Weak and strong moments of random vectors

Rafał Latała

Abstract

We discuss a conjecture about comparability of weak and strong moments of log-concave random vectors and show the conjectured inequality for unconditional vectors in normed spaces with a bounded cotype constant.

1 Introduction

Let X be a random vector with values in some normed space $(F,\| \|)$. The question we will discuss is how to estimate $\|X\|_{p}=\left(\mathbb{E}\|X\|^{p}\right)^{1 / p}$ for $p \geq 1$. Obviously $\|X\|_{p} \geq\|X\|_{1}=\mathbb{E}\|X\|$ and for any continuous linear functional φ on F with $\|\varphi\|_{*} \leq 1$ we have $\|X\|_{p} \geq\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}$. It turns out that in some situations one may reverse these obvious estimates and show that for an absolute constant C and any $p \geq 1$,

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}\|X\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}\right)
$$

This is for example the case when X has Gaussian or product exponential distribution. In this note we will concentrate on the more general case of logconcave vectors.

A measure μ on \mathbb{R}^{n} is called logarithmically concave (log-concave in short) if for any compact nonempty sets $A, B \subset \mathbb{R}^{n}$ and $\lambda \in(0,1)$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}
$$

By the result of Borell [3 a measure μ on \mathbb{R}^{n} with full dimensional support is log-concave if and only if it is absolutely continuos with respect to the Lebesgue measure and has a density of the form e^{-f}, where $f: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is a convex function. Log-concave measures are frequently studied in convex geometry, since by the Brunn-Minkowski inequality uniform distributions on convex bodies as well as their lower dimensional marginals are log-concave. In fact the class of log-concave measures on \mathbb{R}^{n} is the smallest class of probability measures closed under linear transformation and weak limits that contains uniform distributions on convex bodies. Vectors with logaritmically concave distributions are called log-concave.

In the sequel we discuss the following conjecture posed in a stronger form in [5] about the comparison of strong and weak moment for log-concave vectors.

Conjecture 1.1. For any n dimensional log-concave random vector and any norm $\left\|\|\right.$ on \mathbb{R}^{n} we have for $1 \leq p<\infty$,

$$
\begin{equation*}
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C_{1} \mathbb{E}\|X\|+C_{2} \sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

where C_{1} and C_{2} are absolute constants.
In Section 2 we gather known results about validity of (1) in special cases. Section 3 is devoted to the unconditional vectors. In particular we show that Conjecture 1.1 is satisfied under additional assumption of unconditionality of X and bounded cotype constant of the underlying normed space.

Notation

Let $\left(\varepsilon_{i}\right)$ be a Bernoulli sequence, i.e. a sequence of independent symmetric variables taking values ± 1. We assume that $\left(\varepsilon_{i}\right)$ are independent of other random variables.

By $\left(\mathcal{E}_{i}\right)$ we denote a sequence of independent symmetric exponential random variables with variance 1 (i.e. the density $\left.2^{-1 / 2} \exp (-\sqrt{2}|x|)\right)$. We set $\mathcal{E}=\mathcal{E}^{(n)}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right)$ for an n-dimensional random vector with product exponential distribution and identity covariance matrix.

By $\langle\cdot, \cdot\rangle$ we denote the standard scalar product on \mathbb{R}^{n} and by $\left(e_{i}\right)$ the standard basis of \mathbb{R}^{n}. We set B_{p}^{n} for a unit ball in ℓ_{p}^{n}, i.e. $B_{p}^{n}=\left\{x \in \mathbb{R}^{n}:\|x\|_{p} \leq 1\right\}$. For a random variable Y and $p>0$ we write $\|Y\|_{p}=\left(\mathbb{E}|Y|^{p}\right)^{1 / p}$.

We write C (resp. $C(\alpha))$ to denote universal constants (resp. constants depending only on parameter α). Value of a constant C may differ at each occurence.

2 Known results

Since any norm on \mathbb{R}^{n} may be approximated by a supremum of exponential number of functionals we get

Proposition 2.1 (see [5, Proposition 3.20]). For any n-dimensional random vector X inequality (11) holds for $p \geq n$ with $C_{1}=0$ and $C_{2}=10$.

It is also easy to reduce Conjecture 1.1 to the case of symmetric vectors.
Proposition 2.2. Suppose that (11) holds for all symmetric n-dimensional logconcave vectors X. Then it is also satisfied with constants $4 C_{1}+1$ and $4 C_{2}$ by all log-concave vectors X.
Proof. Assume first that X has a log-concave distribution and $\mathbb{E} X=0$. Let X^{\prime} be an independent copy of X, then $X-X^{\prime}$ is symmetric and log-concave. Moreover for $p \geq 1$,

$$
\begin{aligned}
& \left(\mathbb{E}\|X\|^{p}\right)^{1 / p}=\left(\mathbb{E}\left\|X-\mathbb{E} X^{\prime}\right\|^{p}\right)^{1 / p} \leq\left(\mathbb{E}\left\|X-X^{\prime}\right\|^{p}\right)^{1 / p} \\
& \mathbb{E}\left\|X-X^{\prime}\right\| \leq \mathbb{E}\|X\|+\mathbb{E}\left\|X^{\prime}\right\|=2 \mathbb{E}\|X\|
\end{aligned}
$$

and for any functional φ,

$$
\left(\mathbb{E}\left|\varphi\left(X-X^{\prime}\right)\right|^{p}\right)^{1 / p} \leq\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}+\left(\mathbb{E}\left|\varphi\left(X^{\prime}\right)\right|^{p}\right)^{1 / p}=2\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}
$$

Hence (11) holds for X with constant $2 C_{1}$ and $2 C_{2}$.
If X is arbitrary \log-concave then $X-\mathbb{E} X$ is log-concave with mean zero. We have for any $p \geq 1$,

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq\left(\mathbb{E}\|X-\mathbb{E} X\|^{p}\right)^{1 / p}+\mathbb{E}\|X\|, \quad \mathbb{E}\|X-\mathbb{E} X\| \leq 2 \mathbb{E}\|X\|
$$

and for any functional φ,

$$
\left(\mathbb{E}|\varphi(X-\mathbb{E} X)|^{p}\right)^{1 / p} \leq\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}+|\varphi(\mathbb{E} X)| \leq 2\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p} .
$$

Remark. Estimating $\|X\|_{p}$ is strictly connected with bounding tails of $\|X\|$. Indeed by Chebyshev's inequality we have

$$
\mathbb{P}\left(\|X\| \geq e\|X\|_{p}\right) \leq e^{-p}
$$

and by the Paley-Zygmund inequality and the fact that $\|X\|_{2 p} \leq C\|X\|_{p}$ for $p \geq 1$ we get

$$
\mathbb{P}\left(\|X\| \geq \frac{1}{C}\|X\|_{p}\right) \geq \min \left\{\frac{1}{C}, e^{-p}\right\} .
$$

Gaussian concentration inequality easily implies (1) for Gaussian vectors X (see for example Chapter 3 of [8]). For Rademacher sums comparability of weak and strong moments was established by Dilworth and Montgomery-Smith [4. More general statement was shown in [6.

Theorem 2.3. Suppose that $X=\sum_{i} v_{i} \xi_{i}$, where $v_{i} \in F$ and ξ_{i} are independent symmetric r.v's with logarithmically concave tails. Then for any $p \geq 1$ inequality (11) holds with absolute constants C_{1} and C_{2}.

This immediately implies
Corollary 2.4. Conjecture 1.1 holds under additional assumption that coordinates of X are independent.

Proof. We have $X=\sum_{i=1}^{n} e_{i} X_{i}$ with X_{i} independent log-concave real random variables. It is enough to notice that variables X_{i} have log-concave tails and in the symmetric case apply Theorem [2.3] General independent case may be reduce to the symmetric one as in the proof of Proposition 2.2

The crucial tool in the proof of Theorem [2.3 is the Talagrand two-level concentration inequality for the product exponential distribution [12]:

$$
\nu^{n}(A) \geq \frac{1}{2} \quad \Rightarrow \quad 1-\nu^{n}\left(A+\sqrt{t} B_{2}^{n}+t B_{1}^{n}\right) \leq e^{-t / C}, t>0,
$$

where ν is the symmetric exponential distribution, i.e. $d \nu(x)=\frac{1}{2} \exp (-|x|) d x$.
In [5] more general concentration inequalities were investigated. For a probability measure μ on \mathbb{R}^{n} define

$$
\Lambda_{\mu}(y)=\log \int e^{\langle y, z\rangle} d \mu(z), \quad \Lambda_{\mu}^{*}(x)=\sup _{y}\left(\langle y, x\rangle-\Lambda_{\mu}(y)\right)
$$

and

$$
B_{\mu}(t)=\left\{x \in \mathbb{R}^{n}: \Lambda_{\mu}(x) \leq t\right\} .
$$

One may show that $B_{\nu^{n}}(t) \sim \sqrt{t} B_{2}^{n}+t B_{1}^{n}$. Argument presented in [5] Section 3.3] gives

Proposition 2.5. Suppose that for some $\alpha \geq 1$ and $\beta>0$ and any convex symmetric compact set $K \subset \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\mu(K) \geq \frac{1}{2} \quad \Rightarrow \quad 1-\mu\left(\alpha K+B_{\mu}(t)\right) \leq e^{-t / \beta}, \text { for all } t>0 \tag{2}
\end{equation*}
$$

Then inequality (II) holds with $C_{1}=\alpha$ and $C_{2}=C \beta$.
In [5] it was shown that concentration inequality (2) holds with $\alpha=1$ for symmetric product log-concave measures and for uniform distributions on B_{r}^{n} balls. This gives

Corollary 2.6. Inequality (1) holds with $C_{1}=1$ and universal C_{2} for uniform distributions on B_{r}^{n} balls $1 \leq r \leq \infty$.

Modification of Paouris' proof [11] of large deviation inequality for ℓ_{2} norm of isotropic log-concave vectors shows that weak and strong moments are comparable in the Euclidean case (see 1 for details):

Theorem 2.7. If X is a log-concave n-dimensional random vector then for any Euclidean norm \|| || on \mathbb{R}^{n} we have

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}\|X\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}\right) .
$$

3 Unconditional case

We say that a random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ has unconditional distribution if the distribution of $\left(\eta_{1} X_{1}, \ldots, \eta_{n} X_{n}\right)$ is the same as X for any choice of signs $\eta_{1}, \ldots, \eta_{n}$. Random vector X is called isotropic if it has identity covariance matrix, i.e. $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\delta_{i, j}$.
Theorem 3.1. Suppose that X is an n-dimensional isotropic, unconditional, log-concave vector. Then for any norm $\left\|\|\right.$ on \mathbb{R}^{n} and $p \geq 1$,

$$
\begin{equation*}
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}\|\mathcal{E}\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}\right) . \tag{3}
\end{equation*}
$$

Proof. Let $T=\left\{t \in \mathbb{R}^{n}:\|t\|_{*} \leq 1\right\}$ be the unit ball in the space $\left(\mathbb{R}^{n},\| \|_{*}\right)$ dual to $\left(\mathbb{R}^{n},\| \|\right)$. Then $\|x\|=\sup _{t \in T}\langle t, x\rangle$. By the result of Talagrand 13 (see also [14]) there exist subsets $T_{n} \subset T$ and functions $\pi_{n}: T \rightarrow T_{n}, n=0,1, \ldots$ such that $\pi_{n}(t) \rightarrow t$ for all $t \in T, \# T_{0}=1, \# T_{n} \leq 2^{2^{n}}$ and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\|\left\langle\pi_{n+1}(t)-\pi_{n}(t), \mathcal{E}\right\rangle\right\|_{2^{n}} \leq C \mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle=C \mathbb{E}\|\mathcal{E}\| \tag{4}
\end{equation*}
$$

Let us fix $p \geq 1$ and choose $n_{0} \geq 1$ such that $2^{n_{0}-1}<2 p \leq 2^{n_{0}}$. We have

$$
\begin{equation*}
\|X\|=\sup _{t \in T}\langle t, X\rangle \leq \sup _{t \in T}\left|\left\langle\pi_{n_{0}}(t), X\right\rangle\right|+\sup _{t \in T} \sum_{n=n_{0}}^{\infty}\left|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right| \tag{5}
\end{equation*}
$$

We get

$$
\begin{align*}
\left(\mathbb{E} \sup _{t \in T}\left|\left\langle\pi_{n_{0}}(t), X\right\rangle\right|^{p}\right)^{1 / p} & \leq\left(\mathbb{E} \sum_{s \in T_{n_{0}}}|\langle s, X\rangle|^{p}\right)^{1 / p} \leq\left(\# T_{n_{0}}\right)^{1 / p} \sup _{s \in T_{n_{0}}}\left(\mathbb{E}|\langle s, X\rangle|^{p}\right)^{1 / p} \\
& \leq 16 \sup _{t \in T}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}=16 \sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p} \tag{6}
\end{align*}
$$

To estimate the last term in (5) notice that for $u \geq 16$ we have by Chebyshev's inequality

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{t \in T} \sum_{n=n_{0}}^{\infty}\left|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right| \geq u \sup _{t \in T} \sum_{n=n_{0}}^{\infty}\left\|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right\|_{2^{n}}\right) \\
& \quad \leq \mathbb{P}\left(\exists_{n \geq n_{0}} \exists_{t \in T}\left|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right| \geq u\left\|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right\|_{2^{n}}\right) \\
& \quad \leq \sum_{n=n_{0}}^{\infty} \sum_{s \in T_{n+1}} \sum_{s^{\prime} \in T_{n}} \mathbb{P}\left(\left|\left\langle s-s^{\prime}, X\right\rangle\right| \geq u\left\|\left\langle s-s^{\prime}, X\right\rangle\right\|_{2^{n}}\right) \leq \sum_{n=n_{0}}^{\infty} \# T_{n+1} \# T_{n} u^{-2^{n}} \\
& \quad \leq \sum_{n=n_{0}}^{\infty}\left(\frac{8}{u}\right)^{2^{n}} \leq 2\left(\frac{8}{u}\right)^{2^{n_{0}}} \leq 2\left(\frac{8}{u}\right)^{2 p}
\end{aligned}
$$

Integrating by parts this gives

$$
\begin{align*}
&\left(\mathbb { E } \left(\sup _{t \in T}\right.\right.\left.\left.\sum_{n=n_{0}}^{\infty}\left|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right|\right)^{p}\right)^{1 / p} \\
& \quad \leq \sup _{t \in T} \sum_{n=n_{0}}^{\infty}\left\|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right\|_{2^{n}}\left(16+\left(2 p \int_{0}^{\infty} u^{p-1}\left(\frac{8}{u+16}\right)^{2 p}\right)^{1 / p}\right) \\
& \quad \leq 32 \sup _{t \in T} \sum_{n=n_{0}}^{\infty}\left\|\left\langle\pi_{n+1}(t)-\pi_{n}(t), X\right\rangle\right\|_{2^{n}} \tag{7}
\end{align*}
$$

The result of Bobkov and Nazarov [2] gives

$$
\begin{equation*}
\|\langle t, X\rangle\|_{r} \leq C\|\langle t, \mathcal{E}\rangle\|_{r} \quad \text { for any } t \in \mathbb{R}^{n} \text { and } r \geq 1 \tag{8}
\end{equation*}
$$

Thus the statement follows by (4)-(7).
Remark. The only property of the vector X that was used in the above proof was estimate (8). Thus inequality (3) holds for all n-dimensional random vectors satisfying (8).
Remark. Estimate (8) gives $\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p} \leq C\left(\mathbb{E}|\varphi(\mathcal{E})|^{p}\right)^{1 / p}$ for any functional φ, therefore Theorem 3.1] is stronger than the estimate from [7]:

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C \mathbb{E}\|\mathcal{E}\|^{p} \sim C\left(\mathbb{E}\|\mathcal{E}\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(\mathcal{E})|^{p}\right)^{1 / p}\right) .
$$

In some situation one may show that $\mathbb{E}\|\mathcal{E}\| \leq C \mathbb{E}\|X\|$. This is the case of spaces with bounded cotype constant.
Corollary 3.2. Suppose that $2 \leq q<\infty, F=\left(\mathbb{R}^{n},\| \|\right)$ is a finite dimensional space with a q-cotype constant bounded by $\beta<\infty$. Then for any n-dimensional unconditional, log-concave vector X and $p \geq 1$,

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C(q, \beta)\left(\mathbb{E}\|X\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}\right),
$$

where $C(q, \beta)$ is a constant that depends only on q and β.
Proof. Applying diagonal transformation (and appropriately changing the norm) we may assume that X is also isotropic.

By the result of Maurey and Pisier [9] (see also Appendix II in [10) one has

$$
\mathbb{E}\|\mathcal{E}\|=\mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \mathcal{E}_{i}\right\| \leq C_{1}(q, \beta) \mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i}\right\| .
$$

By the unconditionality of X and Jensen's inequality we get

$$
\mathbb{E}\|X\|=\mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i}\left|X_{i}\right|\right\| \geq \mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i} \mathbb{E}\left|X_{i}\right|\right\| .
$$

We have $\mathbb{E}\left|X_{i}\right| \geq \frac{1}{C}\left(\mathbb{E}\left|X_{i}\right|^{2}\right)^{1 / 2}=\frac{1}{C}$, therefore

$$
\mathbb{E}\|\mathcal{E}\| \leq C C_{1}(q, \beta) \mathbb{E}\|X\|
$$

and the statement follows by Theorem 3.1,
For general norm on \mathbb{R}^{n} one has

$$
\mathbb{E}\|\mathcal{E}\|=\mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i}\left|\mathcal{E}_{i}\right|\right\| \leq \mathbb{E} \sup _{i}\left|\mathcal{E}_{i}\right| \mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i}\right\| \leq C \log n \mathbb{E}\left\|\sum_{i=1}^{n} e_{i} \varepsilon_{i}\right\| .
$$

This together with the similar argument as in the proof of Corollary 3.2 gives the following.

Corollary 3.3. For any n-dimensional unconditional, log-concave vector X, any norm $\left\|\|\right.$ on \mathbb{R}^{n} and $p \geq 1$ one has

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C\left(\log n \mathbb{E}\|X\|+\sup _{\|\varphi\|_{*} \leq 1}\left(\mathbb{E}|\varphi(X)|^{p}\right)^{1 / p}\right)
$$

Acknowledgments

Research of R. Latała was partially supported by the Foundation for Polish Science and MNiSW grant N N201 397437.

References

[1] R. Adamczak R. Latała, A. Litvak, A. Pajor and N. Tomczak-Jaegermann, in preparation.
[2] S.G. Bobkov and F.L. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in: Geometric aspects of functional analysis, Lecture Notes in Math. 1807, Springer, Berlin, 2003, 53-69.
[3] C. Borell, Convex measures on locally convex spaces, Ark. Math. 12 (1974), 239-252.
[4] S.J Dilworth and S.J. Montgomery-Smith, The distribution of vector-valued Rademacher series Ann. Probab. 21 (1993), 2046-2052.
[5] R. Latała and J.O. Wojtaszczyk, On the infimum convolution inequality, Studia Math. 189 (2008), 147-187.
[6] R. Latała, Tail and moment estimates for sums of independent random vectors with logarithmically concave tails, Studia Math. 118 (1996), 301304.
[7] R. Latała, On weak tail domination of random vectors, Bull. Polish Acad. Sci. Math. 57 (2009), 75-80.
[8] M. Ledoux and M. Talagrand, Probability in Banach spaces. Isoperimetry and processes, Springer-Verlag, Berlin, 1991.
[9] B. Maurey and G. Pisier, Séries de variables alatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
[10] V.D. Milman and G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Math. 1200, Springer-Verlag, Berlin, 1986.
[11] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), 1021-1049.
[12] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: Israel Seminar (GAFA), Lecture Notes in Math. 1469, Springer, Berlin, 1991, 94-124.
[13] M. Talagrand The supremum of some canonical processes, Amer. J. Math. 116 (1994), 283-325.
[14] M. Talagrand, The generic chaining. Upper and lower bounds of stochastic processes, Springer, Berlin, 2005.

Institute of Mathematics, University of Warsaw
Banacha 2, 02-097 Warszawa, Poland
Institute of Mathematics, Polish Academy of Sciences
Śniadeckich 8, 00-956 Warszawa, Poland
E-mail: rlatala@mimuw.edu.pl

