 ∈ B, there exists a neighborhood V(x0) of x0, a neighborhood

V(y0) of y0 = T (x0), and a map R : V(y0) → V(x0) such that T (R(y)) = y for y ∈ V(y0).

Furthermore, R is continuous and tame, and if T and L are smooth tame, then so is R.
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See the proof of Theorem 21 for the existence part of the surjective Nash-Moser Inverse

Function Theorem. We refer to [7], Section III.1 for proofs of further properties of R

(smoothness and tameness).

The proof Theorem 1 will heavily rely on smoothness and tameness of elementary maps

of Fréchet spaces. The necessary lemmas are given in the Appendix and will be used

countless times, often without explicit reference.

1.4 Examples of the “orbit calculus”

A rigorous interpretation of the orbits Oω as symplectic leaves would require some care.

Instead, we give in this Section two examples of the “orbit calculus”. Both results go back to

Arnold [1], [2], but our calculations here are slightly different and do not resort to Lie-group

theoretical interpretations.

Let ω = ∆ψ be a critical point of the kinetic energy

E(ω) =
1

2

∫

Ω
|∇ψ|2dvol = −

1

2

∫

Ω
ωψdvol +

1

2

l
∑

i=1

γiψ|Γi (1.45)

restricted to its co-adjoint orbit (the γi’s are fixed). Let ν = {α, ω} be tangent to the orbit

Oω at ω, and φ ∈ U0 solving (1.26). Then the first derivative of the energy is given by

DE(ω)ν =

∫

Ω
∇ψ · ∇ψdvol = −

∫

Ω
ψνdvol +

∫

∂Ω
ψ
∂φ

∂N
dl = −

∫

Ω
ψ{α, ω}dvol. (1.46)

The identity
∫

Ω
f{g, h}dvol =

∫

Ω
g{h, f}dvol −

∫

∂Ω
fg

∂h

∂N
dl (1.47)

gives

DE(ω)ν =

∫

Ω
α{ψ, ω}dvol (1.48)

(the boundary terms vanish). Since α is arbitrary, we conclude that {ψ, ω} = 0.

Next we compute the second variation of E at a critical point:

D2E(ω)(ν, ν) =

∫

Ω

(

|∇φ|2 +
ν2

F ′(ψ)

)

dvol (1.49)

where ψ solves (1.24) and φ solves (1.26).

Proof of (1.49) Let ωǫ = ω ◦ ηǫ with ω0 = id, and denote ψǫ the corresponding stream

functions. From the first derivative

d

dǫ
E(ωǫ) =

∫

Ω
∇ψǫ ·

∂

∂ǫ
∇ψǫdvol (1.50)
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we find that the second derivative at ǫ = 0 is, posing ψ̇ = ∂ψǫ
∂ǫ |ǫ=0

and ψ̈ = ∂2ψǫ
∂ǫ2 |ǫ=0

,

d2

dǫ2 |ǫ=0
E(ωǫ) =

∫

Ω
(|∇ψ̇|2 + ∇ψ · ∇ψ̈)dvol. (1.51)

The first term is
∫

Ω |∇φ|2dvol. As for the second, integrating by parts we find

∫

Ω
∇ψ · ∇ψ̈dvol = −

∫

Ω
ψω̈dvol (1.52)

(the γi’s are fixed). To calculate ω̈, we can take ηǫ as the flow corresponding to some

v = ∇⊥α ∈ U . Then ηǫ(x) = x+ ǫv(x) + ǫ2

2 ∇vv(x) + . . . Taking second derivatives at ǫ = 0,

d2ωǫ(x)

dǫ2 |ǫ=0
=

d2

dǫ2 |ǫ=0
ω(x+ ǫv(x) +

ǫ2

2
∇vv(x) + . . . ) (1.53)

= ω,kvlvk,l + ω,klvkvl = (ω,kvkvl),l (1.54)

= div({α, ω}v) (1.55)

= div(νv). (1.56)

Integrating by parts, −
∫

Ω ψdiv(νv)dvol =
∫

Ω ν∇ψ · vdvol. Taking gradients of ω = F (ψ),

−

∫

Ω
ψω̈dvol =

∫

Ω
ν
∇ω · v

F ′(ψ)
dvol =

∫

Ω

ν2

F ′(ψ)
dvol. (1.57)

This completes the proof. �

1.5 Notation

Constants will generally be denoted by the same letter C, even in the derivation of tame

estimates where it is important that they depend on the regularity index n. If K is the

closure of a smooth, bounded region in Euclidean space (e.g. K = Ω or [0, |Ω|]), then CnK is

the space of n-times continuously differentiable functions on K. The norm is given by

‖f‖n := ‖f‖CnK := sup
0≤j≤n

sup
K

|∇jf |. (1.58)

Cn,αK denotes the subspace of functions in CnK whose derivatives up to order n are Hölder

continuous with exponent α. Throughout, α will be a fixed constant in (0, 1). The norm is

denoted

‖f‖n,α := ‖f‖Cn,αK
:= ‖f‖n +

n
∑

j=1

[∇jf ]α [f ]α := sup
x 6=y∈K

|f(x) − f(y)|

|x− y|α
. (1.59)
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We introduce the following spaces of functions with various regularity:

Fn := {ω ∈ Cn
Ω
|
∂ω

∂τ |∂Ω
= 0}, (1.60)

Un := {ψ ∈ Fn | ψ|Γ0
= 0}, (1.61)

Unγi := {ψ ∈ Un |

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l}, (1.62)

Fn,α := {ω ∈ Cn,α
Ω

|
∂ω

∂τ |∂Ω
= 0}, (1.63)

Un,α := {ψ ∈ Fn,α | ψ|Γ0
= 0}, (1.64)

Un,αγi
:= {ψ ∈ Un,α |

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l}, (1.65)

F := {ω ∈ C∞
Ω

|
∂ω

∂τ |∂Ω
= 0}, (1.66)

U := {ψ ∈ F | ψ|Γ0
= 0}, (1.67)

Uγi := {ψ ∈ U |

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l}. (1.68)

When l = 1, we will also work with the open subsets

Fn
+ := {ω ∈ Fn | ∇ω 6= 0, ω|Γi < ω|Γo}, (1.69)

Fn,α
+ := {ω ∈ Fn,α | ∇ω 6= 0, ω|Γi < ω|Γo}, (1.70)

F+ := {ω ∈ F | ∇ω 6= 0, ω|Γi < ω|Γo}. (1.71)

For simplicity, we will sometimes simply write Cn, Cn,α, or C∞ for these spaces.

2 The solution operator ψ = S(F )

A solution operator F 7→ ψ returning a uniquely defined steady-state solution can be

constructed in a neighborhood of the reference steady-state provided it satisfies the non-

degeneracy condition (ND1). For this part of the proof no restriction on the geometry of

Ω is necessary, and thus we consider (in this Section only) a bounded domain Ω ⊂ R
2 with

outer boundary component Γ0 and an arbitrary number l of inner boundary components,

Γi, 1 ≤ i ≤ l.

We assume given a reference steady-state:

∆ψ = F (ψ), ψ|Γo = 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l (2.1)

where the γi’s are fixed. It is assumed to satisfy the non-degeneracy condition (ND1). The

goal of this section is to construct a solution operator ψ = S(F ) for F in some neighborhood
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of F (along with the desired estimates) returning a uniquely defined solution to the steady-

state equation (1.24),

∆ψ = F (ψ), ψ|Γo = 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l. (2.2)

Note that we do not assume in this section that F ′ does not vanish. Recall also that the

case F ′ > 0 is special in that the corresponding solution automatically satisfies (ND1).

The boundary conditions in (2.2) define the affine space

Uγi = {ψ ∈ C∞
Ω

| ψ|Γo = 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
dl = γi, 1 ≤ i ≤ l}. (2.3)

The γi’s being fixed, its tangent space is

U0 = {φ ∈ C∞
Ω

| φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
dl = 0, 1 ≤ i ≤ l}. (2.4)

We will also consider the following linear equation in φ ∈ U0 parametrized by c ∈ C∞
Ω

:

∆φ+ cφ = k, φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0, 1 ≤ i ≤ l. (2.5)

2.1 Linear estimates

Lemma 4 (Estimates for linear elliptic equations)

1. Given ω ∈ C∞
Ω
, there exists a unique ψ ∈ C∞

Ω
solving

∆ψ = ω, ψ|Γ0
= 0,

∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
= γi, 1 ≤ i ≤ l. (2.6)

It satisfies the tame estimates

‖ψ‖n+2,α ≤ C(‖ω‖n,α +

l
∑

i=1

|γi|), n ≥ 0. (2.7)

2. For c ∈ C∞
Ω

in a ‖ · ‖0,α-neighborhood and any φ ∈ U0 satisfying

∆φ+ cφ = k, φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0, 1 ≤ i ≤ l, (2.8)

we have for n ≥ 0

‖φ‖n+2,α ≤ C (‖∆φ+ cφ‖n,α + ‖c‖n,α‖φ‖0,α) (2.9)

where the constant depends on n, but not on c nor φ.
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Proof

1 Hölder estimates on ∆ψ = ω The construction of ψ from ω is standard, see [10].

In order to handle the boundary conditions of (2.2) one defines

u = ψ −
l
∑

i=1

ψ|Γigi (2.10)

where gi ∈ C∞
Ω

, 1 ≤ i ≤ l, are fixed functions with gi|Γ0
= 0, gi|Γi = 1, and gi|Γj = 0 for

j 6= i. Then u satisfies

∆u = ω − ψ|Γi∆gi, u|∂Ω = 0 (2.11)

for which we have the Schauder estimates: for n ≥ 0,

‖u‖n+2,α ≤ C(‖∆u‖n,α + ‖u‖0,α). (2.12)

Then,

‖ψ‖n+2,α ≤ C · (‖ω‖n,α + ‖ψ‖0,α +

l
∑

i=1

|ψ|Γi |). (2.13)

Similarly we have in Sobolev spaces

‖ψ‖H2 ≤ C(‖ω‖L2 +
l
∑

i=1

|ψ|Γi |). (2.14)

Observe that by the trace theorem, for each i = 1, . . . , l we have

|ψ|Γi | ≤ C‖ψ‖L2(∂Ω) ≤ C‖∇ψ‖L2(Ω) (2.15)

while an integration by parts gives

∫

Ω
|∇ψ|2 = −

∫

Ω
ψ∆ψ +

l
∑

i=1

ψ|Γiγi (2.16)

≤ ǫ2‖ψ‖2L2 +
1

4ǫ2
‖ω‖2L2 + ǫ2

l
∑

i=1

ψ2
|Γi

+
1

4ǫ2

l
∑

i=1

γ2i (2.17)

and therefore

‖∇ψ‖L2 ≤ ǫ‖ψ‖L2 +
C

ǫ
‖ω‖L2 + ǫ

l
∑

i=1

|ψ|Γi | +
C

ǫ

∑

i=1

|γi|. (2.18)

Taking ǫ sufficiently small, we can achieve simultaneously

l
∑

i=1

|ψ|Γi | ≤ C

(

ǫ‖ψ‖L2 + ‖ω‖L2 +

l
∑

i=1

|γi|

)

(2.19)
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and

‖ψ‖H2 ≤ C

(

‖ω‖L2 +

l
∑

i=1

|γi|

)

. (2.20)

Finally, by Sobolev’s embedding (dimension is 2),

‖ψ‖0,α ≤ C‖ψ‖H2 ≤ C(‖ω‖L2 +

l
∑

i=1

|γi|) ≤ C(‖ω‖0,α +

l
∑

i=1

|γi|). (2.21)

�

2 Estimates for ∆φ + cφ = k For c ∈ C∞
Ω

and φ ∈ U0 let ∆φ + cφ = k. Writing

∆φ = k− cφ, from (2.7), and paying attention that the boundary conditions for φ ∈ U0 are

those of (2.4), we deduce by (5.114) that

‖φ‖n+2,α ≤ C (‖k‖n,α + ‖c‖0,α‖φ‖n,α + ‖c‖n,α‖φ‖0,α) . (2.22)

Now restricting c to a ‖·‖0,α-neighborhood and using the interpolation ‖φ‖n,α ≤ ǫ‖φ‖n+2,α+

C(ǫ, n)‖φ‖0,α, we can choose ǫ sufficiently small (and independent of c in the ‖ · ‖0,α-

neighborhood) to get (2.9). �

We say that c ∈ C∞
Ω

is non-degenerate if

E(c)φ = ∆φ+ cφ = 0, φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0, 1 ≤ i ≤ l (2.23)

has only the trivial solution φ ≡ 0.

Proposition 5 Suppose that c ∈ C∞
Ω

is non-degenerate. Then, there exists a ‖ · ‖0,α-

neighborhood of c,

VE(c) = {c ∈ C∞
Ω

| ‖c− c‖0,α < ǫE} (2.24)

such that E : VE(c) × U0 → C∞
Ω

has a smooth tame family of inverses

V E :

{

VE(c) × C∞
Ω

c k
−→

U0

φ

}

. (2.25)

For n ≥ 0, c ∈ VE(c), and k ∈ C∞
Ω
,

‖φ‖n+2,α ≤ C (‖k‖n,α + ‖c‖n,α‖k‖0,α) . (2.26)

The first derivative with respect to c is given by

DV E(c) · (k, χ) = V E(c) · (−χφ). (2.27)
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Proof

1 Invertibility for c in a ‖ · ‖0,α-neighborhood of c Assume c is non-degenerate:

∆ + c, as an operator of Fréchet spaces with the boundary conditions (2.23), has trivial

kernel. Let φ ∈ C2,α

Ω
solve

∆φ+ cφ = 0, φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0, 1 ≤ i ≤ l. (2.28)

Then, φ ∈ C4,α and, repeating, φ ∈ C∞
Ω

. Thus, φ is in the kernel of ∆ + c as an operator on

Fréchet spaces, and by non-degeneracy assumption φ ≡ 0. That is, ∆ + c has trivial kernel

as an operator of Banach spaces C2,α → C0,α. The Fredholm alternative then implies that

it is in fact an isomorphism of Banach spaces. In particular, we have the estimate

‖φ‖2,α ≤ C‖∆φ+ cφ‖0,α (2.29)

for all φ ∈ C2,α

Ω
satisfying the boundary conditions (2.23), and in particular when φ ∈ C∞

Ω
.

Let now c ∈ C∞
Ω

:

‖φ‖0,α ≤ ‖φ‖2,α ≤ C‖∆φ+ cφ‖0,α (2.30)

≤ C (‖∆φ+ cφ‖0,α + ‖(c− c)φ‖0,α) (2.31)

≤ C (‖∆φ+ cφ‖0,α + ‖c− c‖0,α‖φ‖0,α) . (2.32)

Take then ǫE sufficiently small in (2.24) so that the last term can be incorporated to the

left-hand side for all φ ∈ U0 and any c ∈ VE(c):

‖φ‖0,α ≤ C‖∆φ+ cφ‖0,α. (2.33)

But from (2.9) we have

‖φ‖n+2,α ≤ C (‖∆φ+ cφ‖n,α + ‖c‖n,α‖φ‖0,α) (2.34)

≤ C (‖∆φ+ cφ‖n,α + ‖c‖n,α‖∆φ+ cφ‖0,α) (2.35)

as desired. �

2 Continuity in c and k Let c, c̃ ∈ VE(c) and k, k̃ ∈ C∞
Ω

, and let ∆φ + cφ = k,

∆φ̃+ c̃φ̃ = k̃. Then, φ− φ̃ solves

(∆ + c̃) · (φ− φ̃) = (k − k̃) − (c− c̃)φ (2.36)

and the estimates from the previous paragraph and (5.114) give

‖φ− φ̃‖n+2,α (2.37)

≤ C ·
(

‖k − k̃‖n,α + ‖(c− c̃)φ‖n,α + ‖c̃‖n,α(‖k − k̃‖0,α + ‖(c− c̃)φ‖0,α

)

(2.38)

≤ C
(

‖k − k̃‖n,α + ‖c− c̃‖n,α‖φ‖n,α

)

(2.39)
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where the constant depends on ‖c̃‖n,α only. With k̃ and c̃ fixed, ‖φ‖n,α remains bounded

if ‖k‖n,α and ‖c‖n,α remain bounded. Then, ‖φ − φ̃‖n+2,α can be made arbitrarily small

provided ‖k − k̃‖n,α and ‖c− c̃‖n,α are taken sufficiently small. That is,
{

VE(c)n,α × Cn,α
Ω

c k
−→

Cn+2,α

Ω

φ

}

(n ≥ 0) (2.40)

is continuous as a map of Banach spaces. Remark that this also implies that
{

VE(c)n × Cn
Ω

c k
−→

Cn+1
Ω

φ

}

(n ≥ 0) (2.41)

is continuous as a map of Banach spaces. �

3 First derivative of V E Since V E(c) · k is linear in k, its derivative in k exists and

is simply V E(c) · k. For the derivative in c, fix then χ ∈ C∞
Ω

and let ct = c + tχ. Denote

the solutions

∆φt + ctφt = k, ∆φ+ cφ = k. (2.42)

Then,

∆
φt − φ

t
+ c

φt − φ

t
= −χφt, or

φt − φ

t
= V E(c) · (−χφt). (2.43)

By continuity of V E, the limit of φt−φ
t

exists in the C∞-topology. Furthermore, it is given

by

DV E(c) · (k, χ) = V E(c) · (−χφ). (2.44)

which is a continuous function of c, k, χ as a map of Fréchet spaces. This shows that V E is

continuously differentiable as a map of Fréchet spaces. Finally, it is clearly a tame map of

c, k, χ since V E is tame. �

4 V E is smooth tame E(c) · φ = ∆φ + cφ is a smooth tame map as the sum of a

linear differential operator with constant coefficients and multiplication of functions. Since

its inverse V E(c) ·k is tame and continuously differentiable with tame first derivative, The-

orem 5.3.1, p. 102, Part I, and Theorem 3.1.1, p. 150, Part II of [7] imply that V E(c) · k is

a smooth tame map. �

2.2 The solution operator

We recall that Ω is not assumed to be diffeomorphic to an annulus, and that the reference

steady-state F is assumed to satisfy (ND1), i.e. c = −F
′
(ψ) is non-degenerate in the sense

that (2.23) has only the trivial solution.
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Let I ⊂ R be a closed, bounded interval strictly larger than range(ψ).

Proposition 6 Let ω = F (ψ) satisfy (ND1). Then there exists a smooth tame solution

operator to (2.2):

S :

{

(VS(F ) ⊂ C∞
I )

F
−→

C∞
Ω

ψ

}

(2.45)

where VS(F ) is a ‖ · ‖2,α-neighborhood. For F ∈ VS(F ),

‖ψ‖n+2,α ≤ C(‖F‖n,α + 1), n ≥ 0. (2.46)

Letting VnS (F ) be the completion of VS(F ) in ‖ · ‖n, it is continuous as a map

S :

{

VnS (F )

F
−→

Cn+1
Ω

ψ

}

(n ≥ 1). (2.47)

The first derivative, given by

φ = DS(F ) · f = V E(−F ′(ψ)) · (f ◦ ψ) (2.48)

is continuous as a map

DS :

{

VnS (F ) × Cn−1
I

F f
−→

Cn
Ω

φ

}

(n ≥ 1). (2.49)

For F ∈ VS(F ), and any f ∈ C∞
I ,

‖φ‖n+2,α ≤ C (‖f‖n,α + ‖F‖n+1,α‖f‖1,α) , n ≥ 1 (2.50)

‖φ‖2,α ≤ C‖f‖0,α. (2.51)

The second derivative φ12 = D2S(F )(f1, f2) is continuous as a map

D2S :

{

VnS (F ) × Cn−1
I × Cn−1

I

F f1 f2
−→

Cn−1
Ω

φ12

}

(n ≥ 1). (2.52)

It satisfies the tame estimates, for F ∈ VS(F ) and any f1, f2 ∈ C∞
I ,

‖φ12‖n+2,α ≤ C (‖f1‖n+1,α‖f2‖1,α + ‖f1‖1,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α) (2.53)

for n ≥ 1 and

‖φ12‖2,α ≤ C‖f1‖1,α‖f2‖1,α. (2.54)
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Proof

1 Construction of the solution operator The solution operator will be constructed

by first applying the Implicit Function Theorem to suitable Banach spaces. Since ultimately

we want a solution operator in the smooth category, several choices for these spaces are

possible. We make the following choices. Let V0(ψ) ⊂ {ψ ∈ H2
Ω | ψ|Γ0

= 0, ∂ψ
∂τ |Γi

=

0,
∫

Γi
∂ψ
∂N
dl = γi, 1 ≤ i ≤ l} a neighborhood of ψ in which range(ψ) ⊂ I. (Note that this

makes sense since H2
Ω continuously embeds into C0

Ω
, and that

∫

Γi
∂ψ
∂N
dl makes sense by the

trace lemma.) We may then define

H :

{

C1
I × V0(ψ)

F ψ
−→

L2
Ω

∆ψ − F (ψ).

}

. (2.55)

This operator is continuously Fréchet-differentiable (for emphasis we work in the Banach-

category). The assumption that ω = F (ψ) satisfies (ND1) implies that

DψH(F ,ψ)φ = ∆φ− F
′
(ψ)φ (2.56)

has trivial kernel and hence is invertible as an operator

{

ψ ∈ H2
Ω | ψ|Γ0

= 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
dl = γi

}

−→ L2
Ω. (2.57)

The classical Implicit Function Theorem guarantees the existence of neighborhoods VS(F ) ⊂

C1
I of F and VS(ψ) ⊂ V0(ψ) of ψ, and a continuously Fréchet-differentiable map of Banach

spaces F ∈ VS(F ) 7→ ψ ∈ VS(ψ) such that ∆ψ = F (ψ). (We will just say that this is a

solution operator C1
I → H2

Ω.) By Sobolev’s embedding theorem, this is in fact a solution

operator C1
I → C0,β

Ω
for any 0 < β < 1. Now composition (F,ψ) 7→ F ◦ψ is continuous as an

operator C1 ×C0,β → C0,α for any 0 < α < β (see Lemma 26). Thus, by elliptic regularity

the solution operator is continuous C1
I → C2,α

Ω
. This along with a simple induction implies

that the solution operator is continuous

{

C lI
F

−→
C l+1
Ω

ψ

}

(l ≥ 1). (2.58)

The above implies as well that the solution operator is continuous

{

C l,αI
F

−→
C l+1,α

Ω

ψ

}

(l ≥ 1). (2.59)

A first requirement on VS(F ) is that it be a ‖ · ‖1,α-neighborhood such that

VS(F ) ⊂
(

VS(F ) ∩ C∞
Ω

)

. (2.60)
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�

2 Tame estimates on ψ = S(F ) in the Cn,α-grading From Lemma 4, F ∈ VS(F ),

by (5.121) we have for n ≥ 1

‖ψ‖n+2,α ≤ C · (‖F ◦ ψ‖n,α + 1) ≤ C · (‖F‖n,α + ‖ψ‖n,α‖F‖1,α), (2.61)

and as long as ψ remains in a ‖ · ‖1,α-neighborhood. This is the case, e.g. by continuity

F ∈ C1,α 7→ ψ ∈ C2,α and since F ∈ VS(F ) remains in a ‖ · ‖1,α-neighborhood. Recall the

inequality ‖ψ‖n,α ≤ ǫ1‖ψ‖n+1,α +C(ǫ1, n)‖ψ‖0,α. Choosing ǫ1 sufficiently small (depending

on n but independent of F ∈ VS(F )) we find

‖ψ‖n+2,α ≤ C · (‖F‖n,α + ‖ψ‖0,α). (2.62)

Since ‖ψ‖0,α is bounded (because ‖F‖1,α is) we obtain the desired tame estimates (2.46)

for n ≥ 1. Finally, since ‖F‖1,α remains bounded, so does ‖ψ‖0,α and the estimates in fact

holds for n ≥ 0 by increasing the constant if necessary. �

3 First derivative Let F ∈ VS(F ) and f ∈ C∞
I , and denote ψt = S(F + tf) and

ψ = S(F ) the corresponding solutions. Then,

∆
ψt − ψ

t
− F ′(ψ)

ψt − ψ

t
=

(

F (ψt) − F (ψ)

t
− F ′(ψ)

ψt − ψ

t

)

+ f(ψt). (2.63)

Now recall that the solution operator obtained from Step 1 is obtained via the classical

Implicit Function Theorem, and therefore is a Fréchet-differentiable map of Banach spaces

F ∈ C1
I 7→ ψ ∈ H2

Ω . Thus, the limit φ of ψt−ψ
t

exists in H2, and it satisfies

∆φ− F ′(ψ)φ = f(ψ) in L2. (2.64)

By Sobolev’s embedding, ψt−ψ
t

→t φ also in C0,α, and in turn the right-hand side of (2.63)

converges in C0,α as well. This implies that ψt−ψ
t

→t φ in C2,α by continuity of V E.

Repeating, one can show that ψt−ψ
t

→t φ in Ck,α for each k, in other words that it converges

in the C∞-topology. This proves that the derivative φ of ψ = S(F ) at F in the direction f

exists. Furthermore, it is given by φ = V E(−F ′ ◦ψ)(f ◦ψ) which is clearly continuous and

tame. More precisely, from (2.41), we find that
{

VnS (F ) × Cn−1
I

F f
−→

Cn
Ω

φ = DS(F )f

}

(n ≥ 1) (2.65)

is continuous as a map of Banach spaces. (Taking f ∈ CnI does not improve φ.) �
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4 Tame estimates on φ = DS(F )f in the Cn,α-grading Since we will invoke tame

estimates from Lemma 4 to derive tame estimates on φ = DS(F )f , we will take ǫS suffi-

ciently small so that

VS(F ) = {F : ‖F − F‖2,α < ǫS} ⊂ (VS(F ) ∩C∞
Ω

) (2.66)

and such that F ′(ψ) ∈ VE(c) whenever F ∈ VS(F ), where c = −F
′
(ψ) and VE(c) is as in

Lemma 5. By (2.26) and (5.121), we have for F ∈ VS(F ) and n ≥ 1

‖φ‖n+2,α ≤ C
(

‖f(ψ)‖n,α + ‖f(ψ)‖0,α‖F
′(ψ)‖n,α

)

. (2.67)

Now

‖f(ψ)‖n,α ≤ C (‖f‖n,α + ‖ψ‖n,α‖f‖1,α) (2.68)

≤ C (‖f‖n,α + ‖ψ‖n+3,α‖f‖1,α) (2.69)

≤ C (‖f‖n,α + ‖F‖n+1,α‖f‖1,α) (2.70)

for n ≥ 1 while

‖f(ψ)‖0,α ≤ C‖f‖0,α (2.71)

since ‖ψ‖1,α remains bounded (because ‖F‖1,α does). Next, for n ≥ 1

‖F ′(ψ)‖n,α ≤ C
(

‖F ′‖n,α + ‖ψ‖n,α‖F
′‖1,α

)

(2.72)

≤ C (‖F‖n+1,α + ‖ψ‖n+3,α‖F‖2,α) (2.73)

≤ C‖F‖n+1,α (2.74)

and this holds in fact for n = 0 as well since ‖F ′(ψ)‖0,α ≤ C‖F‖1,α because ‖ψ‖1,α remains

bounded. With the above, we have for n ≥ 1

‖φ‖n+2,α ≤ C (‖f‖n,α + ‖F‖n+1,α‖f‖1,α) (2.75)

and for n = 0

‖φ‖2,α ≤ C
(

‖f(ψ)‖0,α + ‖F ′(ψ)‖0,α‖f(ψ)‖0,α
)

(2.76)

≤ C (‖f‖0,α + ‖F‖1,α‖f‖0,α) (2.77)

≤ C‖f‖0,α (2.78)

since ‖ψ‖1,α and ‖F‖1,α remain bounded for F ∈ VS(F ). �

5 Second derivative Since φ is a differentiable tame map of F and f , it is immediate

that S(F ) = ψ is twice continuously differentiable and tame (and in fact smooth tame).
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Implicit differentiation on ∆φ1 = F ′(ψ)φ1 + f1(ψ) shows that the second derivative φ12 in

the directions f1, f2 satisfies

∆φ12 = F ′(ψ)φ12 + F ′′(ψ)φ1φ2 + f ′2(ψ)φ1 + f ′1(ψ)φ2 (2.79)

where ∆φ2 = F ′(ψ)φ2 + f2(ψ). From (2.65), we conclude that

D2S :

{

VnS (F ) × Cn−1
I × Cn−1

I

F f1 f2
−→

Cn−1
Ω

φ12

}

(n ≥ 1) (2.80)

is continuous as a map of Banach spaces. �

6 Tame estimates on the second derivatives We need first tame estimates on

F ′′(ψ)φ1φ2 + f ′2(ψ)φ1 + f ′1(ψ)φ2. Since F ∈ VS(F ), we have for n ≥ 1

‖F ′′(ψ)‖n,α ≤ C
(

‖F ′′‖n,α + ‖ψ‖n,α‖F
′′‖1,α

)

(2.81)

≤ C (‖F‖n+2,α + ‖F‖3,α) (2.82)

≤ C‖F‖n+2,α (2.83)

and this holds in fact also for n = 0 since ‖ψ‖1,α remains bounded. Next with i = 1, 2,

‖f ′i(ψ)‖n,α ≤ C (‖fi‖n+1,α + ‖F‖n,α‖fi‖2,α) (2.84)

for n ≥ 1 while ‖f ′i(ψ)‖0,α ≤ C‖fi‖1,α since ‖ψ‖1,α remains bounded. Thus, recalling (2.50)

and (2.51), we have for n ≥ 3

‖F ′′(ψ)φ1φ2 + f ′2(ψ)φ1 + f ′1(ψ)φ2‖n,α (2.85)

≤ C
(

‖F ′′(ψ)‖n,α‖φ1‖0,α‖φ2‖0,α + ‖φ1‖n,α‖φ2‖0,α + ‖φ1‖0,α‖φ2‖n,α (2.86)

+‖f ′1(ψ)‖n,α‖φ2‖0,α + ‖f ′1(ψ)‖0,α‖φ2‖n,α (2.87)

+‖f ′2(ψ)‖n,α‖φ1‖0,α + ‖f ′2(ψ)‖0,α‖φ1‖n,α

)

(2.88)

≤ C
(

‖F‖n+2,α‖f1‖0,α‖f2‖0,α (2.89)

+(‖f1‖n−2,α + ‖F‖n−1,α‖f1‖1,α)‖f2‖0,α (2.90)

+‖f2‖0,α(‖f2‖n−2,α + ‖F‖n−1,α‖f2‖1,α) (2.91)

+(‖f1‖n+1,α + ‖F‖n,α‖f1‖2,α)‖f2‖0,α (2.92)

+‖f1‖1,α(‖f2‖n−2,α + ‖F‖n−1,α‖f2‖1,α) (2.93)

+(‖f2‖n+1,α + ‖F‖n,α‖f2‖2,α)‖f1‖0,α (2.94)

+‖f2‖1,α(‖f1‖n−2,α + ‖F‖n−1,α‖f1‖1,α)
)

(2.95)

≤ C
(

‖f1‖n+1,α‖f2‖1,α + ‖f1‖1,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α

)

(2.96)
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and one can verify that this also holds for n = 1, 2 since ‖ψ‖4,α remains bounded for

F ∈ VS(F ). Finally, for n = 0, we have

‖F ′′(ψ)φ1φ2 + f ′2(ψ)φ1 + f ′1(ψ)φ2‖n,α ≤ C‖f1‖1,α‖f2‖1,α. (2.97)

The tame estimates on φ12 are thus, for n ≥ 1,

‖φ12‖n+2,α (2.98)

≤ C
(

‖f1‖n+1,α‖f2‖1,α + ‖f1‖1,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α (2.99)

+‖F‖n+1,α (‖f1‖2,α‖f2‖2,α + ‖F‖3,α‖f1‖2,α‖f2‖2,α)
)

(2.100)

≤ C
(

‖f1‖n+1,α‖f2‖1,α + ‖f1‖1,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α

)

(2.101)

where we have used interpolation to get ‖F‖n+1,α‖F‖3,α ≤ C‖F‖n+2,α‖F‖2,α ≤ C‖F‖n+2,α.

Finally for n = 0 we have

‖φ12‖2,α ≤ C‖f1‖1,α‖f2‖1,α. (2.102)

�

Remarks G̊arding’s inequality fails in the Cn-grading. Yet, ω = F (ψ) is Cn if F is Cn,

and furthermore (see Lemma 26) the map

{

VnS (F )

F
−→

Cn
Ω

ω = F (ψ)

}

(n ≥ 1) (2.103)

is continuous. Likewise, from ν = ∆φ it would appear that ν loses two derivatives from F .

However, writing ν = F ′(ψ)φ+ f(ψ), one finds that in fact

{

VnS (F ) × Cn−1
I

F f
−→

Cn−1
Ω

ν

}

(n ≥ 1) (2.104)

is continuous as a map of Banach spaces. Finally, the second derivative ν12 of F 7→ ω in

the directions (f1, f2) is continuous

{

VnS (F ) × Cn−1
I × Cn−1

I

F f1 f2
−→

Cn−2
Ω

ν12

}

(n ≥ 1) (2.105)

as a map of Banach spaces. �

27



3 Distribution functions and co-adjoint orbits

We are now assuming that Ω is diffeomorphic to an annulus:

∂Ω = Γo ∪ Γi. (3.1)

This Section is concerned with establishing properties and estimates on distribution func-

tions Aω for functions ω, which are locally constant on the boundary and have no critical

points. These results will apply equally to stream functions, which further satisfy ψ|Γo = 0,

and to steady-state vorticity functions, which are locally constant on ∂Ω as observed in the

Introduction. Without loss of generality we will assume that ω|Γi < ω|Γo, and therefore we

will work with spaces Fn
+ and F+ introduced at the end of Section 1.

We begin with the following useful result.

Lemma 7 (Global coordinates on Ω induced by ω) For each ω ∈ F+ there exists a

global coordinate system for Ω, z : [0, 1] × S
1 → Ω, such that {t} × S

1 is mapped onto the

level set {x ∈ Ω : ω(x) = minω + t(maxω − minω)}:

ω(z(t, s)) = minω + t(maxω − minω). (3.2)

The map ω 7→ z is continuous Fn
+ → Cn−1

[0,1]×S1
, n ≥ 2.

Remark The proof of Lemma 7 can easily be adapted to achieve a continuous map

Fn
+ → Cn[0,1]×S1

.[3] However, this will make no difference in the rest of the paper as z will

always be used in connection with a factor 1
|∇ω| which is of class Cn−1 when ω ∈ Fn

+.

Proof Let ci(s), 0 ≤ s ≤ 1, be a smooth parametrization of Γi. For each s, let z = z(t, s)

be the solution to

ż = (maxω − minω)
∇ω(z)

|∇ω(z)|2
, z(0) = ci(s). (3.3)

Since d
dt
ω(z(t)) = maxω−minω, we have ω(z(t, s)) = minω+t(maxω−minω) for t ∈ [0, 1]

and s ∈ S
1. It is standard that if ω ∈ Cn, n ≥ 2, then z is Cn in t and Cn−1 in s.

For ω, ω1, denote f = (maxω−minω) ∇ω
|∇ω|2

, f1 = (maxω1−minω1)
∇ω1

|∇ω1|2
, and z, z1 the

[3]The loss of derivative is in the s-direction only. To regain this derivative, write the inverse mapping

as z−1 =
(

ω−minω
maxω−minω

, θ
)

, apply a suitable smoothing operator to the second factor θ, and note that this

perserves the property (3.2).
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corresponding coordinate systems. For t ∈ [0, 1], s ∈ S
1,

z(t, s) − z1(t, s) (3.4)

=

∫ t

0
(f(z(θ, s)) − f(z1(θ, s))) dθ +

∫ t

0
(f − f1)(z1(θ, s))dθ (3.5)

=

∫ t

0

∫ 1

0
∇f(z1(θ, s) + τ(z(θ, s) − z1(θ, s)) · (z(θ, s) − z1(θ, s)dτdθ (3.6)

+

∫ t

0
(f − f1)(z1(θ, s))dθ (3.7)

so that

|z(t, s) − z1(t, s)| ≤ sup |∇f |

∫ t

0
|z(θ, s) − z1(θ, s)|dθ + sup |f − f1|. (3.8)

This is the same as

d

dt

(

e− sup |∇f |t

∫ t

0
|z − z1|(θ, s)dθ

)

≤ e− sup |∇f |t sup |f − f1| (3.9)

hence integrating

∫ t

0
|z − z1|(θ, s)dθ ≤ esup |∇f |t

∫ t

0
e− sup |∇f |θ sup |f − f1|dθ ≤ sup |f − f1|

e| sup∇f |

| sup∇f |
. (3.10)

In turn,

|z(t, s) − z1(t, s)| ≤ sup |f − f1|
(

esup |∇f | + 1
)

. (3.11)

Given f1 ∈ C1, for any f ∈ C1 in a neighborhood of f1 such that |∇f | ≤M , then sup |z−z1|

can be made arbitrarily small provided sup |f − f1| is chosen sufficiently small. In other

words, f 7→ z is continuous as a map C1 → C0.

Estimate now

|ż(t, s) − ż1(t, s)| (3.12)

≤ |f(z(t, s)) − f(z1(t, s))| + |(f − f1)(z(t, s))| (3.13)

≤

∫ 1

0
|∇f(z1(t, s) + τ(z(t, s) − z1(t, s)))||z(t, s) − z1(t, s)|dτ + sup |f − f1| (3.14)

≤ sup |∇f ||z − z1| + sup |f − f1| (3.15)

which shows that f 7→ ż is continuous C1 → C0.

To estimate the derivative z′ in s, differentiate (3.3):

d

dt
z′(t, s) = ∇f(z(t, s)) · z′(t, s),

d

dt
z′1(t, s) = ∇f1(z1(t, s)) · z′1(t, s) (3.16)
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and observe that z′(0, s) = z′1(0, s), s ∈ S
1. Integrating,

z′(t, s) − z′1(t, s) =

∫ t

0
∇f(z1(θ, s))

(

z′(θ, s) − z′1(θ, s)
)

dθ (3.17)

+

∫ t

0
(∇f(z(θ, s)) −∇f1(z1(θ, s))) z′1(θ, s)dθ (3.18)

and thus

|z′(t, s) − z′1(t, s)| ≤ sup |∇f |

∫ t

0
|z′(θ, s) − z′1(θ, s)|dθ + sup |z′1| sup |∇(f − f1)|. (3.19)

As above, we find

|z′(t, s) − z′1(t, s)| ≤ sup |z′1| sup |∇(f − f1)|

(

esup |∇f |

sup |∇f |
+ 1

)

, (3.20)

showing that f 7→ z′ is continuous C1 → C0.

Therefore, f 7→ z is continuous C1 → C1. Differentiating further in t and s, one estab-

lishes easily by induction that f 7→ z is continuous Ck → Ck for each k ≥ 1. �

3.1 Properties of the distribution function Aω

Linearizing ω ◦ η at η = id, a tangent ν to Oω at ω is of the form

ν = {ω,α} for some stream function α ∈ U . (3.21)

This is a first order PDE in α hence can be locally integrated along the characteristics,

which are here closed curves. The compatibility conditions (to be able to integrate round

these closed curves) are

∫

{x : ω(x)=λ}

ν(x)

|∇ω(x)|
dl(x) = 0, minω ≤ λ ≤ maxω. (3.22)

On the other hand, if ω ∈ F+, then the distribution function Aω(λ) = | {x : ω(x) < λ} | can

be expressed as

Aω(λ) =

∫ λ

minω

∫

x:ω(x)=λ

1

|∇ω(x)|
dl(x)dλ, λ ∈ [minω,maxω]. (3.23)

This is easily seen using the coarea formula (see § 3.2 in [6])

∫

Ω
u(x)|∇ω(x)|ζ(ω(x)) dx =

∫ maxω

minω
ζ(λ′)

∫

x:ω(x)=λ′
u(x)dl(x) dλ′ (3.24)
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with u(x) = 1
|∇ω(x)| and ζ(λ′) the characteristic function over the interval [minω, λ]. Much

of the work will be devoted to the detailed study of

Jωu(λ) =

∫

x:ω(x)=λ
u(x)dl(x), λ ∈ [minω,maxω]. (3.25)

With this notation, the coarea formula reads
∫

Ω
u(x)|∇ω(x)|ζ(ω(x))dx =

∫ maxω

minω
ζ(λ)Jωu(λ) dλ. (3.26)

The derivative of Aω can then be written as

A′
ω = Jω

1

|∇ω|
(3.27)

and, differentiating A−1
ω (Aω(λ)) = λ, that of A−1

ω is

(A−1
ω )′ =

1

Jω
1

|∇ω| ◦ A
−1
ω

. (3.28)

Proposition 8 (Aω characterizes O(ω) locally)

1. For ω, ω1 ∈ F+, let z, z1 be the global coordinate transformations from Lemma 7. If

ω, ω1 ∈ F+ and Aω1 = Aω, then there exists η ∈ Dvol such that ω = ω1 ◦ η.

2. Let ω ∈ F+ and let ν ∈ F such that ν|∂Ω = 0. Then, there exists a stream function

α ∈ U such that

ν = {ω,α} (3.29)

if and only if
∫

ω=λ

ν

|∇ω|
dl = 0, λ ∈ range(ω). (3.30)

3. Let ωǫ ∈ F+, ω0 = ω. Then, dAωǫ
dǫ |ǫ=0

= 0, if and only if ν = dωǫ
dǫ |ǫ=0

is tangent to the

orbit O(ω) at ω, i.e. ν = {ω,α} for some α ∈ U .

Proof

1 Aω characterizes O(ω) locally If Aω1 = Aω, then setting φ = z1 ◦ z
−1, we have

ω = ω1 ◦ φ. Next we construct a diffeomorphism ψ which moves points along the level sets

of ω1 in such a way that η = ψ ◦ φ ∈ Dvol. We write it in the form

ψ(x) = z1(t, a(t, s)), where x = z1(t, s) (3.31)

or ψ = z1 ◦ α, where α(t, s) = (t, a(t, s)). The condition det
(

∂(ψ◦φ)
∂(x,y)

)

= 1 can be written in

the form (Z ◦α)∂sa = F where Z = det
(

∂z1
∂(t,s)

)

and F = 1

det
(

∂φ
∂(x,y)

)

◦φ−1
. This is a collection
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of ODEs in s parametrized by t. Let then a(t, s), (t, s) ∈ [0, 1] × [0, 1], denote the solution

such that a(t, 0) = 0, 0 ≤ t ≤ 1. Setting η = ψ ◦ φ defines a local diffeomorphism Ω → Ω

such that det
(

∂η
∂(x,y)

)

= 1. One needs to check that η is a global diffeomorphism of Ω.

Fix λ ∈ range(ω) so that z
(

λ−minω
maxω−minω , 0

)

is a point on the level set {ω = λ}, and

denote q = q(t) the solution to

q̇ = ∇⊥ω(q), q(0) = z

(

λ− minω

maxω − minω
, 0

)

. (3.32)

Clearly, q(t) travels around the level set {ω = λ}. This is a Hamiltonian flow with respect to

the symplectic form dvol = dx∧dy. Now η is a local symplectomorphism, so that q1 = η ◦ q

solves

q̇1 = ∇⊥ω1(q1), q1(0) = η

(

z

(

λ− minω

maxω − minω
, 0

))

. (3.33)

Clearly, q1(t) travels around the level set {ω1 = λ}. But Aω = Aω1 , so that the travel time

of q(t) and q1(t) around {ω = λ} and {ω1 = λ} respectively are the same:
∫

ω1=λ

dl

|∇ω1|
=

d

dλ
Aω1(λ) =

d

dλ
Aω(λ) =

∫

ω=λ

dl

|∇ω|
. (3.34)

Finally, q1 = η ◦ q so η takes {ω = λ} onto {ω1 = λ} for each λ and the claim is proved. �

2 Characterizing ν ‖ O(ω) Equation (3.29) is a first order PDE in α, and the char-

acteristics are the level sets of ω. Thus, it is locally solvable and (3.30) are precisely the

compatibility conditions that ensure that α is globally defined (the characteristics are sim-

ple closed curves). �

3 Characterizing ν ‖ O(ω) in terms of distribution functions We will show that

(3.30) holds. This is immediate once the identity

∂

∂ǫ |ǫ=0
Aωǫ(λ) = −Jω

ν

|∇ω|
(λ) = −

∫

ω=λ

ν

|∇ω|
dl (3.35)

is proved. Let λ be in the interior of range(ω) and let f be a C1 function of R such that f ′

has support contained in the interior of range(ω). Then, by the coarea formula (3.26)

∂

∂ |ǫ=0

∫

Ω
f(ωǫ(x))dx =

∫

Ω
f ′(ω(x))ν(x)dx =

∫

R

f ′(λ)Jω
ν

|∇ω|
(λ)dλ. (3.36)

By approximation, this holds for f a continuous, piecewise linear function. Fix then λ and

for δ > 0 let f δ(λ′) have value 1 for λ′ < λ, 0 for λ′ > λ+ δ, and linear in between. Then
∂
∂ǫ |ǫ=0

∫

Ω f
δ(ωǫ(x))dx →δ

∂
|∂ǫ |ǫ=0

Aωǫ(λ) while
∫

R
(f δ)′(λ′)Jω

ν
|∇ω|(λ

′)dλ′ →δ −(Jωu)(λ). �
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Lemma 9 Setting N = ∇ω
|∇ω| ,

d

dλ
(Jωu)(λ) = Jω

(

div(uN)

|∇ω|

)

(λ), λ ∈ [minω,maxω] (3.37)

Proof Let ζ be an arbitrary smooth function with compact support in (minω,maxω).

Integrating by parts the coarea formula (3.26), using the identities ∇(ζ ◦ω) = ζ ′(ω)∇ω and

div((ζ ◦ ω)uN) = (ζ ◦ ω)div(uN) + 〈∇(ζ ◦ ω), uN〉, and the coarea formula again, we have
∫ maxω

minω
ζ(λ)(Jωu)′(λ) dλ = −

∫

Ω
u(x)|∇ω(x)|ζ ′(ω(x)) dx (3.38)

=

∫

Ω
div(uN)(ζ ◦ ω) dx (3.39)

=

∫ maxω

minω
ζ(λ)Jω

(

div (uN)

|∇ω|

)

(λ) dλ. (3.40)

�

Lemma 10 Let ωǫ ∈ F and u ∈ C∞
Ω
. Then we have the pointwise derivative

∂

∂ǫ |ǫ=0
Jωǫu(λ) = −Jω

{

ν div(uN)

|∇ω|

}

(λ), where ν :=
∂

∂ǫ |ǫ=0
ωǫ. (3.41)

Proof For an arbitrary function ζ with compact support in (minω,maxω), differentiating

the co-area formula (3.26)
∫

Ω
u(x)|∇ωǫ(x)|ζ(ωǫ(x))dx =

∫ maxω

minω
ζ(λ)Jωǫu(λ) dλ (3.42)

at ǫ = 0 we obtain
∫

Ω
u(x)

[

〈∇ω,∇ν〉

|∇ω|
ζ(ω(x)) + |∇ω|ζ ′(ω(x))ν(x)

]

dx =

[
∫ maxω

minω
ζ(λ)

(

∂

∂ǫ |ǫ=0
Jωǫu

)

(λ)dλ

]

.

(3.43)

On the one hand, the coarea formula (3.26) and an integration by parts give
∫

Ω
u(x)ν(x)|∇ω|ζ ′(ω(x))dx =

∫ maxω

minω
ζ ′(λ)(Jω(uν))(λ) dλ = −

∫ maxω

minω
ζ(λ)(Jω(uν))′(λ) dλ

(3.44)

and on the other,
∫

Ω
u(x)

〈∇ω,∇ν〉

|∇ω|
ζ(ω(x)) dx =

∫ maxω

minω
ζ(λ)Jω

(

u
〈∇ω,∇ν〉

|∇ω|2

)

(λ) dλ (3.45)

Since ζ is arbitrary, and using (3.37), we conclude with

∂

∂ǫ |ǫ=0
(Jωǫu(λ)) = −(Jω(uν))′(λ)+Jω

(

u
〈∇ω,∇ν〉

|∇ω|2

)

(λ) = −Jω

{

ν div(uN)

|∇ω|

}

(λ). (3.46)

�
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3.2 A−1
ω is a smooth tame map of ω

We will heavily rely on continuity and tameness of operators introduced in the Appendix.

Also, we recall the Faà di Bruno formula: if f, g are two functions of one variable, then the

n-th derivative (n ≥ 0) of f ◦ g is

(f ◦ g)(n) =

n
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;j1,...,jk(f
(k) ◦ g)g(j1) · · · g(jk), n ≥ 0 (3.47)

where ck;j1,...,jk are constants. If f = g−1, then f ′ = 1
g′◦f and (f ◦ g)(n) = 0 for n ≥ 2, hence

f (n) = −(f ′)n
n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;j1,...,jkf
(k)(g(j1) ◦ f) · · · (g(jk) ◦ f), n ≥ 2. (3.48)

Proposition 11 (Q(ω) = A−1
ω is smooth tame)

1. The operator

Q :

{

F+

ω
−→

C∞
[0,|Ω|]

A−1
ω

}

(3.49)

is a smooth tame map of Fréchet spaces with first derivative

DQ(ω) · ν =
Jω

ν
|∇ω| ◦A

−1
ω

Jω
1

|∇ω| ◦A
−1
ω

. (3.50)

For n ≥ 0, ω ∈ F+ in a ‖ · ‖2,α-neighborhood and any ν, ν1, ν2 ∈ F ,

‖A−1
ω ‖n,α ≤ C(‖ω‖n,α + 1), (3.51)

‖DQ(ω)ν‖n,α ≤ C (‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α) , (3.52)

‖D2Q(ω)(ν1, ν2)‖n,α ≤ C

{

‖ν1‖n+1,α‖ν2‖1,α + ‖ν1‖1,α‖ν2‖n+1,α (3.53)

+‖ω‖n+2,α‖ν1‖2,α‖ν2‖2,α

}

. (3.54)

2. The operator
{

F+ × C∞
Ω

ω u
−→

C∞
[0,|Ω|]

Jωu ◦A−1
ω

}

(3.55)

is smooth tame. For n ≥ 0, ω in a ‖·‖2,α-neighborhood and any u (without restriction),

∥

∥

∥

∥

Jω
u

|∇ω|
◦A−1

ω

∥

∥

∥

∥

n,α

≤ C · (‖u‖n,α + ‖ω‖n+1,α‖u‖1,α). (3.56)
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What prevents one from working directly with Aω is that the range of ω is not fixed and

that A′
ω is necessarily discontinuous at the endpoints of range(ω). This problem is resolved

by working instead with the inverse distribution function A−1
ω , at the cost of a fair amount

of technical complications.

Proposition 11 is split into Lemmas 12, 13, and 14. For continuity, the Cn-grading will

be more convenient. However, tame estimates will still be derived in the Cn,α-grading.

Lemma 12 (Q(ω) = A−1
ω is continuous) Q(ω) = A−1

ω is continuous as a map of Fréchet

spaces. More precisely, the following are continuous as maps of Banach spaces:

Q :

{

Fm
+

ω
−→

Cm[0,|Ω|]

A−1
ω

}

(m ≥ 2), (3.57)

{

Fm
+ × Cm−1

Ω

ω u
−→

Cm−1
[0,|Ω|]

(Jωu) ◦ A−1
ω

}

(m ≥ 2), (3.58)

Proof

1 ω 7→ A−1
ω is continuous Cm → Cm, m ≥ 2 In order to alleviate some of the

complications of working with A−1
ω (rather than Aω directly), we will use the following

device. Fix ω1 ∈ F+. For ω ∈ F+, let ω2 ∈ F+ and a a monotone increasing function such

that range(ω2) = range(ω1) and ω = a ◦ ω2. We will take a to be affine:

ω = a ◦ ω2 = minω +
maxω − minω

maxω2 − minω2
(ω2 − minω2). (3.59)

Fix k ≥ 0. Then

‖A−1
ω −A−1

ω1
‖k ≤ ‖A−1

a◦ω2
−A−1

ω2
‖k + ‖A−1

ω2
−A−1

ω1
‖k (3.60)

= ‖(a− id) ◦A−1
ω2

‖k + ‖A−1
ω2

−A−1
ω1

‖k (3.61)

= Ik + IIk. (3.62)

�

2 Estimating Ik In view of (3.47), Ik is arbitrarily small provided ‖a−id‖k is sufficiently

small while ‖A−1
ω2

‖k remains bounded. Since a is affine, the former is small provided ‖ω−ω1‖0

is small. Next, we show that ‖A−1
ω2

‖k remains bounded provided ‖ω2‖k is bounded and

‖ω2 − ω1‖2 is sufficiently small.

Observe first that ‖A−1
ω2

‖0 = max(|maxω2|, |minω2|) = max(|max ω|, |minω|) which is

fixed. For λ ∈ range(ω2),

A′
ω2

(λ) =

∫

ω2=λ

dl

|∇ω2|
=

∫

s∈S1

∣

∣

∣

∂z2
∂s

∣

∣

∣
( λ−minω2
maxω2−minω2

, s)

|∇ω2(z2( λ−minω2
maxω2−minω2

, s))|
ds. (3.63)
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Fix then L1 and a neighborhood

‖ω2 − ω1‖2 < ǫ0 (3.64)

where
1

L1
<

∫

ω2=λ
dl < L1 and

1

L1
< A′

ω2
(λ) < L1 (3.65)

for λ ∈ range(ω2). Now

(

A−1
ω2

)′
(µ) =

1

A′
ω2

◦A−1
ω2 (µ)

, µ ∈ [0, |Ω|] (3.66)

so that ‖A−1
ω2

‖1 remains bounded when ‖ω2 − ω1‖2 < ǫ0.

For the higher order derivatives, we use (3.48):
dnA−1

ω2
dµn

, n ≥ 2, is given by

−

(

dA−1
ω2

dµ

)n n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;ji

(

dkA−1
ω2

dµk

)

(

dj1Aω2

dλj1
◦A−1

ω2

)

· · ·

(

djkAω2

dλjk
◦ A−1

ω2

)

. (3.67)

An induction shows that
dnA−1

ω2
dµn

is bounded provided
dAω2
dµ

,. . . ,
dnAω2
dµn

. We show that this

holds when ‖ω2‖n is bounded. Setting

v0 =
1

|∇ω2|
, vm =

div(vm−1N2)

|∇ω2|
, m ≥ 1 (3.68)

where N2 = ∇ω2
|∇ω2|

, Lemma 9 yields

djAω2(λ)

dλj
(3.69)

= (Jω2vj−1)(λ) =

∫

ω2=λ
vj−1dl (3.70)

=

∫

s∈S1
vj−1

(

z

(

(
λ− minω2

maxω2 − minω2
, s

))
∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(

λ− minω2

maxω2 − minω2
, s

)

ds. (3.71)

But vj−1 is a smooth expression of the derivatives of ω2 up to order j. Therefore, with

‖ω2 − ω1‖2 < ǫ0 and ‖ω2‖j bounded, ‖Aω2‖Cj
range(ω2)

is bounded. �

3 Estimating IIk Since ω2 and ω1 have same range, we may invoke general results on

the inversion operator, see Lemma 27 in the Appendix: for k ≥ 1, IIk is arbitrarily small

provided ‖Aω2 −Aω1‖Ck
range(ω1)

is taken sufficiently small. Restricting to functions such that

range(ω2) = range(ω1), it remains to show that ω2 7→ Aω2 is continuous Ck → Ck, k ≥ 2.

But this is immediate in view of (3.71) and the fact that ω 7→ ∂z
∂s

is continuous Cj → C0

for j ≥ 2. �
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4 (ω, u) 7→ (Jωu) ◦ A−1
ω is continuous Cm × Cm−1 → Cm−1, m ≥ 2 Let u, u1, and

ω, ω1 with corresponding coordinate systems z, z1. For µ ∈ [0, |Ω|], writeλ = A−1
ω (µ),

λ1 = A−1
ω1

(µ), and t = λ−minω
maxω−minω , t1 = λ1−minω1

maxω1−minω1
. Then

Jωu ◦ A−1
ω (µ) − Jω1u1 ◦A

−1
ω1

(µ) (3.72)

=

∫

ω=λ
udl −

∫

ω1=λ1

u1dl (3.73)

=

∫

s∈S1

(

u(z(t, s))

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t, s) − u1(z1(t1, s))

∣

∣

∣

∣

∂z1
∂s

∣

∣

∣

∣

(t1, s)

)

ds (3.74)

and the integrand is small (uniformly in s and µ) provided ‖u − u1‖0 and ‖ω − ω1‖2 are

taken sufficiently small. This shows that (ω, u) 7→ Jωu ◦ A−1
ω is continuous C2 × C0 → C0.

Write d(Jωu◦A
−1
ω )

dµ
=
(

Jω
div(uN)
|∇ω| ◦ A−1

ω

)

×
(

dA−1
ω

dµ

)

whereN = ∇ω
|∇ω| . Since (ω, u) 7→ div(uN)

|∇ω|

is continuous C2 × C1 → C0 and ω 7→ A−1
ω is continuous C2 → C1, we conclude thanks to

the previous paragraph that (ω, u) 7→ Jωu ◦ A−1
ω is continuous C2 × C1 → C1.

As for higher order derivatives, set v0 = u, vm = div(vm−1N)
|∇ω| , m ≥ 1. A simple induction

shows that (ω, u) 7→ vm is continuous Fm+1
+ ×Cm

Ω
→ C0

Ω
. Now from (3.47) we find

dn(Jωu ◦ A−1
ω )

dµn
(3.75)

=

n
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;ji

(

dkJωu

dck
◦A−1

ω

)(

dj1A−1
ω

dµj1

)

. . .

(

djkA−1
ω

dµjk

)

(3.76)

=

n
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;ji
(

Jωuk ◦ A
−1
ω

)

(

dj1A−1
ω

dµj1

)

. . .

(

djkA−1
ω

dµjk

)

. (3.77)

Again by induction (ω, u) 7→ Jωu ◦ A−1
ω is continuous Cn × Cn−1 → Cn−1, n ≥ 2. �

Lemma 13 (Q(ω) = A−1
ω is tame)

1. For n ≥ 0 and ω in ‖ · ‖2,α-neighborhood,

‖A−1
ω ‖n,α ≤ C · (‖ω‖n,α + 1). (3.78)

2. For n ≥ 0, ω in a ‖ · ‖2,α-neighborhood and any u (without restriction),

‖Jωu ◦ A−1
ω ‖n,α ≤ C · (‖u‖n,α + ‖ω‖n+1,α‖u‖1,α). (3.79)
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Proof

1 Estimate on ‖Jωu ◦ A−1
ω ‖0,α Recall that ǫ0 is defined in (3.64). Clearly,

‖Jωu ◦ A−1
ω ‖0 ≤ L1‖u‖0. (3.80)

To estimate the Hölder-constant of Jωu ◦ A−1
ω , fix µ, µ′ ∈ [0, |Ω|] and set λ = A−1

ω (µ),

λ′ = A−1
ω (µ′), t = λ−minω

maxω−minω , t′ = λ′−minω
maxω−minω . Then,

Jωu(λ′) − Jωu(λ) (3.81)

=

∫

s∈S1

(

u(z(t′, s))

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t′, s) − u(z(t, s))

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t, s)

)

ds (3.82)

=

∫

s∈S1
u(z(t′, s))

(
∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t′, s) −

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t, s)

)

(3.83)

+
(

u(z(t′, s)) − u(z(t, s))
)

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

(t, s)ds. (3.84)

Since ω is restricted to a ‖·‖2,α-neighborhood, Lemma 7 gives that the first term is bounded

by C‖u‖0|t
′ − t| while the second is bounded by C[u]α|z(t

′, s) − z(t, s)|α ≤ C[u]α|t
′ − t|α.

Now from the proof of Lemma 12, (A−1
ω )′ is bounded, so that |t′− t| = C|λ′−λ| ≤ C|µ′−µ|.

In conclusion, for ω in a ‖ · ‖2,α-neighborhood and any u,

‖Jωu ◦A−1
ω ‖0,α ≤ C‖u‖0,α (3.85)

for ω in a ‖ · ‖2,α-neighborhood and any u (without restriction). This implies (3.79) for

m = 0. �

2 Estimate on ‖A−1
ω ‖1,α With

(

A−1
ω

)′
= 1

Jω
1

|∇ω|
◦A−1

ω
, with ‖ω − ω‖1 sufficiently small

1
|∇ω| remains bounded, and thus making ǫ0 smaller if necessary,

(

A−1
ω

)′
remains bounded in

‖ · ‖0,α for ‖ω − ω‖2,α < ǫ0. �

3 Estimate on ‖um‖0,α Suppose first (for simplicity) that u, a are smooth functions of

one variable and set u0 := u, um := (um−1a)′a, m ≥ 1. By induction, one verifies that um

is then of the form

um =
∑

j0+···+jm=m
j0,...,jm≥1

cm;j1,...,jmu
(j0)a(j1) · · · a(jm)am. (3.86)
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Using (5.114), and interpolation inequalities (1.39) on all factors (between their ‖ · ‖0,α and

‖ · ‖m−j0,α-norms),

‖um‖0,α ≤ C
∑

j0+···+jm=m
j0,...,jm≥1

‖u‖j0,α‖a‖j1,α · · · ‖a‖jm,α‖a
m‖0,α (3.87)

≤ C‖a‖lm0,α
∑

j0+···+jm=m
j0,...,jm≥0

‖u‖j0,α‖a‖
j1

m−j0
m−j0,α

· · · ‖a‖
jm
m−j0
m−j0,α

(3.88)

≤ C‖a‖lm0,α‖u‖j0,α‖a‖m−j0,α (3.89)

≤ C‖a‖lm0,α(‖u‖0,α‖a‖m,α + ‖u‖m,α‖a‖0,α) (3.90)

where lm is some positive integer depending on m. In turn,

‖um‖0,α ≤ C(‖u‖m,α + ‖a‖m,α‖u‖0,α), m ≥ 1 (3.91)

for all u without restriction, and a in a ‖ · ‖0,α-neighborhood.

The situation with um as defined by um = div(um−1N)
|∇ω| can be dealt with in a similar

fashion, only the details are more tedious. Here, a plays the rôle of 1
|∇ω| or N = ∇ω

|∇ω| . In

conclusion,

‖um‖0,α ≤ C(‖u‖m,α + ‖ω‖m+1,α‖u‖0,α), m ≥ 1 (3.92)

for all ω in a ‖ · ‖1,α-neighborhood and all u without restriction. �

4 Estimates on ‖Jωum ◦ A−1
ω ‖0,α We easily conclude from (3.85) and (3.92) that

∥

∥

∥

∥

dmJωu

dλm
◦ A−1

ω

∥

∥

∥

∥

0,α

=
∥

∥Jωum ◦A−1
ω

∥

∥

0,α
≤ C ·(‖u‖m,α+‖ω‖m+1,α‖u‖0,α), m ≥ 0 (3.93)

for ω in a ‖ · ‖2,α-neighborhood. �

5 Estimate (3.78) on ‖A−1
ω ‖n,α In this paragraph only, we write

f = A−1
ω , g = Aω, and J = Jω

1

|∇ω|
(3.94)

with derivatives f ′, g′, J ′. Since g′ = J ,

f (n) = −(f ′)n
n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;j1,...,jkf
(k)(J (j1−1) ◦ f) · · · (J (jk−1) ◦ f) (3.95)
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hence by (5.114)

‖f (n)‖0,α ≤ C‖f ′‖n0,α

n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

‖f (k)‖0,α‖J
(j1−1) ◦ f‖0,α · · · ‖J

(jk−1) ◦ f‖0,α. (3.96)

We prove by induction the estimate (3.78). We have already seen that ‖f‖1,α is bounded

for ω in a ‖ · ‖2,α-neighborhood. Suppose the estimate (3.78) proved up to some n− 1 ≥ 1.

From (3.93) ‖J (j−1) ◦ f‖0,α ≤ C · (‖ω‖j,α + 1), j ≥ 1, hence by the induction hypothesis

‖f (n)‖0,α ≤ C‖f ′‖n0,α

n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

(‖ω‖k,α + 1)(‖ω‖j1,α + 1) · · · (‖ω‖jk ,α + 1). (3.97)

The double sum is the sum of 1, ‖ω‖k,α‖ω‖j1,α · · · ‖ω‖jk ,α, and products of fewer factors.

For simplicity, consider only the term ‖ω‖k,α‖ω‖j1,α · · · ‖ω‖jk,α (the other terms are in fact

easier). We interpolate each factor between its ‖ · ‖1,α- and ‖ · ‖n,α-norms using (1.39)

‖ω‖k,α‖ω‖j1,α · · · ‖ω‖jk ,α (3.98)

≤ C · ‖ω‖
n−k
n−1

1,α ‖ω‖
k−1
n−1
n,α · ‖ω‖

n−j1
n−1

1,α ‖ω‖
j1−1
n−1
n,α · · · ‖ω‖

n−jk
n−1

1,α ‖ω‖
jk−1

n−1
n,α (3.99)

≤ C · ‖ω‖n,α (3.100)

since ‖ω‖1,α remains bounded and j1 + · · · + jk = n. This establishes the tame estimate

(3.78) on A−1
ω for ω in a ‖ · ‖2,α-neighborhood. �

6 Jωu ◦ A−1
ω is tame Setting f = Jωu and g = A−1

ω in (3.47) and with

u0 = u, um =
div(um−1N)

|∇ω|
, m ≥ 1, (3.101)

we have

dn(Jωu ◦ A−1
ω )

dµn
=

n
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

ck;ji
(

Jωuk ◦A
−1
ω

)

(

dj1A−1
ω

dµj1

)

· · ·

(

djkA−1
ω

dµjk

)

. (3.102)

From (3.93), (3.78), and (3.92), and by (5.114), we have for ω in a ‖ · ‖2,α-neighborhood

and u in a ‖ · ‖0,α-neighborhood,
∥

∥

∥

∥

(

Jωuk ◦A
−1
ω

)

(

dj1A−1
ω

dµj1

)

· · ·

(

djkA−1
ω

dµjk

)
∥

∥

∥

∥

0,α

(3.103)

≤ C · (‖u‖k,α + ‖ω‖k+1,α)(‖ω‖j1,α + 1) · · · (‖ω‖jk ,α + 1). (3.104)

Products of ‖ω‖j,α’s can be estimated by ‖ω‖n,α in a way similar to that which led to

(3.100). Consider now ‖u‖k,α‖ω‖j1,α · · · ‖ω‖jk,α (the remaining terms are easier and their
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estimation will be omitted). Interpolating each factor between its ‖ · ‖1,α and ‖ · ‖n,α-norms

with (1.39) and using the inequality xδy1−δ ≤ x+ y (0 ≤ δ ≤ 1), we find

‖u‖k,α‖ω‖j1,α · · · ‖ω‖jk,α ≤ C‖u‖
n−k
n−1

1,α ‖u‖
k−1
n−1
n,α ‖ω‖

(k−1)n
n−1

1,α ‖ω‖
n−k
n−1
n,α (3.105)

≤ C · ‖ω‖k−1
1,α

[

‖u‖1,α‖ω‖n,α + ‖u‖n,α‖ω‖1,α

]

(3.106)

≤ C · (‖u‖n,α + ‖ω‖n,α) (3.107)

for ω in a ‖ · ‖2,α-neighborhood and u in a ‖ · ‖1,α-neighborhood. Replacing u by ∇ω one

immediately obtains

‖ω‖k+1,α‖ω‖j1,α · · · ‖ω‖jk,α ≤ C · ‖ω‖n+1,α, n ≥ 1 (3.108)

for ω in a ‖ · ‖2,α-neighborhood. Putting these together, we arrive at

∥

∥

∥

∥

(

Jωuk ◦ A
−1
ω

)

(

dj1A−1
ω

dµj1

)

· · ·

(

djkA−1
ω

dµjk

)∥

∥

∥

∥

0,α

(3.109)

≤ C · (‖ω‖n+1,α + ‖u‖n,α) (3.110)

and summing,

‖Jωu ◦ A−1
ω ‖n,α ≤ C · (‖ω‖n+1,α + ‖u‖n,α + 1), n ≥ 1 (3.111)

for ω in a ‖·‖2,α-neighborhood and all u in a ‖·‖1,α-neighborhood. Since Jωu◦A
−1
ω is linear

in u, see Proposition 2,

‖Jωu ◦A−1
ω ‖n,α ≤ C · (‖u‖n,α + ‖ω‖n+1,α‖u‖1,α), n ≥ 1 (3.112)

for ω in a ‖ · ‖2,α-neighborhood and all u without restriction. This is (3.79) for m ≥ 1. �
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Even though Q is in fact smooth, two derivatives are sufficient for the Moser iteration.

Lemma 14 (Q(ω) = A−1
ω is smooth tame) Q : F+ → C∞

[0,|Ω|] is twice continuously dif-

ferentiable as a map of Fréchet spaces. Its first derivative is given by

DQ(ω) · ν =
Jω

ν
|∇ω| ◦ A

−1
ω

Jω
1

|∇ω| ◦ A
−1
ω

. (3.113)

For n ≥ 0, ω in a ‖ · ‖2,α-neighborhood and any ν without restriction, we have

∥

∥

∥

∥

Jω
ν

|∇ω|
◦A−1

ω

∥

∥

∥

∥

n,α

and ‖DQ(ω)ν‖n,α ≤ C {‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α} . (3.114)

The first derivative

{

Fm
+ × Cm−1

Ω

ω ν
−→

Cm−1
Ω

DQ(ω)ν

}

(m ≥ 2) (3.115)

is continuous as a map of Banach spaces.

More generally, (ω, u) ∈ F+ ×C∞
0,|Ω|] 7→ Jωu ◦A

−1
ω ∈ C∞

[0,|Ω|] is smooth tame. For ω in a

‖ · ‖2,α-neighborhood, u ∈ C∞
Ω
, ν ∈ F , the first derivative in ω satisfies

∥

∥Dω(Jωu ◦A−1
ω )ν

∥

∥

n,α
≤ C

{

‖u‖n+1,α‖ν‖1,α + ‖u‖2,α‖ν‖n,α + ‖ω‖n+2,α‖u‖2,α‖ν‖1,α

}

.

(3.116)

For ω ∈ F+ in a ‖ · ‖2,α-neighborhood, ν1, ν2 ∈ F , and n ≥ 0,

‖D2Q(ω)(ν1, ν2)‖n,α ≤ C

{

‖ν1‖n+1,α‖ν2‖1,α + ‖ν1‖1,α‖ν2‖n+1,α + ‖ω‖n+2,α‖ν1‖2,α‖ν2‖2,α

}

.

(3.117)

Proof

1 Preliminary remark Let f(µ, ǫ) be a smooth function on [0, |Ω|] × [0, ǫ0]. Then,

f(µ, ǫ) − f(µ, 0)

ǫ
→ǫ

(

∂f

∂ǫ

)

(µ, 0) (3.118)

uniformly in µ ∈ [0, |Ω|], and thus

∥

∥

∥

∥

f(·, ǫ) − f(·, 0)

ǫ
−

(

∂f

∂ǫ

)

(·, 0)

∥

∥

∥

∥

0

→ǫ 0. (3.119)

Since f is smooth, the same holds for all derivatives ∂nf
∂µn

, i.e.

∥

∥

∥

∥

f(·, ǫ) − f(·, 0)

ǫ
−

(

∂f

∂ǫ

)

(·, 0)

∥

∥

∥

∥

n

→ǫ 0. (3.120)
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In other words, f(·,ǫ)−f(·,0)
ǫ

→ǫ

(

∂f
∂ǫ

)

(·, 0) in the C∞-topology. �

2 Differentiability of Q : F+ → C∞
[0,|Ω|] Let ω ∈ F+, ν ∈ F , and set ωǫ = ω+ ǫν. From

the previous paragraph, it is enough to show that A−1
ωǫ (µ) is a smooth function of µ and ǫ.

But by definition, we have A−1
ωǫ

(Aωǫ(λ)) = λ. The classical Implicit Function Theorem with

parameter ǫ shows that A−1
ωǫ (µ) is smooth in µ and ǫ provided Aωǫ(λ) is smooth in λ and ǫ.

But observe that, using the change of coordinates zǫ corresponding to ωǫ, see Lemma 7,

d

dλ
Aωǫ(λ) = Jωǫ

1

|∇ωǫ|
(λ) (3.121)

=

∫

ωǫ=λ

1

|∇ωǫ|
dl (3.122)

=

∫

s∈S1

1

|∇ωǫ (zǫ(tǫ, s)) |

∣

∣

∣

∣

∂zǫ

∂s
(tǫ, s)

∣

∣

∣

∣

ds (3.123)

where tǫ = λ−minωǫ
maxωǫ−minωǫ

is obviously a smooth function of λ and ǫ. This shows that d
dλ
Aωǫ(λ)

is smooth in λ and ǫ, hence that Aωǫ(λ) is, as desired. �

3 First derivative DQ(ω) · ν Differentiating A−1
ωǫ

(Aωǫ(λ)) = λ at ǫ = 0, we find

∂

∂ǫ |ǫ=0
A−1
ωǫ (µ) +

dA−1
ω

dµ
(µ)

∂

∂ǫ |ǫ=0
Aωǫ(λ) = 0, where λ = A−1

ω (µ) (3.124)

so that, thanks to (3.35),

∂

∂ǫ |ǫ=0
A−1
ωǫ

(µ) =
dA−1

ω

dµ
(µ)

(

Jω
ν

|∇ω|
◦ A−1

ω

)

(µ). (3.125)

i.e.

DQ(ω) · ν =
Jω

ν
|∇ω| ◦A

−1
ω

Jω
1

|∇ω| ◦A
−1
ω

(3.126)

which is a rational function of continuous tame maps of ω and ν. In particular, DQ(ω) ·ν is

continuous as a map of Fréchet spaces and tame in ω and ν by Lemma 12. More precisely,

Lemma 12 implies that

{

Fm
+ × Cm−1

Ω

ω ν
−→

Cm−1
[0,|Ω|]

DQ(ω)ν

}

(3.127)

is a continuous map of Banach spaces, and Lemma 13 that it is tame. �
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4 Tame estimates on Jω
ν

|∇ω| ◦ A
−1
ω For ω in a ‖ · ‖2,α-neighborhood and any ν, we

have for n ≥ 0
∥

∥

∥

∥

Jω
ν

|∇ω|
◦A−1

ω

∥

∥

∥

∥

n,α

(3.128)

≤ C

(

∥

∥

∥

∥

ν

|∇ω|

∥

∥

∥

∥

n,α

+ ‖ω‖n+1,α

∥

∥

∥

∥

ν

|∇ω|

∥

∥

∥

∥

1,α

)

(3.129)

≤ C
{

‖ν‖n,α + ‖ν‖0,α(‖ω‖n+1,α + 1) + ‖ω‖n+1,α‖ν‖1,α

}

(3.130)

≤ C (‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α) (3.131)

by (3.79), (5.114), and (5.116). �

5 Tame estimates on DQ(ω)ν For ω in a ‖ · ‖2,α-neighborhood and any ν, we have

for n ≥ 0

‖DQ(ω)ν‖n,α ≤

∥

∥

∥

∥

Jω
ν

|∇ω|
◦ A−1

ω

∥

∥

∥

∥

n,α

∥

∥

∥

∥

∥

1

Jω
1

|∇ω| ◦ A
−1
ω

∥

∥

∥

∥

∥

0,α

(3.132)

+

∥

∥

∥

∥

Jω
ν

|∇ω|
◦ A−1

ω

∥

∥

∥

∥

0,α

∥

∥

∥

∥

∥

1

Jω
1

|∇ω| ◦ A
−1
ω

∥

∥

∥

∥

∥

n,α

(3.133)

≤ C

{

‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α + ‖ν‖1,α(‖ω‖n+1,α + 1)

}

(3.134)

≤ C {‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α} (3.135)

by (3.131) and (5.114). �

6 First derivative of Jωu ◦A
−1
ω The operator Jωu ◦A

−1
ω is linear in u so we only need

to worry about differentiability in ω. Jωǫu ◦ A−1
ωǫ

(µ) is a smooth function of (µ, ǫ), and a

similar argument as for A−1
ω shows that d

dǫ |ǫ=0
(Jωǫu ◦ A−1

ωǫ ) exists in the C∞-topology. For

µ ∈ (0, |Ω|), setting λ = A−1
ω (µ), and using (3.41), (3.37), and (3.50),

∂

∂ǫ |ǫ=0
(Jωǫu(A−1

ωǫ (µ))) = Dω

(

Jωu ◦ A−1
ω

)

ν (3.136)

= −Jω

(

νdiv(uN)

|∇ω|

)

◦ A−1
ω (µ) (3.137)

+

(

Jω

(

div(uN)

|∇ω|

)

◦ A−1
ω

)

(µ)

(

Jω
ν

|∇ω| ◦ A
−1
ω

Jω
1

|∇ω| ◦ A
−1
ω

)

(µ). (3.138)

Lemma 12 implies that (ω, u) 7→ Jωu ◦ A−1
ω is continuously differentiable, and Lemma 13

that the derivative is tame. (From this expression, it is not too difficult to see, by an in-

duction argument, that in fact Jωu ◦ A−1
ω is infinitely differentiable and all derivatives are
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tame.) �

7 Tame estimates on Dω

(

Jωu ◦A−1
ω

)

ν We estimate
∥

∥Dω

(

Jωu ◦ A−1
ω

)

ν
∥

∥

n,α
by the

sum of three terms: setting N = ∇ω
|∇ω| , (5.114) gives

I + II + III =

∥

∥

∥

∥

Jω
νdiv(uN)

|∇ω|
◦ A−1

ω

∥

∥

∥

∥

n,α

(3.139)

+

∥

∥

∥

∥

Jω
div(uN)

|∇ω|
◦A−1

ω

∥

∥

∥

∥

n,α

‖DQ(ω)ν‖0,α (3.140)

+

∥

∥

∥

∥

Jω
div(uN)

|∇ω|
◦A−1

ω

∥

∥

∥

∥

0,α

‖DQ(ω)ν‖n,α. (3.141)

Estimates on I By (3.131), (5.114), and (5.116), we have for ω in a ‖·‖2,α-neighborhood,

any ν, u, and n ≥ 0,

∥

∥

∥

∥

Jω
νdiv(uN)

|∇ω|
◦ A−1

ω

∥

∥

∥

∥

n,α

(3.142)

≤ C

{

‖νdiv(uN)‖n,α + ‖ω‖n+1,α‖νdiv(uN)‖1,α

}

(3.143)

≤ C

{

‖ν‖n,α‖u‖1,α + ‖uN‖n+1,α‖ν‖0,α + ‖ω‖n+1,α‖ν‖1,α‖u‖2,α

}

(3.144)

≤ C

{

‖ν‖n,α‖u‖1,α + ‖u‖n+1,α‖ν‖0,α + ‖N‖n+1,α‖u‖0,α‖ν‖1,α (3.145)

+‖ω‖n+1,α‖ν‖1,α‖u‖2,α

}

(3.146)

≤ C

{

‖ν‖n,α‖u‖1,α + ‖u‖n+1,α‖ν‖0,α + (‖ω‖n+2,α + 1)‖u‖2,α‖ν‖1,α

}

(3.147)

≤ C

{

‖ν‖n,α‖u‖1,α + ‖u‖n+1,α‖ν‖0,α + ‖ω‖n+2,α‖u‖2,α‖ν‖1,α

}

(3.148)

≤ C

{

‖u‖1,α‖ν‖n,α + ‖u‖n+1,α‖ν‖0,α + ‖ω‖n+2,α‖u‖2,α‖ν‖1,α

}

. (3.149)

Estimates on Jω
div(uN)
|∇ω| ◦A−1

ω By (3.131), (5.114), and (5.116), we have for n ≥ 0

∥

∥

∥

∥

Jω
div(uN)

|∇ω|
◦ A−1

ω

∥

∥

∥

∥

n,α

(3.150)

≤ C {‖uN‖n+1,α + ‖ω‖n+1,α‖uN‖2,α} (3.151)

≤ C {‖u‖n+1,α + ‖u‖0,α‖N‖n+1,α + ‖ω‖n+1,α‖u‖2,α(‖ω‖3,α + 1)} (3.152)

≤ C {‖u‖n+1,α + ‖u‖0,α(‖ω‖n+2,α + 1) + ‖ω‖n+2,α‖u‖2,α} (3.153)

≤ C {‖u‖n+1,α + ‖ω‖n+2,α‖u‖2,α} (3.154)
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provided ω remains in a ‖·‖2,α-neighborhood. (We have used that, by interpolation inequal-

ities, ‖ω‖n+1,α‖ω‖3,α ≤ C‖ω‖n+2,α‖ω‖2,α ≤ C‖ω‖n+2,α for ω in a ‖ · ‖2,α-neighborhood.)

Estimates on II+III For ω in a ‖·‖2,α-neighborhood, and any u, ν, we conclude from

the above and (5.114) that for n ≥ 0

II + III (3.155)

≤ C

{

(

‖u‖n+1,α + ‖ω‖n+2,α‖u‖2,α

)

‖ν‖1,α (3.156)

+‖u‖2,α

(

‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α

)

}

(3.157)

≤ C

{

‖u‖n+1,α‖ν‖1,α + ‖u‖2,α‖ν‖n,α + ‖ω‖n+2,α‖u‖2,α‖ν‖1,α

}

(3.158)

Conclusion Putting the above together,

∥

∥Dω(Jωu ◦A−1
ω )ν

∥

∥

n,α
(3.159)

≤ C

{

‖u‖n+1,α‖ν‖1,α + ‖u‖2,α‖ν‖n,α + ‖ω‖n+2,α‖u‖2,α‖ν‖1,α

}

. (3.160)

�

8 Second derivatives of Q From (3.113) it is clear that DQ(ω)ν is continuously

differentiable in ω. Using (3.136) and after some simplification, the second derivative

D2Q(ω)(ν1, ν2), being the partial derivative of DQ(ω)ν1 with respect to ω in the direc-
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tion ν2, is then given by

D2Q(ω)(ν1, ν2) (3.161)

=

(

Jω
ν1

|∇ω| ◦ A
−1
ω

)

(

Jω
div

(

ν2N
|∇ω|

)

|∇ω| ◦A−1
ω

)

(

Jω
1

|∇ω| ◦ A
−1
ω

)2 (3.162)

+

(

Jω
ν2

|∇ω| ◦ A
−1
ω

)

(

Jω
div

(

ν1N
|∇ω|

)

|∇ω| ◦A−1
ω

)

(

Jω
1

|∇ω| ◦ A
−1
ω

)2 (3.163)

−
Jω

div
(

N
|∇ω|

)

|∇ω| ◦A−1
ω

(

Jω
1

|∇ω| ◦A
−1
ω

)3

(

Jω
ν1

|∇ω|
◦ A−1

ω

)(

Jω
ν2

|∇ω|
◦ A−1

ω

)

(3.164)

−
Jω

div
(

ν1ν2N
|∇ω|

)

|∇ω| ◦A−1
ω

Jω
1

|∇ω| ◦ A
−1
ω

. (3.165)

(One verifies that this expression is symmetric in ν1 and ν2.) By Lemma 12 and Lemma 13,

a moment’s concentration shows that this is a continuous map

D2Q :

{

Fm
+ × Cm−1

Ω
× Cm−1

Ω

ω ν1 ν2
−→

Cm−2
[0,|Ω]

D2Q(ω)(ν1, ν2)

}

(3.166)

and that it is tame. �

9 Tame estimates on D2Q(ω)(ν1, ν2) We write the above expression as D2Q(ω)(ν1, ν2) =

I2+II2+III2+IV2. Note that all the factors not depending on ν1 nor ν2 have their ‖·‖n,α-

norms bounded by C(‖ω‖n+1,α + 1).
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Estimates on I2

Using (3.85) for ‖ · ‖0,α-estimates,

‖I2‖n,α ≤ C

{

(‖ω‖n+1,α + 1)

∥

∥

∥

∥

ν1
|∇ω|

∥

∥

∥

∥

0,α

∥

∥

∥

∥

∥

div ν2N
|∇ω|

|∇ω|

∥

∥

∥

∥

∥

0,α

(3.167)

+(‖ν1‖n,α + ‖ω‖n+1,α‖ν1‖1,α)‖ν2‖1,α (3.168)

+‖ν1‖0,α

(

∥

∥

∥

∥

div

(

ν2N

|∇ω|

)
∥

∥

∥

∥

n,α

+ ‖ω‖n+1,α

∥

∥

∥

∥

div

(

ν2N

|∇ω|

)
∥

∥

∥

∥

1,α

)}

(3.169)

≤ C

{

(‖ω‖n+1,α + 1)‖ν1‖0,α‖ν2‖1,α (3.170)

+(‖ν1‖n,α + ‖ω‖n+1,α‖ν1‖1,α)‖ν2‖1,α (3.171)

‖ν1‖0,α

(

∥

∥

∥

∥

ν2N

|∇ω|

∥

∥

∥

∥

n+1,α

+ ‖ω‖n+1,α

∥

∥

∥

∥

ν2N

|∇ω|

∥

∥

∥

∥

2,α

)}

(3.172)

≤ C

{

‖ω‖n+1,α‖ν1‖1,α‖ν2‖1,α + ‖ν1‖n,α‖ν2‖1,α (3.173)

+‖ν1‖0,α

(

‖ν2‖n+1,α + (‖ω‖n+2,α + 1)‖ν2‖0,α (3.174)

+‖ω‖n+1,α‖ν2‖2,α(‖ω‖3,α + 1)
)

}

(3.175)

≤ C

{

‖ν1‖n,α‖ν2‖1,α + ‖ν1‖0,α‖ν2‖n+1,α + ‖ω‖n+2,α‖ν1‖1,α‖ν2‖2,α

}

(3.176)

where we have used interpolations to get ‖ω‖n+1,α‖ω‖3,α ≤ C‖ω‖n+2,α‖ω‖2,α ≤ C‖ω‖n+2,α.

�

Estimates on I2 + II2

Since II2 is obtained by interchanging ν1 and ν2, we immediately have

‖I2+II2‖n,α ≤ C

{

‖ν1‖n+1,α‖ν2‖1,α+‖ν1‖1,α‖ν2‖n+1,α+‖ω‖n+2,α‖ν1‖2,α‖ν2‖2,α

}

. (3.177)

�
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Estimates on III2

We have

‖III2‖n,α (3.178)

≤ C

{

(‖ω‖n+1,α + 1) ‖ν1‖0,α ‖ν2‖0,α (3.179)

+

(

‖ν1‖n,α + ‖ω‖n+1,α‖ν1‖1,α

)

‖ν2‖0,α (3.180)

+‖ν1‖0,α

(

‖ν2‖n,α + ‖ω‖n+1,α‖ν2‖1,α

)

}

(3.181)

≤ C

{

‖ν1‖n,α‖ν2‖0,α + ‖ν1‖0,α‖ν2‖n,α + ‖ω‖n+1,α‖ν‖1,α‖ν2‖1,α

}

(3.182)

�

Estimates on IV2

We have

‖IV ‖n,α (3.183)

≤ C

{

(‖ω‖n+1,α + 1)

∥

∥

∥

∥

ν1ν2N

|∇ω|

∥

∥

∥

∥

1,α

+

∥

∥

∥

∥

ν1ν2N

|∇ω|

∥

∥

∥

∥

n+1,α

}

(3.184)

≤ C

{

(‖ω‖n+1,α + 1)‖ν1‖1,α‖ν2‖1,α (3.185)

+ ‖ν1‖n+1,α‖ν2‖0,α + ‖ν1‖0,α‖ν2‖n+1,α + (‖ω‖n+2,α + 1)‖ν1‖1,α‖ν2‖1,α

}

(3.186)

≤ C

{

‖ν1‖n+1,α‖ν2‖1,α + ‖ν1‖1,α‖ν2‖n+1,α + ‖ω‖n+2,α‖ν1‖1,α‖ν2‖1,α

}

. (3.187)

�

Conclusion

Putting the estimates on I2, II2, III2, IV2 together,

‖D2Q(ω)(ν1, ν2)‖n,α ≤ C

{

‖ν1‖n+1,α‖ν2‖1,α + ‖ν1‖1,α‖ν2‖n+1,α + ‖ω‖n+2,α‖ν1‖2,α‖ν2‖2,α

}

.

(3.188)

�
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4 Proof of Theorem 1

Outline of proof

That T is smooth tame is immediate since T (F ) = (Q ◦ ∆ ◦ S)(F ) is a composition of

smooth tame maps. The crucial part in the surjective part of the Nash-Moser theorem is

to establish that DT (F )f has a tame family of right-inverses. We emphasize that the non-

degeneracy condition (ND2) is only made at the reference steady-state, and not in an entire

neighborhood of the reference steady-state. The problem of finding such right-inverse for

DT (F )f , given in (4.14), is equivalent to inverting a map of the form g+K(F )g = h where

K(F )g can be thought of as a “compact perturbation” of the first term g, see (4.16). This is

precisely what was done in Lemma 5 with the elliptic operator ∆φ+cφ = k (augmented with

suitable boundary conditions): cφ is a “compact perturbation” of ∆φ. There, the estimates

on the (bilinear) term cφ were standard. Here, the term K(F )g is more complicated and

requires considerably more work.

The injective part of Theorem 1 is proved in Section 4.4. At the conceptual level, the

proof is an adjustment of the injective part of the Nash-Moser Inverse Function Theorem

as presented in Section 1.3, Part III [7]. (One cannot use this theorem directly because of

complications created by the lack of injectivity of the map F 7→ ψ.)

Assumptions

We recall the main assumptions.

The domain Ω is assumed diffeomorphic to the annulus so that

∂Ω = Γo ∪ Γi. (4.1)

We assume that the reference steady-state ω = F (ψ) is such that F
′
6= 0, ω has no critical

points, and satisfies the non-degeneracy conditions (ND1) and (ND2). By continuity of

F ∈ C1 7→ ψ ∈ C2, make ǫS in VS(F ) smaller if necessary (see Proposition 6), so that the

corresponding ψ has no critical points either and that F ′ 6= 0. We will then assume without

loss of generality that

ψ ≤ 0. (4.2)

The interval I introduced in Section 2.2 can now be taken of the form

I = [c, 0] where c < minψ is fixed. (4.3)

For simplicity, the calculations will be performed assuming that

F ′ > 0. (4.4)

As observed in the Introduction, the case F ′ > 0 is special in that the corresponding solution

automatically satisfies both non-degeneracy conditions (ND1) and (ND2). But this property

will never be used in the following.
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The first derivative DT (F )f

The map

T :

{

VnS (F )

F
−→

Cn[0,|Ω|]

A−1
ω

}

(n ≥ 2) (4.5)

is continuous as a map of Banach spaces (Lemma 12 and (2.103) after Proposition 6).

Write the first derivative as DT (F )f = DQ(ω)ν where ω = ∆ψ and ψ = S(F ) solves the

steady-state equation

∆ψ = F (ψ), ψ|Γo = 0,
∂ψ

∂τ |Γi
= 0,

∫

Γi

∂ψ

∂N
= γi, (4.6)

and ν = ∆φ where φ = DS(F )f solves the linearized steady-state equation

∆φ = F ′(ψ)φ+ f(ψ), φ|Γo = 0,
∂φ

∂τ |Γi
= 0,

∫

Γi

∂φ

∂N
= 0. (4.7)

Thus,

DT :

{

VnS (F ) × Cn−1
I

F f
−→

Cn−1
[0,|Ω|]

DT (F )f

}

(n ≥ 2) (4.8)

is continuous as a map of Banach spaces (Lemma 14 and (2.104) after Proposition 6). From

Proposition 11,

DT (F )f =
Jω

ν
|∇ω| ◦A

−1
ω

Jω
1

|∇ω| ◦A
−1
ω

=
Jω

f(ψ)
|∇ω| ◦A

−1
ω

Jω
1

|∇ω| ◦ A
−1
ω

+
Jω

F ′(ψ)φ
|∇ω| ◦ A−1

ω

Jω
1

|∇ω| ◦ A
−1
ω

(4.9)

To simplify this, use the identity (when F ′ > 0)

T (F ) = F ◦ A−1
ψ (4.10)

which follows from Aψ(λ) = |{ψ < λ}| = |{ω < F (λ)}| = Aω(F (λ)). (A similar expression

holds in the case F ′ < 0.) Then, ω(x) = A−1
ω (λ) if and only if ψ(x) = A−1

ψ (λ) and

∫

ω=A−1
ω (λ)

f(ψ)

|∇ω|
dl = f(A−1

ψ (λ))

∫

ω=A−1
ω (λ)

1

|∇ω|
dl. (4.11)

Also, ∇ω = F ′(ψ)∇ψ so that after some elementary calculations we obtain

DT (F ) · f = f ◦A−1
ψ + (F ′ ◦ A−1

ψ )

(

Jψ
φ

|∇ψ| ◦ A
−1
ψ

Jψ
1

|∇ψ| ◦ A
−1
ψ

)

(4.12)

= f ◦A−1
ψ +

(

dA−1
ω

dµ

)(

Jψ
φ

|∇ψ|
◦A−1

ψ

)

(4.13)

=: B(F )f + K̃(F )f. (4.14)
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Construction of a tame right-inverse f = L(F )h to h = DT (F ) · f

In order to construct a right-inverse f = L(F )h to h = DT (F )f we will construct first the

inverse to a modification h = M(F )g of h = DT (F )f . Set

M(F ) := DT (F ) · V B(F ) = IdC∞
[0,|Ω|]

+K(F ) (4.15)

where

K(F ) · g := K̃(F ) · V B(F ) · g =

(

dA−1
ω

dµ

)(

Jψ
φ

|∇ψ|
◦ A−1

ψ

)

, (4.16)

and ∆φ = F ′(ψ)φ + f(ψ), f = V B(F ) · g, and f = V B(F )g is a tame right-inverse to

g = B(F )f (intuitively, it is “f = g ◦ Aψ”). The latter is constructed in Lemma 15. We

will show that h = M(F )g has a tame inverse g = VM(F )h, and thus that h = DT (F )f

has a tame right-inverse by setting

L(F ) · h := V B(F ) · VM(F ) · h. (4.17)

This is possible because K(F )g can be viewed as a “compact perturbation” of g. This is

due to the fact that φ gains sufficient regularity from f . In fact, the proof is completely

analogous to the proof that ∆φ+ cφ = k has a family of tame inverses: compare Lemma 4

with Lemma 16, and Proposition 5 with Proposition 18.

4.1 Right-inverse to B(F )f = f ◦ A−1
ψ

First, as an auxiliary step, we need to construct a right-inverse f = V B(F )g to g = B(F )f .

Since B(F ) is surjective for each F , we know that a right-inverse exists for each F . However,

we need the inverse f = V B(F )g to g = B(F )f to be continuous in both F and h, and to

satisfy tame estimates. Naively, the inverse of g = f ◦ A−1
ψ should be “f = g ◦ Aψ”, but f

is defined on an interval larger than the domain of Aψ.

Lemma 15 The map B(F ) · f has a smooth tame family of right-inverses f = V B(F ) · g

defined on a sufficiently small ‖ · ‖1,α-neighborhood VB(F ) ⊂ VS(F ) of F :

V B(F ) : C∞
[0,|Ω|] → C∞

[c,0], B(F ) · V B(F ) = IdC∞
[0,|Ω|]

. (4.18)

For n ≥ 2, F ∈ VB(F ) and any g (without restriction),

‖f‖n,α ≤ C ·

{

‖g‖n,α + ‖F‖n−2,α‖g‖1,α

}

(4.19)

while ‖f‖0,α ≤ C‖g‖0,α, ‖f‖1,α ≤ C‖g‖1,α.
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Proof Fix D > 0 and let B ∈ C∞
[−D,|Ω|+D] be a monotone increasing extension of A−1

ψ
∈

C∞
[0,|Ω|]. It can be arranged so that range(B) = [c, |c|] (see (4.3)). See proof of Corollary 1.3.7,

p. 138, Part II of [7]. Let

E0 : C∞
[0,|Ω|] −→ {b ∈ C∞

[−D,|Ω|+D] | b(−D) = b(|Ω| +D) = 0} (4.20)

be an extension operator taking functions on [0, |Ω|] to functions on [−D, |Ω|+D] vanishing

at the endpoints. (The target space is easily seen to be a tame Fréchet space). It can be

made tame linear of degree 0: again from the proof of Corollary II.1.3.7, p. 138, [Hamilton]),

extend b = b(λ) ∈ C∞
[0,|Ω|] to λ ≤ 0, then to λ ≥ |Ω|, and finally multiply by a smooth cut-off

function with support in (−D, |Ω| + D) and equal to 1 on [0, |Ω|]. Then we have the tame

estimates for n ≥ 0

‖E0b‖n,α ≤ C‖b‖n,α. (4.21)

Define now

E :

{

C∞
[0,|Ω|]

B
−→

C∞
[−D,|Ω|+D]

B + E0(B −A−1
ψ

)

}

(4.22)

which extends maps defined on [0, |Ω|] to maps defined on [−D, |Ω|] with fixed endpoint

values c and |c| at −D and |Ω| + D respectively. E is smooth tame since it is affine with

tame linear part E0. For a sufficiently small ‖ · ‖1-neighborhood V(A−1
ψ

) of A−1
ψ

, it also

defines a map

E : (V(A−1
ψ

) ⊂ C∞
[0,|Ω|]) −→ D∞

I1,I2
(4.23)

where D∞
I1,I

is the set of smooth diffeomorphisms from I1 = [−D, |Ω|] to I2 = [c, |c|].

From g = f ◦A−1
ψ we find E(g) = E(f ◦ A−1

ψ ) = f ◦ E(A−1
ψ ). Let then

V :

{

D∞
I1,I2

B
−→

D∞
I2,I1

B−1

}

(4.24)

denote the operator which takes inverses. Choose now

VB(F ) ⊂ VS(F ) (4.25)

a sufficiently small ‖·‖1,α-neighborhood of VS(F ) from Proposition 6 so that the correspond-

ing A−1
ψ remains in V(A−1

ψ
) (use also Lemma 12). We have constructed a right-inverse

V B(F ) · g :=
(

Eg ◦ V (E(A−1
ψ ))

)
∣

∣

∣

[c,0]
(4.26)

defined for any F ∈ VB(F ) and any g ∈ C∞
[0,|Ω|].

Clearly, f = V B(F )g is smooth tame. Using the above estimates on E0, on A−1
ψ from

Proposition 11, and on ψ = S(F ) from Proposition 6, we have for n ≥ 2

‖E(A−1
ψ )‖n,α ≤ C

(

‖A−1
ψ ‖n,α + 1

)

≤ C (‖ψ‖n,α + 1) ≤ C (‖F‖n−2,α + 1) . (4.27)
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From tame estimates on composition of functions from Lemma 26 and on the inversion

operator V from Lemma 27 of the Appendix, for F ∈ VB(F ) and any g ∈ C∞
[0,|Ω|,

‖f‖n,α ≤ C
(

‖E(g)‖n,α + ‖E(A−1
ψ )‖n,α‖E(g)‖1,α

)

(4.28)

≤ C (‖g‖n,α + (‖F‖n−2,α + 1)‖‖g‖1,α) (4.29)

≤ C (‖g‖n,α + ‖F‖n−2,α‖‖g‖1,α) . (4.30)

Note that ‖E(A−1
ψ )‖1,α remains bounded for F ∈ VB(F ). Thus, we deduce easily the desired

estimates on ‖f‖0,α and ‖f‖1,α. �

4.2 Summary of tame estimates

Here we collect tame estimates which will be used abundantly in the next Sections. Some

estimates will be given in two equivalent forms, the second being particularly useful for the

estimates on the difference K(F )g −K(F )g.

From Proposition 6: If ω = ∆ψ = F (ψ) with F ∈ VS(F ), then for n ≥ 0

‖ω‖n,α and ‖ψ‖n+2,α ≤ C
{

‖F‖n,α + 1
}

≤ C
{

‖F − F‖n,α + 1
}

(4.31)

from the triangle inequality ‖F‖n,α ≤ ‖F‖n,α + ‖F − F‖n,α ≤ C
(

‖F − F‖n,α + 1
)

.

If ∆φ = F ′(ψ)φ+ f(ψ) with F ∈ VS(F ) and f ∈ C∞
Ω

, then for n ≥ 0

‖φ‖n+2,α ≤ C
{

‖f‖n,α + ‖F‖n+1,α‖f‖1,α

}

, (4.32)

‖φ‖n+2,α ≤ C
{

‖f‖n,α + ‖F − F‖n+1,α‖f‖1,α

}

(4.33)

again by the triangle inequality and using ‖f‖1,α ≤ ‖f‖n,α for n ≥ 1 (for n = 0, the last

term in (4.32) and (4.33) is actually not needed, see Proposition 6).

From Lemma 15 If f = V B(F )g where F ∈ VB(F ) ⊂ VS(F ) and g ∈ C∞
[0,|Ω|], then for

n ≥ 2,

‖f‖n,α ≤ C
{

‖g‖n,α + ‖F‖n−2,α‖g‖1,α

}

, (4.34)

‖f‖n,α ≤ C
{

‖g‖n,α + ‖F − F‖n−2,α‖g‖1,α

}

(4.35)

while ‖f‖0,α ≤ C‖g‖0,α, ‖f‖1,α ≤ C‖g‖1,α.

Combining the above, we have for n ≥ 0,

‖φ‖n+2,α ≤ C
{

‖g‖n,α + ‖F‖n+1,α‖g‖1,α

}

, (4.36)

‖φ‖n+2,α ≤ C
{

‖g‖n,α + ‖F − F‖n+1,α‖g‖1,α

}

. (4.37)
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From Lemma 14: For ψ ∈ F+ in a ‖ · ‖2,α-neighborhod, φ ∈ C∞
Ω

, and n ≥ 0,

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

n,α

and ‖DQ(ψ)φ‖n,α ≤ C (‖φ‖n,α + ‖ψ‖n+1,α‖φ‖1,α) , (4.38)

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

n,α

and ‖DQ(ψ)φ‖n,α ≤ C
(

‖φ‖n,α + ‖ψ − ψ‖n+1,α‖φ‖1,α
)

.(4.39)

In turn, for n ≥ 0 and ψ ∈ F+ in a ‖ · ‖2,α-neighborhood (see proof below),

‖A−1
ψ −A−1

ψ
‖n,α ≤ C‖ψ − ψ‖n+1,α. (4.40)

For n ≥ 0, F in the ‖ · ‖2,α-neighborhood VS(F ) (see proof below),

‖ω − ω‖n,α ≤ C‖ψ − ψ‖n+2,α ≤ C‖F − F‖n+1,α. (4.41)

Combining these two estimates we obtain

‖A−1
ψ −A−1

ψ
‖n,α ≤ C‖F − F‖n,α. (4.42)

One would expect from the above that ‖A−1
ω − A−1

ω ‖n,α ≤ C‖F − F‖n+2,α. However, the

regularizing effect of ω = ∆ψ = F (ψ) gives the better estimates (see proof below):

‖A−1
ω −A−1

ω ‖n,α ≤ C‖F − F‖n,α. (4.43)

For n ≥ 0, h, h ∈ C∞
I , and ψ,ψ ∈ C∞

Ω
in a ‖ · ‖1,α-neighborhood (see proof below),

‖h(ψ) − h(ψ)‖n,α ≤ C

{

‖h‖n+1,α‖ψ − ψ‖0,α + ‖h‖2,α‖ψ − ψ‖n,α + ‖h− h‖n,α

}

. (4.44)

Observe then that for F in the ‖ · ‖2,α-neighborhood VB(F ) ⊂ VS(F ),

‖F‖2,α, ‖ω‖2,α, ‖ψ‖4,α, ‖A−1
ω ‖2,α, ‖A−1

ψ ‖4,α ≤ C. (4.45)

This allows to incorporate a number of terms of lower order into a constant.

We also recall the standard interpolation inequalities

‖u‖n+r,α‖v‖s+m,α ≤ C {‖u‖n+r+m,α‖v‖s,α + ‖u‖s,α‖v‖n+r+m,α} ,

‖u‖n+r,α‖u‖s+m,α ≤ C‖u‖n+r+m,α‖u‖s,α
(4.46)

which are consequences of (1.39).
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Proof of (4.40) Set ωt = ω+t(ω−ω) and note that Q(ω)−Q(ω) =
∫ 1
0 DQ(ωt)(ω−ω)dt.

Then, ωt remains in a ‖ · ‖2,α-neighborhood and by (4.39) we have

‖A−1
ω −A−1

ω0
‖m,α ≤

∫ 1

0
‖DQ(ωt)(ω − ω)‖m,α dt (4.47)

≤ C
{

‖ω − ω‖m,α + ‖ω − ω‖m+1,α‖ω − ω‖1,α

}

(4.48)

≤ C‖ω − ω‖m+1,α (4.49)

since ‖ωt − ω‖j,α ≤ ‖ω − ω‖j,α for 0 ≤ t ≤ 1. �

Proof of (4.41) Write ω− ω = ∆ψ−∆ψ, and set Ft = F + t(F − F ) and ψt = S(Ft).

Then, ψ − ψ =
∫ 1
0 φtdt where ∆φt = F ′

t (ψt)φt + (F − F )(ψt). Then by (4.36),

‖φt‖n+2,α ≤ C
(

‖F − F‖n,α + ‖Ft‖n+1,α‖F − F‖1,α
)

(4.50)

≤ C
(

‖F − F‖n,α + (‖F − F‖n+1,α + 1)‖F − F‖1,α
)

(4.51)

≤ C‖F − F‖n+1,α. (4.52)

Integrating, this gives the desired estimate. �

Proof of (4.43) Write

A−1
ω −A−1

ω = (F − F )(A−1
ψ ) + F (A−1

ψ ) − F (A−1
ψ

) (4.53)

= (F − F )(A−1
ψ ) +

∫ 1

0
F

′
(A−1

ψ
+ t(A−1

ψ −A−1
ψ

))(A−1
ψ −A−1

ψ
)dt. (4.54)

The first term is estimated by

‖(F − F )(A−1
ψ )‖n,α ≤ ‖F − F‖n,α + ‖A−1

ψ ‖n,α‖F − F‖1,α (4.55)

≤ ‖F − F‖n,α + ‖A−1
ψ −A−1

ψ
‖n,α‖F − F‖1,α (4.56)

≤ C‖F − F‖n,α (4.57)

while we have

‖F
′
(A−1

ψ
+ t(A−1

ψ −A−1
ψ

))‖n,α ≤ C
(

1 + ‖A−1
ψ

+ t(A−1
ψ −A−1

ψ
)‖n,α

)

(4.58)

≤ C
(

1 + ‖A−1
ψ −A−1

ψ
‖n,α

)

(4.59)

≤ C
(

1 + ‖F − F‖n,α
)

(4.60)

so that the second term is also bounded by ‖F − F‖n,α. �

Proof of (4.44) Write ψt = ψ + t(ψ − ψ). Then

h(ψ) − h(ψ) = h(ψ) − h(ψ) + (h− h)(ψ) =

∫ 1

0
h′(ψt)(ψ − ψ)dt + (h− h)(ψ) (4.61)
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so that by (5.114) and (5.121),

‖h(ψ) − h(ψ)‖n,α (4.62)

≤ C

{

(

‖h‖n+1,α + ‖ψ − ψ‖n,α‖h‖2,α

)

‖ψ − ψ‖0,α (4.63)

+‖h‖2,α‖ψ − ψ‖n,α + ‖h− h‖n,α

}

(4.64)

≤ C

{

‖h‖n+1,α‖ψ − ψ‖0,α + ‖h‖2,α‖ψ − ψ‖n,α + ‖h− h‖n,α

}

. (4.65)

�

4.3 Id+K(F )g has a tame family of inverses

Recall that K(F )g is defined in (4.16). The procedure to construct a tame family of inverses

to Id + K(F )g completely parallels the proof that ∆φ + cφ = k (augmented with suitable

boundary conditions) has a tame family of inverses, see Lemma 4 and Proposition 5. In this

case though, the estimates on K(F )g−K(F )g require significantly more work and they are

derived in the separate Lemma 17.

Lemma 16 (Estimates for h = g +K(F )g) Let h = g + K(F )g where F ∈ VB(F ) ⊂

VS(F ) and g ∈ C∞
[0,|Ω|]. Then, for any n ≥ 0,

‖g‖n,α ≤ C
{

‖h‖n,α + ‖F‖n+1,α‖g‖1,α

}

(4.66)

where C may depend on n and VB(F ).

Proof The estimates on g are derived by writing g = h−K(F )g. We first estimate K(F )g:

by (5.114), (4.38), (4.31), and (4.36),

‖K(F )g‖n,α ≤ C
∥

∥A−1
ω

∥

∥

n+1,α

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

0,α

+ C
∥

∥A−1
ω

∥

∥

1,α

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

n,α

(4.67)

≤ C(‖ω‖n+1,α + 1)‖φ‖1,α + C
(

‖φ‖n,α + ‖ψ‖n+1,α ‖φ‖1,α
)

(4.68)

≤ C
{

‖φ‖n,α + ‖F‖n+1,α‖φ‖1,α

}

(4.69)

≤ C
{

‖g‖n−2,α + ‖F‖n+1,α‖g‖1,α

}

. (4.70)

for F ∈ VB(F ) ⊂ VS(F ) and any g. In turn,

‖g‖n,α ≤ ‖h‖n,α + ‖K(F )g‖n,α (4.71)

≤ ‖h‖n,α +C {‖g‖n−2,α + ‖F‖n+1,α‖g‖1,α} (4.72)
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and the term ‖g‖n−2,α can be incorporated into the left-hand side as usual and we find

‖g‖n,α ≤ C
{

‖h‖n,α + ‖F‖n+1,α‖g‖1,α

}

. (4.73)

�

We will need estimates on the difference K(F )g −K(F )g for F ∈ VB(F ). Recall that

K(F )g is defined in (4.16).

Lemma 17 (Estimates on K(F )g −K(F )g) For n ≥ 0, F ∈ VS(F ), and g ∈ C∞
[0,|Ω|],

‖K(F )g −K(F )g‖n,α ≤ C
{

‖F − F‖n+1,α‖g‖2,α + ‖F − F‖2,α‖g‖n−1,α

}

. (4.74)

Proof F and g being given, let f = V B(F )g, f = V B(F )g and φ, φ such that

∆φ = F ′(ψ)φ+ f(ψ), ∆φ = F
′
(ψ)φ+ f(ψ). (4.75)

Write then

K(F )g −K(F )g =
(

A−1
ω −A−1

ω

)′
(

Jψ ◦
φ

|∇ψ|
◦A−1

ψ

)

(4.76)

+
(

A−1
ω

)′
(

Jψ
φ

|∇ψ|
◦ A−1

ψ − Jψ
φ

|∇ψ|
◦ A−1

ψ

)

(4.77)

+
(

A−1
ω

)′
Jψ

(

φ

|∇ψ|
−

φ

|∇ψ|

)

◦ A−1
ψ

(4.78)

= I + II + III. (4.79)

1 Estimates on I in terms of ‖φ‖j,α By (5.114), (4.43), (4.39), and (4.41),

‖I‖n,α (4.80)

≤ C

{

‖A−1
ω −A−1

ω ‖n+1,α

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

0,α

+ ‖A−1
ω −A−1

ω ‖1,α

∥

∥

∥

∥

Jψ
φ

|∇ψ|
◦ A−1

ψ

∥

∥

∥

∥

n,α

}

(4.81)

≤ C

{

‖F − F‖n+1,α‖φ‖1,α + ‖F − F‖2,α
[

‖φ‖n,α + ‖ψ − ψ‖n+1,α‖φ‖1,α
]

}

(4.82)

≤ C

{

‖F − F‖n+1,α‖φ‖1,α + ‖F − F‖2,α‖φ‖n,α + ‖F − F‖2,α‖F − F‖n,α‖φ‖1,α

}

(4.83)

≤ C
{

‖F − F‖n+1,α‖φ‖1,α + ‖F − F‖2,α‖φ‖n,α

}

. (4.84)

�
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2 Estimates on II in terms of ‖φ‖j,α As a preliminary we derive the following

estimates for ψ ∈ F+ in a ‖ · ‖1,α-neighborhood and any u ∈ C∞
Ω

. Write ψt = ψ+ t(ψ−ψ),

Nt = ∇ψt
|∇ψt|

and

∥

∥

∥
Jψu ◦A−1

ψ − Jψu ◦ A−1
ψ

∥

∥

∥

n,α
≤

∫ 1

0

∥

∥

∥
Dψ

(

Jψtu ◦ A−1
ψt

)

(ψ − ψ)
∥

∥

∥

n,α
dt. (4.85)

Using tame estimates (3.116) of the derivative of Jψu ◦ A−1
ψ in ψ, and (4.41),

∥

∥

∥
Dψ

(

Jψtu ◦ A−1
ψt

)

(ψ − ψ)
∥

∥

∥

n,α
(4.86)

≤ C

{

‖u‖n+1,α‖ψ − ψ‖1,α + ‖u‖2,α‖ψ − ψ‖n,α + ‖ψt‖n+2,α‖u‖2,α‖ψ − ψ‖1,α

}

(4.87)

≤ C

{

‖u‖n+1,α‖ψ − ψ‖1,α + ‖u‖2,α‖ψ − ψ‖n,α + ‖ψ − ψ‖n+2,α‖u‖2,α

}

(4.88)

≤ C

{

‖u‖n+1,α‖ψ − ψ‖1,α + ‖ψ − ψ‖n+2,α‖u‖2,α

}

(4.89)

≤ C

{

‖u‖n+1,α‖F − F‖1,α + ‖F − F‖n+1,α‖u‖2,α

}

. (4.90)

using ‖ψt‖n+2,α ≤ ‖ψ‖n+2,α + ‖ψ − ψ‖n+2,α ≤ C(1 + ‖ψ − ψ‖n+2,α). Now with u = φ
|∇ψ| ,

we have by (4.41),

‖u‖m,α ≤ C
{

‖φ‖m,α + ‖ψ − ψ‖m+1,α‖φ‖0,α

}

(4.91)

≤ C
{

‖φ‖m,α + ‖F − F‖m,α‖φ‖0,α

}

(4.92)

so that

‖II‖n,α (4.93)

≤ C
{

‖φ‖n+1,α‖F − F‖1,α + ‖F − F‖n+1,α‖φ‖0,α + ‖F − F‖n+1,α‖φ‖2,α

}

(4.94)

≤ C
{

‖φ‖n+1,α‖F − F‖1,α + ‖F − F‖n+1,α‖φ‖2,α

}

. (4.95)

�

3 Estimates on I+II in terms of ‖g‖m,α We may now estimate ‖I‖n,α + ‖II‖n,α in

terms of g instead of φ (the third term III must be dealt with differently). Putting (4.84)

and (4.95) together, and using interpolation inequalities (4.46), and (4.37),

‖I‖n,α + ‖II‖n,α (4.96)

≤ C
{

‖F − F‖n+1,α‖φ‖2,α + ‖F − F‖2,α‖φ‖n+1,α

}

(4.97)

≤ C
{

‖F − F‖n+1,α‖g‖1,α + ‖F − F‖2,α
(

‖g‖n−1,α + ‖F − F‖n,α‖g‖1,α
)

}

(4.98)

≤ C
{

‖F − F‖n+1,α‖g‖1,α + ‖F − F‖2,α‖g‖n−1,α

}

. (4.99)

59



4 Estimates on III Since ω is fixed, we have by (5.114)

‖III‖n,α ≤ C

∥

∥

∥

∥

Jψ

{(

φ

|∇ψ|
−

φ

|∇ψ|

)}

◦ A−1
ψ

∥

∥

∥

∥

n,α

(4.100)

≤ C

∥

∥

∥

∥

(

1

|∇ψ|
−

1

|∇ψ|

)

φ

∥

∥

∥

∥

n,α

+ C

∥

∥

∥

∥

1

|∇ψ|
(φ− φ)

∥

∥

∥

∥

n,α

(4.101)

= III1 + III2. (4.102)

Using (5.114), (4.41) and (4.37), the first term is estimated by

III1 ≤ C

{

∥

∥

∥

∥

1

|∇ψ|
−

1

|∇ψ|

∥

∥

∥

∥

0,α

‖φ‖n,α +

∥

∥

∥

∥

1

|∇ψ|
−

1

|∇ψ|

∥

∥

∥

∥

n,α

‖φ‖0,α

}

(4.103)

≤ C
{

‖ψ − ψ‖2,α‖φ‖n,α + ‖ψ − ψ‖n+2,α‖φ‖0,α

}

(4.104)

≤ C
{

‖F − F‖1,α‖φ‖n,α + ‖F − F‖n+1,α‖φ‖0,α

}

(4.105)

≤ C
{

‖F − F‖1,α
[

‖g‖n−2,α + ‖F − F‖n−1,α‖g‖1,α
]

+ ‖F − F‖n+1,α‖g‖1,α

}

(4.106)

≤ C
{

‖F − F‖1,α‖g‖n−2,α + ‖F − F‖n+1,α‖g‖1,α

}

. (4.107)

For III2 we “just” need to estimate ‖φ− φ‖n,α. Note that

∆(φ− φ) − F
′
(ψ)(φ− φ) = (F ′(ψ) − F

′
(ψ))φ+ f(ψ) − f(ψ). (4.108)

From tame estimates (2.26), (observe as well that F and ψ are fixed), we have for j ≥ 0

‖φ− φ‖j+2,α ≤ C

{

‖(F ′(ψ) − F
′
(ψ))φ‖j,α + ‖f(ψ) − f(ψ)‖j,α

}

. (4.109)

5 Estimates on ‖φ − φ‖j+2,α: ‖(F ′(ψ) − F
′
(ψ))φ‖j,α With the above, using (4.44),

(5.114) and (5.121), the first term is estimated as follows:

‖(F ′(ψ) − F
′
(ψ))φ‖j,α (4.110)

≤ C‖F ′(ψ) − F
′
(ψ)‖j,α‖φ‖0,α + C‖F ′(ψ) − F

′
(ψ)‖0,α‖φ‖j,α (4.111)

≤ C
(

‖F‖j+2,α‖ψ − ψ‖0,α + ‖F‖3,α‖ψ − ψ‖j,α + ‖F − F‖j+1,α

)

‖φ‖0,α (4.112)

+C
(

‖F‖3,α‖ψ − ψ‖0,α + ‖F − F‖1,α

)

‖φ‖j,α (4.113)

≤ C

(

(‖F − F‖j+2,α + 1)‖ψ − ψ‖0,α + (‖F − F‖3,α + 1)‖ψ − ψ‖j,α (4.114)

+‖F − F‖j+1,α

)

‖φ‖0,α (4.115)

+
(

(‖F − F‖3,α + 1)‖ψ − ψ‖0,α + ‖F − F‖1,α

)

‖φ‖j,α (4.116)

≤ C
{

‖F − F‖j+2,α‖φ‖0,α + ‖F − F‖3,α‖φ‖j,α

}

(4.117)
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where we have used that

‖F − F‖3,α‖ψ − ψ‖j,α ≤ C‖F − F‖3,α‖F − F‖j−1,α ≤ C‖F − F‖0,α‖F − F‖j+2,α. (4.118)

In turn, using (4.37),

‖(F ′(ψ) − F
′
(ψ))φ‖j,α (4.119)

≤ C
{

‖F − F‖j+2,α‖g‖1,α + ‖F − F‖3,α

(

‖g‖j−2,α + ‖F − F‖j−1,α‖g‖1,α

)

}

(4.120)

≤ C
{

‖F − F‖j+2,α‖g‖1,α + ‖F − F‖3,α‖g‖j−2,α

}

(4.121)

≤ C
{

‖F − F‖j+2,α‖g‖1,α + ‖F − F‖1,α‖g‖j,α

}

(4.122)

using again interpolation inequalities (4.46) to get ‖F−F‖3,α‖g‖j−2,α ≤ C‖F−F‖1,α‖g‖j,α+

C‖F −F‖j,α‖g‖1,α, ‖F −F‖3,α‖F −F‖j−2,α ≤ C‖F −F‖2,α‖F −F‖j,α ≤ C‖F −F‖j,α and

to incorporate these into other terms.

6 Estimates on ‖φ− φ‖j+2,α: ‖f(ψ) − f(ψ)‖j,α Using again (4.44),

‖f(ψ) − f(ψ)‖j,α ≤ C

{

‖f‖j+1,α‖ψ − ψ‖0,α + ‖f‖2,α‖ψ − ψ‖j,α + ‖f − f‖j,α

}

.(4.123)

Using (4.35), the first two terms in the right-hand side are estimated by

‖f‖j+1,α‖ψ − ψ‖0,α + ‖f‖2,α‖ψ − ψ‖j,α (4.124)

≤ C
(

(‖g‖j+1,α + ‖F − F‖j−1,α‖g‖1,α)‖F − F‖1,α + ‖g‖2,α‖F − F‖j−1,α

)

(4.125)

≤ C
(

‖g‖j+1,α‖F − F‖1,α + ‖F − F‖j−1,α‖g‖2,α

)

. (4.126)

As for the last term in ‖f(ψ) − f(ψ)‖j,α, write it as

f − f = Eg ◦ A− Eg ◦A with A = V (E(A−1
ψ )), A = V (E(A−1

ψ
)), (4.127)

to find again from (4.44)

‖f − f‖j,α ≤ C

{

‖Eg‖j+1,α‖A−A‖0,α + ‖Eg‖2,α‖A−A‖j,α

}

. (4.128)

In order to estimates ‖A − A‖j,α, pose β = E(A−1
ψ ), β = E(A−1

ψ
), and βt = β + t(β − β),

and use the inversion operator V , see Lemma 27 in the Appendix:

A−A = V (β) − V (β) =

∫ 1

0
ȧtdt, ȧt = DV (βt) · (β − β) = −

(β − β) ◦ β−1
t

β′t ◦ β
−1
t

. (4.129)

We have by (4.40) and (4.41)

‖β − β‖m,α ≤ C‖A−1
ψ −A−1

ψ
‖m,α ≤ C‖ψ − ψ‖m+1,α ≤ C‖F − F‖m,α. (4.130)
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Using the triangle inequality on βt = β + t(β − β) and (4.41),

‖βt‖m,α ≤ C(1 + ‖β − β‖m,α) ≤ C
{

‖F − F‖m,α + 1
}

. (4.131)

This along with Lemma 27 implies

‖β−1
t ‖m,α ≤ C

{

‖F − F‖m,α + 1
}

. (4.132)

In particular, βt and β−1
t remain in ‖ · ‖2,α-neighborhoods for F,F ∈ VB(F ). Now the

fraction in ȧt is linear in the numerator, so that by (5.114) and (5.121),

‖ȧt‖j,α ≤ C‖(β − β) ◦ β−1
t ‖j,α + C‖β′t ◦ β

−1
t ‖j,α‖(β − β) ◦ β−1

t ‖0,α (4.133)

≤ C
{

‖β − β‖j,α + ‖β−1
t ‖j,α‖β − β‖1,α

}

(4.134)

+C
(

‖βt‖j+1,α + ‖β−1
t ‖j,α‖βt‖2,α

)

‖β − β‖1,α (4.135)

≤ C‖F − F‖j,α + C
(

‖F − F‖j+1,α + 1
)

‖F − F‖1,α (4.136)

≤ C‖F − F‖j+1,α (4.137)

from (4.130), (4.131), and (4.132). With the above, we have

‖A−A‖j,α ≤

∫ 1

0
‖ȧt‖j,αdt ≤ C‖F − F‖j+1,α (4.138)

so that by ‖Eg‖m,α ≤ C‖g‖m,α (see (4.21))

‖f − f‖j,α ≤ C
{

‖g‖j+1,α‖F − F‖1,α + ‖g‖2,α‖F − F‖j+1,α

}

. (4.139)

Adding this to (4.126), we find

‖f(ψ) − f(ψ)‖j,α ≤ C
{

‖F − F‖1,α‖g‖j+1,α + ‖F − F‖j+1,α‖g‖2,α

}

. (4.140)

7 Conclusion on III Putting (4.122) and (4.140) together (with n = j + 2) and using

interpolation inequalities (4.46),

‖III2‖n,α ≤ C‖φ− φ‖n,α ≤ C

{

‖F − F‖n,α‖g‖2,α + ‖F − F‖1,α‖g‖n−1,α

}

. (4.141)

Adding this to the estimate (4.107) on ‖III1‖n,α gives

‖III‖n,α ≤ C

{

‖F − F‖n+1,α‖g‖2,α + ‖F − F‖1,α‖g‖n−1,α

}

. (4.142)

�
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8 Conclusion on Lemma 17 Putting (4.99) and (4.142) together, we have

‖K(F )g −K(F )g‖n,α ≤ C

{

‖F − F‖n+1,α‖g‖2,α + ‖F − F‖2,α‖g‖n−1,α

}

. (4.143)

�

Proposition 18 (Id +K(F ) is invertible for F near F ) Suppose ω = F (ψ) satisfies

(ND2). Then, there exists a ‖ · ‖3,α-neighborhood

VI(F ) ⊂ VB(F ) ⊂ VS(F ) (4.144)

of F such that h = g +K(F )g has a tame family of inverses g = VM(F )h satisfying

‖g‖n,α ≤ C

{

‖h‖n,α + ‖F‖n+1,α‖h‖2,α

}

, n ≥ 2. (4.145)

Remark The Nash-Moser Inverse Function Theorem only requires a continuous and

tame inverse. However, with a little more work, one can show that g = VM(F )h is continu-

ously differentiable, hence smooth tame by Theorem 5.3.1, p. 102, Part I, and Theorem 3.1.1,

p. 150, Part II of [7].

Proof

1 The estimate ‖g‖2,α ≤ C‖g + K(F )g‖2,α holds We first show that (ND2) implies

that IdC∞
[0,|Ω|]

+K(F ) has trivial kernel as a map C∞
[0,|Ω|] → C∞

[0,|Ω|]. Suppose g ∈ C∞
[0,|Ω|] is in

the kernel of IdC∞
[0,|Ω|]

+K(F ) : C∞
[0,|Ω|] → C∞

[0,|Ω|]. Set f = V B(F ) · g so that DT (F ) · f = 0

and thus ν = {ω,α} for some α ∈ U , see Proposition 8. Then f = 0 on range(ψ), precisely

by the non-degeneracy condition (ND2) and in turn g = B(F ) · V B(F ) · g = B(F ) · f = 0,

i.e. IdC∞
[0,|Ω|]

+K(F ) : C∞
[0,|Ω|] → C∞

[0,|Ω|] has trivial kernel.

Next, we show that Id
C

2,α
[0,|Ω|]

+K(F ) : C2,α
[0,|Ω|] → C2,α

[0,|Ω|], satisfies

‖g‖2,α ≤ C‖g +K(F )g‖2,α. (4.146)

First observe from the tame estimates on K(F )g derived in the proof of Lemma 16 that

K(F ) maps Cn,α[0,|Ω|] into Cn+1,α
[0,|Ω|] for each n ≥ 2. Let g ∈ C2,α

[0,|Ω|] be in the kernel of

Id
C

2,α
[0,|Ω|]

+K(F ) : C2,α
[0,|Ω|] → C2,α

[0,|Ω|]. Then g = −K(F )g ∈ C3,α
[0,|Ω|] and, repeating, g ∈ C∞

[0,|Ω|].

Hence g = 0 which shows that Id
C

2,α
[0,|Ω|]

+K(F ) : C2,α
[0,|Ω|] → C2,α

[0,|Ω|] has trivial kernel. By the

Fredholm alternative (for Banach spaces), Id
C

2,α
[0,|Ω|]

+K(F ) : C2,α
[0,|Ω|] → C2,α

[0,|Ω|] is an isomor-

phism satisfying (4.146). �
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2 Invertibility for F near F From Lemma 17

‖g‖2,α ≤ C‖g +K(F )g‖2,α (4.147)

≤ C
(

‖g +K(F )g‖2,α + ‖K(F )g −K(F )g‖2,α
)

(4.148)

≤ C
(

‖g +K(F )g‖2,α + ‖F − F‖3,α‖g‖2,α
)

. (4.149)

Define now VI(F ) ⊂ VB(F ) ⊂ VS(F ) to be a sufficiently small ‖ · ‖3,α-neighborhood of F so

that the last term can be incorporated into the left-hand side:

‖g‖2,α ≤ C‖g +K(F )g‖2,α. (4.150)

Now from (4.66) we have for n ≥ 2

‖g‖n,α ≤ C
(

‖g +K(F )g‖n,α + ‖F − F‖n+1,α‖g‖1,α
)

(4.151)

≤ C
(

‖g +K(F )g‖n,α + ‖F − F‖n+1,α‖g +K(F )g‖2,α
)

. (4.152)

which implies the estimates (4.145). That is, h = M(F )g = g+K(F )g is a family of invert-

ible linear maps of Fréchet spaces for F ∈ VI(F ) with tame inverse denoted g = VM(F )h. �

3 Continuity Let F, F̃ ∈ VI(F ), g, g̃ ∈ C∞
[0,|Ω|], and set h = g+K(F )g, h̃ = g̃+K(F̃ )g̃.

Then,

(g − g̃) +K(F̃ )(g − g̃) = h− h̃− (K(F )g −K(F̃ )g) (4.153)

and from (4.152) we deduce that

‖g − g̃‖n,α ≤ C

{

‖h− h̃‖n,α + ‖K(F )g −K(F̃ )g‖n,α (4.154)

+‖F − F̃‖n+1,α

(

‖h− h̃‖2,α + ‖K(F )g −K(F )g‖2,α

)

}

(4.155)

(4.156)

Now from the tame estimates (4.145) it is clear that ‖g‖n,α remains bounded as ‖h− h̃‖n,α

and ‖F − F̃‖n+1,α tend to zero. In turn the estimates (4.74) (also valid for K(F )g−K(F̃ )g)

show that ‖K(F )g −K(F̃ )g‖n,α tends to zero as well, and thus clearly ‖g − g̃‖n,α tends to

zero. �

4.4 Injective part of Theorem 1

The injective part of Theorem 1 requires a modification of the injective part of the Nash-

Moser theorem since the map T cannot be injective: defining T on C∞
I where I ⊃ range(ψ)

(see (4.3)), changing F outside the range of the corresponding solution ∆ψ = F (ψ) clearly

does not affect this solution.
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Proposition 19 There exists a C2-neighborhood of F such that, if F, F̃ are such that

T (F ) = T (F̃ ), then the corresponding solutions ψ = S(F ) and ψ̃ = S(F̃ ) are the same.

Proof Let Fn 6= F̃n →n F in C2 such that T (Fn) = T (F̃n), and let

F̃n − Fn = ǫnGn, ψn = S(Fn), ψ̃n = S(F̃n), ψ̃n − ψn = ǫnvn (4.157)

where ǫn is to be chosen appropriately. Assume without loss of generality that range(ψn) ⊂

range(ψ̃n). Supposing that we can normalize according to

‖Gn‖C0
range(ψ̃n)

= 1, (4.158)

we will arrive at a contradiction, thus proving our claim.

Remark One might expect to normalize in the C2-norm since the F ’s converge in that

norm. However, (strong) compactness fails in infinite dimensions. On the other hand, one

can use the gain of regularity provided by ∆ψ = F (ψ).

Changing Fn and F̃n outside of range(ψ̃n) does not affect ψn nor ψ̃n, and in turn the

assumption T (F̃n) = T (Fn) is preserved. Therefore, we may adjust Fn and F̃n in such a

way that, without loss of generality, for the first derivatives we have the bounds

‖Gn‖C1
[c,0]

≤ 2‖Gn‖C1
range(ψ̃n)

. (4.159)

Since T (F̃n) = T (Fn), we have ǫnGn = Fn ◦ A
−1
ψn

◦ Aψ̃n − Fn hence

ǫnGn(λ) =

(
∫ 1

0
F ′
n(λ+ t(A−1

ψn
(Aψ̃n(λ)) − λ))dt

)

(A−1
ψn

(Aψ̃n(λ)) − λ), λ ∈ range(ψ̃n).

(4.160)

Letting dn denote the integral factor, we write this as

ǫnGn(λ) = dn(λ)(A−1
ψn

−A−1
ψ̃n

)(A
ψ̃n

(λ)), λ ∈ range(ψ̃n). (4.161)

Now Fn and F̃n are bounded in C2, F ∈ C2 7→ ψ ∈ C2 is continuous by (2.58), and

ψ ∈ C2 7→ A−1
ψ ∈ C1 is continuous by Lemma 12. Thus, dn and Aψ̃n are bounded in C1

and in turn

ǫn‖Gn‖C1
range(ψ̃n)

≤ C‖A−1
ψn

−A−1

ψ̃n
‖1. (4.162)

Write

A−1

ψ̃n
−A−1

ψn
= ǫn

(
∫ 1

0
DQ(ψn + t(ψ̃n − ψn))dt

)

vn (4.163)

where ψn and ψ̃n are bounded in C2 since Fn and F̃n converge in C2. The proof of Lemma 14

easily shows that (4.38) holds in the ‖ · ‖n-grading, so that

ǫn‖Gn‖C1
range(ψ̃n)

≤ C‖A−1

ψ̃n
−A−1

ψn
‖1 ≤ ǫnC‖vn‖1. (4.164)
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Finally, rewrite ∆ψ̃n − ∆ψn = F̃n(ψ̃n) − Fn(ψn) as

ǫn∆vn = ǫnGn(ψ̃n) +
(

Fn(ψ̃n) − Fn(ψn)
)

. (4.165)

This can be written as ∆vn + cnvn = Gn(ψ̃n)

− cn =

(
∫ 1

0
F ′
n(ψn + t(ψ̃n − ψn))dt

)

vn. (4.166)

F satisfies (ND1) hence for large n, cn is sufficiently close to F
′
(ψ) and in turn ∆ + cn is

invertible with

‖vn‖1 ≤ C‖Gn‖0. (4.167)

Putting (4.159), (4.164), and (4.167) together we obtain

‖Gn‖1 ≤ 2‖Gn‖C1
range(ψ̃n)

≤ C‖vn‖1 ≤ C‖Gn‖0 ≤ C. (4.168)

Passing to a subsequence, we may assume that

Gn →n G in C0. (4.169)

Lemma 12 says that (ω, ν) 7→ DQ(ω)ν is continuous as an operator C2 × C0 → C0,

(2.103) shows that F 7→ ω = F (ψ) is continuous C2 → C2, while (F, f) 7→ ν = ∆φ =

F ′(ψ)φ+f(ψ) is continuous C2×C0 → C0 by (2.104). In conclusion, we have the continuous

operator
{

C2 × C0

F f
−→

C0

DT (F )f

}

. (4.170)

Taking limits in

0 =
1

ǫn
(T (Fn + ǫnGn) − T (Fn)) =

∫ 1

0
DT (Fn + ǫn(F̃n − Fn))Gndt (4.171)

one finds DT (F )G = 0. This means that G vanishes on range(ψ), contradicting the nor-

malization ‖G‖C0
range(ψ)

= 1 guaranteed by (4.158). �

5 Appendix: the Nash-Moser Inverse Function Theorem

Inverse function theorems express the fact that nonlinear problems are as solvable as their

linearizations: a nonlinear map T is (locally) surjective where its first derivative DT is

surjective, and T is (locally) injective where DT is injective. In case T : (B ⊂ X) → Y is a

sufficiently smooth (e.g. twice continuously differentiable) map of Banach spcaes, Newton’s
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scheme constructs successive approximations which converge very rapidly. This “accelerated

convergence” is visible through an estimate of the form xn+1 ≤ x2n. For comparison, a proof

by the Picard approximation method would involve an iteration of the form xn+1 ≤ λxn

with some fixed 0 < λ < 1.

Loss of derivatives occurs when, for instance, a surjective first derivative DT (F ) uses

a number of derivatives, which are not recovered by its right-inverse L(F ). (This is the

case of our map T (F ) = A−1
ω .) The Newton algorithm can no longer be implemented as

such. On the other hand, its accelerated convergence indicates that it should tolerate some

adjustments made in order to overcome loss of derivatives.

In [15] Nash introduced smoothing operators for his solution to the isometric imbedding

problem of Riemannian manifolds into Euclidean spaces. From [15] Moser extracted a

simple algorithm solving an inverse function problem even when loss of derivatives occurs

[14]. We will refer to this algorithm as the Moser scheme. It is a modified Newton scheme

where the smoothing operators of Nash introduce an error term having no effect on the

convergence of the algorithm provided the maps satisfy certain (“tame”) estimates. The

solution so obtained is “rough” a priori (e.g. if one works with spaces of functions, the

solution may have fewer derivatives than the formulation of the problem actually allows).

In a second step, one verifies that this rough solution is in fact smooth. This again uses

the “tameness” of certain operators, as well as interpolation inequalities available in “tame

Fréchet-spaces” in a crucial way.

Various extensions and improvements have been developed subsequently. In particular,

Hamilton introduced in [7] the tame Fréchet category (see Sections II.1 and II.2), es-

sentially that introduced by Sergeraert in [19], in which the modified Newton algorithm is

applicable and therefore an Inverse Function Theorem holds. That is, an inverse function

exists and lives in the tame Fréchet category.

We emphasize that the Moser scheme is used to construct a rough solution to T (x) = y

when the map T has surjective first derivative (DT is not required to be injective.) That

this solution is smooth is a consequence of the interpolation inequalities available on “tame

Fréchet-spaces”, and surely the estimates on the successive approximations play a part in

the proof. This is the surjective part of the Inverse Function Theorem. In case T has

injective first derivative DT , then the interpolation inequalities (1.39) again show that T

is injective as well. The Moser scheme plays no rôle in this injective part of the Inverse

Function Theorem. Our map T (F ) = A−1
ω cannot be injective (see the discussion in the

Introduction). Nevertheless, the injective part of the Inverse Function Theorem for tame

Fréchet spaces gives the idea for the proof of the injective part of Theorem 1.
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5.1 Tame estimates on T (F ) = A−1
ω

In this Section we derive the precise tame estimates on T (F ) so as to set the parameters

for the proof of the (existence part of the) Nash-Moser Inverse Function Theorem, see

Theorem 21.

Recall from Proposition 18 that VI(F ) is a ‖ · ‖3,α-neighborhood of F .

Proposition 20 For F ∈ VI(F ), any f1, f2 ∈ C∞
I , and n ≥ 0,

‖T (F )‖n,α ≤ C(‖F‖n,α + 1), (5.1)

‖DT (F )f‖n,α ≤ C(‖f‖n,α + ‖F‖n+1,α‖f‖1,α), (5.2)

‖D2T (F )(f1, f2)‖n,α ≤ C(‖f1‖n+1,α‖f2‖2,α + ‖f1‖2,α‖f2‖n+1,α (5.3)

+‖F‖n+2,α‖f1‖2,α‖f2‖2,α), (5.4)

and for n ≥ 2 and h ∈ C∞
[0,|Ω|],

‖L(F )h‖n,α ≤ C(‖h‖n,α + ‖F‖n+1,α‖h‖2,α). (5.5)

In the proof of the Nash-Moser theorem below, we will shift the indices in the norms and

use the notation

| · |n := ‖ · ‖n+2,α, n ≥ 0. (5.6)

Note that VI(F ) is then a | · |1-neighborhood.

Proof With T (F ) = Q(ω) where ω = ∆ψ and ψ = S(F ), from Propositions 11 and 6, we

have for n ≥ 0 and F in the ‖ · ‖2,α-neighborhood VS(F ), see Proposition 6,

‖T (F )‖n,α ≤ C(‖ω‖n,α + 1) ≤ C(‖ψ‖n+2,α + 1) ≤ C(‖F‖n,α + 1). (5.7)

Write the first derivative as DT (F )f = DQ(ω)ν where ν = ∆φ = F ′(ψ)φ+f(ψ). Again

from Propositions 11 and 6, we have for n ≥ 0, F ∈ VS(F ), and any f ∈ C∞
I ,

‖DT (F )f‖n,α (5.8)

≤ C

(

‖ν‖n,α + ‖ω‖n+1,α‖ν‖1,α

)

(5.9)

≤ C

(

‖φ‖n+2,α + (‖F‖n+1,α + 1)‖φ‖3,α

)

(5.10)

≤ C

(

‖f‖n,α + ‖F‖n+1,α‖f‖1,α + (‖F‖n+1,α + 1)(‖f‖1,α + ‖F‖2,α‖f‖1,α) (5.11)

≤ C

(

‖f‖n,α + ‖F‖n+1,α‖f‖1,α

)

. (5.12)

Write the second derivative as

D2T (F )(f1, f2) = D2Q(ω)(ν1, ν2) +DQ(ω)ν12 (5.13)
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where

ν1 = ∆φ1 = F ′(ψ)φ1 + f1(ψ), (5.14)

ν2 = ∆φ2 = F ′(ψ)φ2 + f2(ψ), (5.15)

ν12 = ∆φ12 = F ′(ψ)φ12 + F ′(ψ)φ1φ2 + f ′1(ψ)φ2 + f ′2(ψ)φ1, (5.16)

see Proposition 6. Thus, for F in the ‖ · ‖3,α-neighborhood VI(F ), see Proposition 18, and

any f1, f2 ∈ C
∞
I , we have for n ≥ 0

‖D2T (F )(f1, f2)‖n,α (5.17)

≤ C

{

‖ν1‖n+1,α‖ν2‖1,α + ‖ν1‖1,α‖ν2‖n+1,α + ‖ω‖n+2,α‖ν1‖2,α‖ν2‖2,α (5.18)

+‖ν12‖n,α + ‖ω‖n+1,α‖ν12‖1,α

}

(5.19)

≤ C

{

‖φ1‖n+3,α‖φ2‖3,α + ‖φ1‖3,α‖φ2‖n+3,α + ‖ω‖n+2,α‖φ1‖4,α‖φ2‖4,α (5.20)

+‖φ12‖n+2,α + ‖ω‖n+1,α‖φ12‖3,α

}

(5.21)

≤ C

{

(

‖f1‖n+1,α + ‖F‖n+2,α‖f1‖1,α

)(

‖f2‖1,α + ‖F‖2,α‖f2‖1,α

)

(5.22)

+

(

‖f1‖1,α + ‖F‖2,α‖f1‖1,α

)(

‖f2‖n+1,α + ‖F‖n+2,α‖f2‖1,α

)

(5.23)

+(‖F‖n+2,α + 1)

(

‖f1‖2,α + ‖F‖3,α‖f1‖1,α

)(

‖f2‖2,α + ‖F‖3,α‖f2‖1,α

)

(5.24)

+‖f1‖n+1,α‖f2‖1,α + ‖f1‖1,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α (5.25)

+(‖F‖n+1,α + 1)(‖f1‖2,α‖f2‖2,α + ‖F‖3,α‖f1‖2,α‖f2‖2,α)

}

(5.26)

≤ C

{

‖f1‖n+1,α‖f2‖2,α + ‖f1‖2,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α

}

(5.27)

≤ C

{

‖f1‖n+1,α‖f2‖2,α + ‖f1‖2,α‖f2‖n+1,α + ‖F‖n+2,α‖f1‖2,α‖f2‖2,α

}

. (5.28)

Finally we compute the tame estimates for the right-inverse L(F )h to DT (F )f . Recall

that it is given by f = L(F )h = V B(F )·VM(F )h. With the tame estimates on f = V B(F )g
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from Lemma 15 and those on g = VM(F )h from Proposition 18, we deduce that, for n ≥ 2,

‖f‖n,α ≤ C

{

‖g‖n,α + ‖F‖n−2,α‖g‖1,α

}

(5.29)

≤ C

{

‖h‖n,α + ‖F‖n+1,α‖h‖2,α + ‖F‖n−2,α(‖h‖1,α + ‖F‖2,α‖h‖2,α)

}

(5.30)

≤ C

{

‖h‖n,α + ‖F‖n+1,α‖h‖2,α

}

. (5.31)

�

5.2 Surjective part of the Nash-Moser Inverse Function Theorem

Our presentation of the Nash-Moser Inverse Function Theorem is a blend of [7], [14], and

[19]. We will limit ourselves to constructing a right-inverse, since in our application to The-

orem 1 we do not need further properties of this right-inverse (smoothness and tameness).

We refer to Section III.1 of [7] for further details.

Consider X , Y tame Fréchet spaces, with smoothing operators S(t), t > 0, satisfying

the estimates (1.38) described in the Introduction, and set

B := {u ∈ X | |u− u|1 < η}. (5.32)

Let T : (B ⊂ X ) → Y such that for any u ∈ B, v1, v2 ∈ X , h ∈ Y, and n ≥ 0,

|T (u)|n ≤ C(|u− u|n + 1), (5.33)

|DT (u)v|n ≤ (|v|n + |u− u|n+1|v|0), (5.34)

|D2T (u)(v1, v2)|n ≤ C(|v1|n+1|v2|0 + |v1|0|v2|n+1 + |u− u|n+2|v1|0|v2|0), (5.35)

|L(u)h|n ≤ C(|h|n + |u− u|n+1|h|0). (5.36)

(It is clear that our map T (F ) = A−1
ω satisfies these conditions where | · |n = ‖ · ‖n+2,α.)

Suppose given a solution T (u) = g.

Theorem 21 (Existence part of the Nash-Moser Inverse Function Theorem)

There is a neighborhood G ⊂ Y of g in which T (u) = g has a solution u ∈ B for any g ∈ G.

Remark The neighborhood G is defined in (5.80) in terms of a parameter j given in

(5.96). In particular, G is a | · |8 = ‖ · ‖10,α-neighborhood. Further, since ω 7→ A−1
ω is

continuous C11 → C11 →֒ C10,α, see Proposition 11, the C∞-neighborhood of ω in which

each co-adjoint orbit has a steady-state can then be taken as a ‖ · ‖11-neighborhood.
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Proof

1 The modified Newton scheme For g ∈ Y, we pose

P (g, u) = T (u) − g (5.37)

and the problem is to solve P (g, u) = 0. We will think of g as a parameter. Then P satisfies

the following estimates for any u ∈ B, v1, v2 ∈ X , and n ≥ 0,

|P (g, u)|n ≤ C(|u− u|n + |g − g|n + 1), (5.38)

|DuP (g, u)v|n ≤ (|v|n + |u− u|n+1|v|0), (5.39)

|D2
uuP (g, u)(v1, v2)|n ≤ C(|v1|n+1|v2|0 + |v1|0|v2|n+1 + |u− u|n+2|v1|0|v2|0) (5.40)

and v = L(u)h is again a right-inverse to h = DuP (g, u)v:

DuP (g, u)L(u)h = h. (5.41)

The solution is constructed by the Moser scheme, which is a modified Newton scheme:

un+1 − un := −S(tn)L(un)P (un), n ≥ 0, u0 := u, tn := Aκ
n

(5.42)

for some A > 1 and 0 < κ < 2 to be determined. Fix j ≥ 1 which will be specified later.

Let M,Mj > 1 be constants such that for all u,w such that u, u+ w ∈ B, any v ∈ X , any

h ∈ Y, and t > 0, we have:

|S(t)v|1 ≤ Mt|v|0, (5.43)

|S(t)v|j ≤ Mjt|v|j−1 (5.44)

|v − S(t)v|0 ≤ Mjt
1−j|v|j−1, (5.45)

|DuP (u)v|0 ≤ M |v|0, (5.46)

|P (u+ w) − P (u) −DuP (u)w|0 ≤ M |w|21, (5.47)

|L(u)h|0 ≤ M |h|0. (5.48)

(That these hold is immediate from the tame estimates on T , the estimates (1.38) on

the smoothing operators S(t), and Taylor’s expansion with remainder (1.37) given in the

Introduction). Next, with the first requirement that G be contained in a neighborhood of

the form

G ⊂ {|g − g|j−1 < C} ⊂ Y (5.49)

and increasing Mj if necessary, we have for any u ∈ B and g ∈ G

|L(u)P (g, u)|j−1 ≤ Mj(1 + |u− u|j) (5.50)
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which holds since |u|0 and |g|0 remain bounded and

|L(u)P (g, u)|j−1 ≤ C(|P (g, u)|j−1 + |u− u|j |P (g, u)|0) (5.51)

≤ C(|u− u|j−1 + |g − g|j−1 + 1 + |u− u|j). (5.52)

Write now

|un+1 − un|1 = |S(tn)L(un)P (g, un)|1 (5.53)

≤ Mtn|L(un)P (g, un)|0 (5.54)

≤ M2tn|P (g, un)|0 (5.55)

and by (5.42), (5.41)

|P (g, un)|0 (5.56)

≤ |P (g, un) − P (g, un−1) −DuP (g, un−1)(un − un−1)|0 (5.57)

+|P (g, un−1) +DuP (g, un−1)(un − un−1)|0 (5.58)

≤ M |un − un−1|
2
1 + |DuP (g, un−1)(1 − S(tn−1))L(un−1)P (g, un−1)|0 (5.59)

≤ M |un − un−1|
2
1 +M |(1 − S(tn−1))L(un−1)P (g, un−1)|0 (5.60)

≤ M |un − un−1|
2
1 +MMjt

1−j
n−1|L(un−1)P (g, un−1)|j−1 (5.61)

≤ M |un − un−1|
2
1 +MM2

j t
1−j
n−1(1 + |un−1 − u|j) (5.62)

so that

|un+1 − un|1 ≤ tnM
3|un − un−1|

2
1 +M3M2

j tnt
1−j
n−1(1 + |un−1 − u|j). (5.63)

For some µ > 0 to be determined later, let

δn := tµnM
3|un − un−1|1. (5.64)

Then,

δn+1 ≤ Aκ
n(1+µ(κ−2))δ2n+en, en := M6M2

j A
µκn+1+κn+(1−j)κn−1

(1+ |un−1−u|j). (5.65)

The parameters A,κ, etc. will be determined in order to view (5.65) as a perturbation of

xn+1 ≤ x2n. With

1 + µ(κ− 2) ≤ 0 (5.66)

we have δn+1 ≤ δ2n + en. By inspection, the graphs of y = x and y = x2 + 1
8 intersect at

some x ∈ [23 , 1]. Thus, if one can impose

δ1 <
2

3
, en <

1

8
, (5.67)
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the inequality δn+1 ≤ δ2n+en guarantees that δn is bounded for all n (say by 1) and therefore

|un − un−1|1 ≤
A−µκn

M3
. (5.68)

In order to control en we need to estimate the growth of 1 + |un − u|j :

1 + |un+1 − u|j ≤ 1 + |un − u|j + |un+1 − un|j (5.69)

= 1 + |un − u|j + |S(tn)L(un)P (g, un)|j (5.70)

≤ 1 + |un − u|j +Mjtn|L(un)P (g, un)|j−1 (5.71)

≤ 1 + |un − u|j +M2
j tn(1 + |un − u|j) (5.72)

≤ 2M2
j A

κn(1 + |un − u|j). (5.73)

Let β ≥ 0 to be determined later and write

A−βκn+1
(1 + |un+1 − u|j) ≤ 2M2

j A
(−β(κ−1)+1)κn

(

A−βκn(1 + |un − u|j)
)

(5.74)

≤ 2M2
j A

−β(κ−1)+1
(

A−βκn(1 + |un − u|j)
)

(5.75)

provided −β(κ − 1) + 1 < 0. Since we also want the multiplicative factor to be ≤ 1, we

impose the more stringent condition that

(−β(κ− 1) + 1) lnA+ ln(2M2
j ) ≤ 0. (5.76)

In turn, as long as the terms un ∈ B exist, we have (recall u0 = u, A > 1, and β ≥ 0)

1 + |un − u|j ≤ Aβκ
n

(5.77)

hence en ≤ M6M2
j A

(µκ2+κ+1−j+β)κn−1
. In order to satisfy (5.67), we will therefore impose

that

(µκ2 + κ+ 1 − j + β) lnA+ ln(M6M2
j ) < ln

1

8
. (5.78)

Finally, we show that the un ∈ B exists for all n ≥ 0 provided |P (g, u)|0 < ǫ is sufficiently

small, and that the sequence is Cauchy in the | · |1-norm. Estimate (5.68) holds provided

δ1 = AµκM3|u1 − u0|1 < 2/3. But |u1 − u0|1 ≤Mt20|L(u)P (u)|0 ≤M2A2|P (u)|0 so we take

ǫ <
2

3

1

M5Aµκ+2
. (5.79)

This in turn determines the neighborhood G: since P (g, u) = T (u) − g = g − g,

G = {g ∈ Y | |g − g|0 < ǫ, |g|j−1 < C}. (5.80)

Now we verify that un ∈ B is defined for all n:

|un+1|1 ≤

n
∑

m=0

|um+1−um|1 ≤
1

M3

∞
∑

m=0

A−µκm+1
≤

1

M3

∞
∑

m=0

A−µκ(1+m lnκ) =
1

M3

A−µκ

1 −A−µκ lnκ

(5.81)
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(we have used κi ≥ κl + (i− l) lnκ). We thus impose

1

M3

A−µκ

1 −A−µκ lnκ
< η. (5.82)

The sequence is Cauchy since

|um − un|1 ≤

m−1
∑

l=n

|ul+1 − ul|1 (5.83)

≤
1

M3

∞
∑

l=n

A−µκl+1
(5.84)

≤
1

M3

∞
∑

l=n

A−µκ(κn+lnκ(l−n)) (5.85)

=
1

M3

A−µκn+1

1 −A−µκ lnκ
→

n,m→∞
0. (5.86)

We denote u∞ its limit in the | · |1-norm. Observe from (5.62) that

|P (g, un)|0 ≤M |un − un−1|
2
1 +MM2

j A
(1−j+β)κn−1

→ 0 (5.87)

since 1 − j + β < 0 by (5.78). Thus, once u∞ is proven to be the limit in each | · |k-norm,

the above shows that it is in fact a solution to P (g, u) = 0 in B.

2 Setting the parameters The constants M , Mj are imposed by the problem. The

conditions on the parameters κ, µ, β, j, and A are (5.66), (5.76), (5.78), (5.82):

1 + µ(κ− 2) ≤ 0, 0 < κ < 2 (5.88)

(−β(κ− 1) + 1) lnA+ ln(2M2
j ) ≤ 0 (5.89)

(µκ2 + κ+ 1 − j + β) lnA+ ln(M6M2
j ) < ln 1

8 (5.90)

1
M3

A−µκ

1−A−µκ lnκ < η. (5.91)

These conditions are satisfied if the parameters κ, µ, β, j, and A are chosen in this order

so as to satisfy the following:

1 < κ < 2 (5.92)

µ ≥ 1
2−κ (5.93)

−β(κ− 1) + 1 < 0 (5.94)

µκ2 + κ+ 1 − j + β < 0 (5.95)

and A sufficiently large so that the three inequalities where it is involved are satisfied. It

is not difficult to see that, in order to minimize j, it should be chosen the smallest integer
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strictly larger than κ2

2−κ + κ+ 1 + 1
κ−1 over κ ∈ (1, 2). Using a computer one finds that

j = 9 is attained with any 1.2 < κ < 1.5. (5.96)

�

3 The rough solution is smooth We will use that for each m ≥ 1 there exists a

constant Cm such that

1 + |un − u|m ≤ CmA
βκn (5.97)

which is proven below. The important point is that the inequality holds with the same β

regardless of m.

Fix then i ≥ 1, and let m ≥ 1 which will be determined later. Denote Mm (or make Mj

larger if j − 1 = m) a constant such that the following estimates hold for any v ∈ Y, u ∈ B,

and t > 0:

|S(t)v|m ≤ Mm|v|m, (5.98)

|L(u)P (g, u)|m ≤ Mm(1 + |u− u|m+1). (5.99)

By interpolation inequalities, (C denotes constants depending on i,m, but not on n)

|un+1 − un|i ≤ |un+1 − un|
m−i
m−1

1 |un+1 − un|
i−1
m−1
m (5.100)

≤ CA−µκn+1 m−i
m−1 |S(tn)L(un)P (g, un)|

i−1
m−1
m (5.101)

≤ CA−µκn+1 m−i
m−1 |L(un)P (g, un)|

i−1
m−1
m (5.102)

≤ CA−µκn+1 m−i
m−1 (1 + |un|m+1)

i−1
m−1 (5.103)

≤ CA−µκn+1 m−i
m−1Aβκ

n i−1
m−1 (5.104)

≤ CA(−µκ(m−i)+β(i−1)) κn

m−1 . (5.105)

Now choosing m sufficiently large that

− µκ(m− i) + β(i− 1) < 0 (5.106)

makes the exponent negative and the increment |un+1 − un|i decays with a double expo-

nential rate. It is then easy to see that un is Cauchy in the | · |i-norm. �

4 Proof of estimates (5.97) Fix m ≥ 1. As for (5.73) we find

1 + |un+1 − u|m ≤ 2M2
mA

κn(1 + |un − u|m) (5.107)
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so that

A−βκn+1
(1 + |un+1 − u|m) ≤ 2M2

mA
(−β(κ−1)+1)κn

(

A−βκn(1 + |un − u|m)
)

. (5.108)

Given m,β, κ, let n∗(m) such that for n ≥ n∗(m), 2M2
mA

(−β(κ−1)+1)κn ≤ 1 (recall that

−β(κ− 1) + 1 < 0). Then choose Cm so that A−βκn(1 + |un−u|m) ≤ Cm for n < n∗(m). �

5.3 The injective part of the Nash-Moser Inverse Function Theorem

Even though the injective part of Nash-Moser Inverse Function Theorem cannot be used as

such for the injective part of Theorem 1, it is instructive to show its proof as our result is

an adaptation of it. We follow [7].

The assumptions here are different from those of Theorem 21. We are not concerned

with existence of solutions, only uniqueness. Thus, DuP (g, u) is assumed injective, with a

left-inverse again denoted L(u). Note that the Moser scheme plays no rôle here.

Theorem 22 (Nash-Moser IFT - injective part) Consider g ∈ Y in a |·|0-neighborhood

of g. Suppose that DuP (g, u)v has a left-inverse L(u)h, which is a tame of degree 0 in g

and h, and 1 in u. Then, there exists a | · |1-neighborhood B′ := {u ∈ X | |u− u|1 < η′} of

u such that, if P (g, u1) = P (g, u2) where u1, u2 ∈ B′, then u1 = u2.

Proof Use Taylor’s formula,

P (g, u2) = P (g, u1)+DuP (g, u1)(u2−u1)+

∫ 1

0
(1−t)D2

uuP (g, u1+t(u2−u1))(u2−u1, u2−u1)dt

(5.109)

so that

u2 − u1 = −L(u1)

∫ 1

0
(1 − t)D2

uuP (g, u1 + t(u2 − u1))(u2 − u1, u2 − u1)dt. (5.110)

Tame estimates on D2
uuP (u)(v1, v1) give

|u2 − u1|0 ≤ c|u2 − u1|0|u2 − u1|1 (5.111)

where the constant is independent of u1, u2 ∈ B′ and g in the restricted neighborhood.

Making η′ sufficiently small, we can make c|u2 − u1|1 < 1 for any u1, u2 ∈ B′. This forces

|u2 − u1| = 0. �
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5.4 Examples of smooth tame maps

We list in this Section some smooth tame maps which are used throughout the present

work. In this Section, by smoothness we do mean that derivatives of all orders exist. K

denotes a compact subset of Euclidean space with smooth boundary. V denotes an open

subset of some Fréchet space.

1 Linear differential operators with constant coefficients

Lemma 23 A linear differential operator of order r with constant coefficients L : C∞
K →

C∞
K is a smooth tame map of Fréchet spaces: L : Cn+rK → CnK is continuous for each n ≥ 0.

Lu has degree r and base 0: for all u ∈ C∞
K .

‖Lu‖n,α ≤ C · ‖u‖n+r,α, n ≥ 0. (5.112)

2 Product of functions

Lemma 24 The bilinear map

B :

{

C∞
K × C∞

K

F G
−→

C∞
K

FG

}

(5.113)

is a smooth tame map of Fréchet spaces: for each n ≥ 0, B : CnK ×CnK → CnK is continuous

as well as B : Cn,αK × Cn,αK → Cn,αK . B(F,G) has degree 0 in F and G, and base 0:

‖B(F,G)‖n,α ≤ C · (‖G‖0,α‖F‖n,α + ‖F‖0,α‖G‖n,α), n ≥ 0 (5.114)

for all F and G. The first derivative is given by

B(F,G) · (f, g) = fG+ Fg. (5.115)

There are obvious generalizations of the above for the product of an arbitrary number

of functions (F1, . . . , Fl) 7→ F1 · · ·Fl.

3 The Nemitskii operator If p(x, z) = p : K × R → R is a smooth function, define

P (F )(x) := p(x, F (x)), x ∈ K, F ∈ V ⊂ C∞
K .

Lemma 25 P : V → C∞
K is a smooth tame map of Fréchet spaces: for each n ≥ 0,

P : CnK → CnK is continuous as well as P : Cn,αK → Cn,αK . P (F ) has degree 0 in F and base

1:

‖P (F )‖n,α ≤ C · (‖F‖n,α + 1), n ≥ 1 (5.116)

for F in a neighborhood where ‖F‖1,α is bounded. The first derivative DP (F ) · f ∈ C∞
K is

given by

(DP (F ) · f)(x) = Dzp(x, F (x))f(x), x ∈ K. (5.117)
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4 Composition of functions Let K ⊂ R
d,K ′ ⊂ R

d′ ,K ′′ ⊂ R
d′′ be compact subsets of

Euclidean spaces, and let G0 ∈ C∞
(K,Rd′)

such that G0(K) ⊂ V ′ ⊂ K ′ for some open set V ′.

If G is in a suitable ‖ · ‖0-neighborhood V of G0, then G(K) ⊂ K ′. Thus, we may define

the composition operator

C :

{

C∞
(K ′,Rd

′′ )
× V

F G
−→

C∞
(K,Rd′′)

F ◦G

}

. (5.118)

Lemma 26 C is a smooth tame map of Fréchet spaces. In the Cn-grading we have that

C : Cn
(K ′,Rd

′′ )
× Cn

K,Rd
′ → Cn

(K,Rd′′)
, n ≥ 0 (5.119)

is continuous, while in the Cn,α-grading we only have that

C : Cn+1,α

(K ′,Rd
′′ )

× Cn,α
K,Rd

′ → Cn,α
(K,Rd′′)

, n ≥ 0 (5.120)

is continuous. For G in a ‖ · ‖1,α-neighborhood, and all F (without restriction),

‖F ◦G‖n,α ≤ C · (‖F‖n,α + ‖G‖n,α‖F‖1,α), n ≥ 1 (5.121)

The derivative is given by

DC(F,G) · (f, g) = F ′(G)g + f(G). (5.122)

Proof See [3]. Note that composition Cn,α×Cn,α → Cn,α is well-defined, even though it

is not continuous. �

5 The inversion operator Let I be a compact interval denote D∞
I the group of

increasing C∞-diffeomorphisms of I. Denote V (F ) = F−1 the inverse of F ∈ D∞
I .

Lemma 27 The inversion operator

V :

{

D∞
I

F
−→

D∞
I

F−1

}

(5.123)

is a smooth tame map. It is continuous Dn
I → Dn

I for each n ≥ 1. V (F ) has degree 0 in F

and base 1 in the ‖ · ‖n,α-grading:

‖V (F )‖n,α ≤ C · (‖F‖n,α + 1), n ≥ 1 (5.124)

for F in a neighborhood where ‖F‖1,α is bounded. The first derivative is given by

DV (F ) · f = −
f(F−1)

F ′(F−1)
. (5.125)
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Proof That V : Dn
I → Dn

I is continuous for each n ≥ 1 is standard, see Example 4.4.6,

p. 92, Part I, and Theorem 2.3.5, p. 148, Part II of [7]. We need tame estimates in the Cn,α,

while those of [7] are given in the Cn-grading.

Let y = g(x) be a diffeomorphism in D∞
I with inverse x = f(y). Then, f ′(y) = 1

g′(x) so

that

|f ′(y1) − f ′(y2)| ≤

∣

∣

∣

∣

1

g′(x1)
−

1

g′(x2)

∣

∣

∣

∣

(5.126)

≤
|g′(x2) − g′(x1)|

|g′(x1)g′(x2)|
(5.127)

≤ C[g′]α|x2 − x1|
α (5.128)

for g in a ‖ · ‖1-neighborhood. Since |x2 − x1| ≤ ‖f ′‖0|y2 − y1|, we are done with the tame

estimates for n = 1.

Suppose the tame estimates verified for 1 ≤ m < n. From (3.48) and tame estimates on

product of functions, we have for g in a ‖ · ‖1,α-neighborhood

‖f (n)‖0,α ≤ C‖f ′‖n0,α

n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

‖f (k)‖0,α‖g
(j1) ◦ f‖0,α · · · ‖g

(jk) ◦ f‖0,α (5.129)

≤ C‖f ′‖n0,α

n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

‖f (k)‖0,α‖g
(j1)‖0,α‖f‖0,α · · · ‖g

(jk)‖0,α‖f‖0,α(5.130)

≤ C
n−1
∑

k=1

∑

j1+···+jk=n
j1,...,jk≥1

(1 + ‖g(k)‖0,α)‖g‖j1,α · · · ‖g‖jk ,α. (5.131)

We interpolate each factor between their ‖ · ‖1,α- and ‖ · ‖n,α-norms:

‖g‖k,α‖g‖j1,α · · · ‖g‖jk ,α (5.132)

≤ C · ‖g‖
n−k
n−1

1,α ‖g‖
k−1
n−1
n,α · ‖g‖

n−j1
n−1

1,α ‖g‖
j1−1
n−1
n,α · · · ‖g‖

n−jk
n−1

1,α ‖g‖
jk−1

n−1
n,α (5.133)

≤ C · ‖g‖n,α (5.134)

since ‖g‖1,α remains bounded and j1 + · · ·+jk = n. The other terms in the sum are handled

similarly. �
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