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QUASI-STATIONARY WORKLOAD

IN A LÉVY-DRIVEN STORAGE SYSTEM

MICHEL MANDJES, ZBIGNIEW PALMOWSKI, AND TOMASZ ROLSKI

ABSTRACT. In this paper we analyze the quasi-stationary workload of a Lévy-driven storage system.

More precisely, assuming the system is in stationarity, we study its behavior conditional on the event that

the busy period T in which time 0 is contained has not ended before time t, as t → ∞. We do so by

first identifying the double Laplace transform associated with the workloads at time 0 and time t, on the

event {T > t}. This transform can be explicitly computed for the case of spectrally one-sided jumps.

Then asymptotic techniques for Laplace inversion are relied upon to find the corresponding behavior in

the limiting regime that t → ∞. Several examples are treated; for instance in the case of Brownian input,

we conclude that the workload distribution at time 0 and t are both Erlang(2).
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4.2. Spectrally negative Lévy process 11
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1. INTRODUCTION

Consider a storage system with Lévy input, i.e., the process (Q(t))t that evolves as a Lévy process

X(t) that is reflected at 0. In mathematical terms, this means that the workload in the storage system

at time t is given by

Q(t) := X(t)− inf
s≤t

X(s),

where Q(0) = x for some initial workload x ≥ 0. Assuming EX(1) < 0, there exists a stationary

distribution π of Q(t); it is seen that the stationary workload is distributed as the all-time supremum:

π(x) = P

(
sup
t≥0

X(t) ≤ x

)
.

In the sequel we add the subscript π to the probability measure P and the associated expectation E

when we wish to indicate that Q(0) is distributed according to this stationary distribution.

Now let T denote the busy period, that is T = inf{t ≥ 0 : Q(t) = 0}. In this paper the object of our

interest concerns the existence and characterization of the joint conditional distribution

lim
t→∞

Pπ(Q(0) ∈ dx,Q(t) ∈ dy |T > t) =: µ(dx, dy),

where the convergence is to be understood in the weak sense. We study this so-called quasi-stationary

distribution µ in detail; special attention is paid to the marginal distributions µ(· × R) = µQS
L (·) and

µ(R × ·) = µQS
R (·). As an aside we mention that sometimes µ(R+ × dy) is called quasi-stationary

distribution; here we do not follow that convention.

A substantial body of work has been devoted to the analysis of quasi-stationary distributions. Over

the past decades, various settings were considered; we here give a brief (non-exhaustive) overview.

Seneta and Vere-Jones [17], Tweedie [18], Jacka and Roberts [9] focus on a Markov chain setting, Igle-

hart [8] addresses a random walk setup, Kyprianou [10] considers the M/G/1 queue (i.e., a storage

system with compound Poisson input), whereas Martinez and San Martin [13] treat the case of Brow-

nian motion with drift. We also mention the contribution by Kyprianou and Palmowski [12], who

found the quasi-stationary distribution associated with a general light-tailed Lévy process. Recently,

Rivero [16] (after appropriate scaling) found the quasi-stationary distribution for the specific situation

that the Lévy process under study has a jump measure with a regularly varying tail.

The contribution of this paper is twofold. In the first place, a general formula for the double Laplace

transform (Q(0), Q(t)) on the event {T > t}, that is,

(1)

∫ ∞

0

e−ϑtEπ[e
−αQ(0)−βQ(t), T > t] dt

is given (to which we refer to as the master formula). The derivation is based on the Wiener-Hopf

factorization, and can be evaluated explicitly when all jumps are either all positive (the so-called

spectrally-positive case) or all jumps are negative (spectrally-negative case). These formulae allow us

to identify the quasi-stationary measures for the spectrally one-sided cases (relying on Tauberian-type

theorems), which can be regarded as the second major contribution.

The paper provides interesting insights into the distribution of the workload conditional on a long

busy period. The distributions found tend to be stochastically larger than the normal, stationary dis-

tribution. For instance in the case of regulated standard Brownian motion (with drift −1), both µQS
L (·)

and µQS
R (·) correspond to Erlang(2) distributions (with mean 2), whereas the stationary distribution

is exponential (with mean 1
2 ). This type of insights can potentially be used when setting up efficient
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importance sampling algorithms [6] (as in those algorithms a change of measure is looked for that

mimics the distribution conditional on the rare event under consideration).

This paper is organized as follows. In Section 2 preliminaries are given: (i) we first recapitulate a

set of main results on fluctuation theory for Lévy processes, and (ii) then present Tauberian theorems

that are useful in the context of this paper (which can be used to identify the tail behavior of a random

variable from its Laplace transform). The main objective of Section 3 concerns the derivation of the

master formula, i.e., an expression for (1) in terms of the Wiener-Hopf factorization (with explicit

results for the spectrally one-sided cases). Our findings on the quasi-stationary distribution are then

given in Section 4. The last section treats a number of examples.

2. PRELIMINARIES

2.1. Lévy processes. Here we follow [11] for definitions, notations and basic facts on Lévy pro-

cesses. Let in the sequel X ≡ (X(t))t be a Lévy process which is defined on the filtered space

(Ω,F , {Ft}t≥0,P) with the natural filtration that satisfies the usual assumptions of right continu-

ity and completion. Later if we write Px, it means that Px(X(0) = x) = 1 and P0 = P; similarly, Ex is

expectation with respect to Px. We denote by Π(·) jump measure of X . Later we will focus on asym-

metric Lévy processes, which are either spectrally negative (having nonpositive jumps) or spectrally

positive Lévy processes (having nonnegative jumps).

First passage times. For any Lévy process we can define its Laplace exponent ψ(η) by

(2) EeηX(t) = etψ(η),

for η ∈ Θ such that the left hand side of (2) is well-defined (from now on we will assume that that this

set Θ is not empty). Later, we also need the first passage time

τ(x) := min{t : X(t) ≥ x},

which for a spectrally negative process X with positive drift (i.e., EX(1) > 0) has Laplace transform

(3) Ee−sτ(x) = e−Φ(s)x,

where Φ(s) := sup{η ≥ 0 : ψ(η) = s} is the right inverse of ψ (see [11] for details).

Exponential change of measure. For η ∈ Θ we define a new probability measure Pηx by the relation

dPηx
dPx

∣∣∣∣
Ft

= eη(X(t)−x)−ψ(η)t ;

we say that we have performed an exponential change of measure. Under Pη, the process X is still a

Lévy process, but now with Laplace exponent

(4) ψη(β) := ψ(η + β)− ψ(η).

We will use the subscript ϑ to indicate that the quantity under consideration relates to Pη.

Dual process. We will also consider the so-called dual process X̂t = −Xt with jump measure Π̂ (0, y) =

Π (−y, 0). Characteristics of X̂ will be indicated by using the same symbols as for X , but with a ‘ˆ’

added.
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Ladder heights. For the process X we define the associated (L−1(t), H(t))t:

L−1(t) :=

{
inf{s > 0 : L(s) > t} if t < L(∞),

∞ otherwise,

and

H(t) :=

{
XL−1(t) if t < L(∞),

∞ otherwise,

where L ≡ (L(t))t is the local time at the maximum [11, p. 140]. Recall that (L−1, H) is a bivariate

subordinator with the Laplace exponent

κ(ϕ, β) := −1

t
logE

(
e−ϕL

−1(t)−βH(t)1{t≤L(∞)}
)

and with the jump measure ΠH . In addition to this, we define the descending ladder height process

(L̂−1(t), Ĥ(t))t≥0 with the Laplace exponent κ̂(ϑ, β) constructed from the dual process X̂ . Recall that

under the stability assumption EX(1) < 0, the random variable L(∞) has an exponential distribution

with parameter κ(0, 0). Moreover, for a spectrally negative Lévy process the Wiener-Hopf factoriza-

tion states that

(5) κ(ϕ, β) = Φ(ϕ) + β, κ̂(ϕ, β) =
ϕ− ψ(β)

Φ(ϕ)− β
;

see [11, p. 169-170]. It follows that κ(0, 0) = ψ′(0+).

We introduce a potential measure U defined by

U (dx, ds) =

∫ ∞

t=0

P
(
L−1(t) ∈ ds,H(t) ∈ dx

)
dt

with the Laplace transform
∫
[0,∞)2

e−ϕs−βxU (dx, ds) = 1/κ(ϕ, β) and renewal function

V (dx) =

∫ ∞

s=0

U (dx, ds) = E

(∫ ∞

t=0

1{H(t)∈dx}dt

)
.

In particular,

(6)

∫ ∞

0

e−βxV (x) dx =
1

βκ(0, β)
.

For a spectrally negative Lévy process, the upward ladder height process is just a linear drift, and

hence the renewal measure corresponds to the Lebesgue measure:

(7) V (dx) = dx.

From (5) we have [11, p. 195] that ∫ ∞

0

e−ϕzV̂ (dz) =
ϕ

ψ(ϕ)
.

2.2. Tauberian-type results. Consider a function f : R → R such that f(z) = 0 for ℜ(z) < 0. Let

f̃(z) :=
∫∞
0
e−zxf(x) dx be its Laplace transform. Consider its singularities; among these, let ϑ⋆ <

0 the one with the largest real part. Notice that this yields the integrability of
∫∞
0 |f(x)| dx. The

inversion formula the reads

f(x) =
1

2πi

∫ a+i∞

a−i∞
f̃(z)ezx dz

for some (and then any) a > ϑ⋆.
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We now focus on a class of theorems that infer the tail behavior of a function from its Laplace trans-

form, commonly referred to as Tauberian theorems. Importantly, the behavior of the Laplace transform

around the singularity ϑ⋆ plays a crucial role here. The following heuristic principle given in [1] is

often relied upon. Suppose that for ϑ⋆, some constants K and C, and a non-integer s > 0,

f̃(ϑ) = K − C(ϑ− ϑ⋆)s + o((ϑ − ϑ⋆)s), as ϑ ↓ ϑ⋆.

Then

f(x) =
C

Γ(−s)x
−s−1eϑ

⋆x(1 + o(1)), as x→ ∞,

where Γ(s) is the gamma function. Below we specify conditions under which this relation can be

rigorously proven. Later in our paper we apply it for the specific case that s = 1/2; recall that

Γ(−1/2) = −2
√
π.

A formal justification of the above relation can be found in Doetsch [4, Theorem 37.1]. Following

Miyazawa and Rolski [14], we consider the following specific form. For this we first recall the concept

of the W-contour with an half-angle of opening π/2 < ψ ≤ π, as depicted on [4, Fig. 30, p. 240]; also,

Gζ⋆(ψ) is the region between the contour W and the line ℜ(z) = 0. More precisely,

Gα(δ) ≡ {z ∈ C;ℜ(z) < 0, z 6= α, | arg(z − α)| < δ},

where arg z is the principal part of the argument of the complex number z.

In the following theorem, conditions are identified such that the above principle holds; we refer to

this as the Heaviside’s operational principle, or simply Heaviside principle.

Theorem 1 (Heaviside principle). Suppose that for f̃ : C → C and ζ⋆ < 0 the following three conditions

hold:

(A1) f̃(·) is analytic in a region Gζ⋆(ψ) for some π/2 < ψ ≤ π;

(A2) f̃(z) → 0 as |z| → ∞ for z ∈ Gζ⋆(ψ);

(A3) for some constants K and C, and a non-integer s > 0,

f̃(z) = K 1{s>0} − C(z − ζ⋆)s + o((z − ζ⋆)s),(8)

where Gζ⋆(ψ) ∋ z → ζ⋆.

Then

f(x) =
C

Γ(−s)x
−s−1eζ

⋆x(1 + o(1)) ,

as x→ ∞, where K := f̃(ζ⋆) if s > 0.

We now discuss when assumption (A1) is satisfied. To check that the Laplace transform f̃(·) is analytic

in the region Gζ⋆(ψ), we can use the concept of semiexponentiality of f (see [7]).

Definition 2 (Semiexponentiality). f is said to be semiexponential if for some 0 < φ ≤ π/2, there exists

finite and strictly negative γ(ϑ), defined as the infimum of all such a such that
∣∣f(eiϑr)

∣∣ < ear

for all sufficiently large r; here −φ ≤ ϑ ≤ φ and sup γ(ϑ) < 0.

Relying on this concept, the following sufficient condition for (A1) applies.
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Proposition 3. [7, Thm. 10.9f] Suppose that f is semiexponential with γ(ϑ) fulfilling the following condi-

tions: (i) γ = γ(0) < 0, (ii) γ(ϑ) ≥ γ(0) in a neighborhood of ϑ = 0, and (iii) it is smooth. Then (A1) is

satisfied.

3. MASTER FORMULA

The objective of this section is to derive a general formula for the double Laplace-Stieltjes transforms

Lx(ϑ;α, β) :=

∫ ∞

0

e−ϑtEx[e
−αx−βQ(t), T > t] dt

and

L(ϑ;α, β) :=

∫ ∞

0

Lx(ϑ;α, β) dP(Q(0) ≤ x) =

∫ ∞

0

e−ϑtEπ[e
−αQ(0)−βQ(t), T > t] dt.

Let eϑ be an exponentially distributed random variable with parameter ϑ > 0, independent of the

process X . Denote

X(t) := sup
s≤t

X(s), X(t) := inf
s≤t

X(s).

Following the idea behind [2, Th. VI.20], we can prove the following result.

Theorem 4. For α, β, ϑ > 0,

Lx(ϑ;α, β) =
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)
e−(α+β)x

(∫ x

0

eβzP̂(X(eϑ) ∈ dz)

)
.

Proof. It is elementary that
∫ ∞

0

e−ϑtEx[e
−αx−βQ(t), T > t] dt =

∫ ∞

0

e−ϑtEx[e
−αx−βX(t), T > t] dt

= Ex

∫ T

0

e−ϑte−αx−βX(t)dt =
1

ϑ
Ex[e

−αx−βX(eϑ), eϑ < T ].

Recall that [11, Thm. 6.16(i)]) under P we have that X(eϑ) and X(eϑ) − X(eϑ) are independent; in

addition X(eϑ)−X(eϑ) =d X(eϑ). It thus follows that

1

ϑ
Ex[e

−βX(eϑ), eϑ < T ] =
1

ϑ
Ex[e

−β(X(eϑ)−X(eϑ))−βX(eϑ), eϑ < T ]

=
1

ϑ
e−βxE[e−β(X(eϑ)−X(eϑ))]E[e−βX(eϑ), X(eϑ) > −x]

=
1

ϑ
e−βxE[e−βX(eϑ)] Ê[eβX(eϑ), X(eϑ) < x] .

Following [11, Th. 6.16(ii)], we obtain that

(9) E[e−βX(eϑ)] =
κ(ϑ, 0)

κ(ϑ, β)

and hence

Ê[eβX(eϑ);X(eϑ) < x] =

∫ x

0

eβzP̂(X(eϑ) ∈ dz)

which completes the proof. �

We now evaluate L(ϑ;α, β) for the spectrally one-sided cases.

Proposition 5. If X is a spectrally positive Lévy process, then

(10) L(ϑ;α, β) =
ψ̂′(0+)

ϑ− ψ̂(β)

(
α+ β

ψ̂(α+ β)
− α+ Φ̂(ϑ)

ψ̂(α+ Φ̂(ϑ))

)
.
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Proof. Note that

P̂(X(eϑ) ≥ x) = P̂(τ(x) ≤ eϑ) = Êe−ϑτ(x) = e−Φ̂(ϑ)x.

Integration by parts yields
∫ x

0

eβz P̂(X(eϑ) ∈ dz) =
Φ̂(ϑ)

β − Φ̂(ϑ)

(
e(β−Φ̂(ϑ))x − 1

)
.

The Pollaczek-Khintchine formula [11, Eqn. (4.14), p. 101] states that

(11) π̃(s) :=

∫ ∞

0

e−sx π(dx) =
ψ̂′(0+)s

ψ̂(s)
.

It now follows that

L(ϑ;α, β) =
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

∫ ∞

0

e−(α+β)x

∫ x

0

eβzP̂(X(eϑ) ∈ dz)π(dx)

=
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ̂(ϑ)

β − Φ̂(ϑ)

∫ ∞

0

(
e−(α+ψ̂(ϑ))x − e−(α+β)x

)
π(dx)

=
ψ̂′(0+)

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ̂(ϑ)

β − Φ̂(ϑ)

(
α+ Φ̂(ϑ)

ψ̂(α+ Φ̂(ϑ))
− α+ β

ψ̂(α + β)

)
.

The Wiener-Hopf factorization [11, Section 6.5.2] and (5) complete the proof. �

A similar result can be derived for the spectrally negative case.

Proposition 6. If X is a spectrally negative Lévy process, then

(12) L(ϑ;α, β) =
Φ(ϑ)− α− Φ(0)

Φ(ϑ) + β

Φ(0)

α+ β +Φ(0)

1

ϑ− ψ(α+Φ(0))
.

Proof. Recall the well-kown fact that π(dx) = Φ(0)e−Φ(0)x dx by (3). Applying Thm. 4 and interchang-

ing the order of integration,

L(ϑ;α, β) =
Φ(0)

ϑ

κ(ϑ, 0)

κ(ϑ, β)

∫ ∞

0

e−(α+β+Φ(0))x

(∫ x

0

eβzP̂(X(eϑ) ∈ dz)

)
dx

=
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ(0)

α+ β +Φ(0)
Êe−(α+Φ(0))X(eϑ)

=
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ(0)

α+ β +Φ(0)
Ee−(α+Φ(0))X(eϑ).

This gives by Eqns. (5) and (9), in conjunction with the fact that ϑ = κ(ϑ, 0)κ̂(ϑ, 0),

L(ϑ;α, β) =
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ(0)

α+ β +Φ(0)

κ̂(0, 0)

κ̂(ϑ, α+Φ(0))

=
1

ϑ

κ(ϑ, 0)

κ(ϑ, β)

Φ(0)

α+ β +Φ(0)

κ̂(ϑ, 0)

κ̂(ϑ, α+Φ(0))

=
Φ(ϑ)− α− Φ(0)

Φ(ϑ) + β

Φ(0)

α+ β +Φ(0)

1

ϑ− ψ(α+Φ(0))
.

This completes the proof. �

4. QUASI-STATIONARY DISTRIBUTION

In this section we use the Laplace transforms given in (10) and (12) to identify the quasi-stationary

distribution µ(dx, dy) for the spectrally one-sided cases.
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4.1. Spectrally positive Lévy process. We impose the following additional assumptions:

[SP1] There exists ϑ+ < 0 such that

• ψ̂(ϑ) <∞ for ϑ+ < ϑ,

• ψ̂(ϑ) attains its strictly negative minimum at ϑ⋆ < 0, where ϑ+ < ϑ⋆ < 0 (and hence ψ̂′(ϑ⋆) =

0).

Denote ζ⋆ := ψ̂(ϑ⋆) < 0. Note that the function Φ̂ can be considered in the complex domain. It is

clearly analytic for ℜ(ϑ) > ζ⋆. But, as it will turn out, more is required to obtain the quasi-stationary

distribution.

[SP2] One can extend analytically L(ϑ;α, β) into Gζ⋆(ψ) for some π/2 < ψ ≤ π.

Example 7. Since Φ̂(ϑ) is the Laplace exponent of a subordinator (viz. a first passage time process),

we have the following spectral representation:

(13) Φ̂(ϑ) = d+ϑ+

∫ ∞

0

(1− e−ϑx)Π+(dx),

and
∫∞
0

(x ∧ 1)Π+(dx) < ∞ [11, Exercise 2.11]. From its definition we see that ζ⋆ must be a singular

point of Φ̂(ϑ). Moreover, if there exists a density of Π+ which is of semixponential type, then from

Prop. 3 it follows then that Φ̂ is analytic in Gζ⋆(φ) and assumption [SP2] is satisfied. In particular,

assumption [SP2] is for example satisfied for

Π+(dx) = eζ
⋆xxα dx1{x>0},

for α > −2. Clearly, then γ(ϑ) = ζ⋆ cosϑ. ♦

Theorem 8. If X is a spectrally positive Lévy process satisfying conditions [SP1-SP2], then

µ(dx, dy) = Q+

(
−ψ̂′(0+)

ψ̂(ϑ)− ϑψ̂′(ϑ)

(ψ̂(ϑ))2

)
eϑ

⋆(y−x)xV−ϑ⋆(y)π(dx)dy 1{x≥0,y≥0},

where Q+ := (
∫∞
0 eϑ

⋆zV−ϑ⋆(z) dz)−1.

Corollary 9. We have

µQS
L (dx) =

(
−ψ̂′(0+)

ψ̂(ϑ)− ϑψ̂′(ϑ)

(ψ̂(ϑ))2

)
e−ϑ

⋆xxπ(dx)1{x≥0}

and

µQS
R (dy) = Q+e

ϑ⋆yV−ϑ⋆(y) dy1{y≥0}.

Before we prove Thm. 8, we first present a few facts. Let k⋆ :=

√
2/ψ̂′′(ϑ⋆).

Lemma 10. Under [SP1-SP2],

Φ̂(ϑ) = ϑ⋆ + k⋆(ϑ− ζ∗)1/2 + o((ϑ− ζ∗)1/2)

as ϑ ↓ ζ⋆.

Proof. From a Taylor series expansion and the condition that ψ̂′(ϑ⋆) = 0, we have

ψ̂(ϑ)− ψ̂(ϑ⋆) =
(ϑ− ϑ⋆)2

2
ψ′′(ϑ⋆) + o((ϑ − ϑ⋆)2).

After some rearranging, it is obtained that

ϑ− ϑ⋆ =

√
2

ψ̂′′(ϑ⋆)

√
ψ̂(ϑ)− ψ̂(ϑ⋆) + o((ϑ − ϑ⋆)2).
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We now substitute ϑ = Φ̂(s), and use ψ̂(Φ̂(s)) = s to complete the proof. �

Proposition 11. Under [SP1-SP2] we have

lim
t→∞

Eπ [e
−αQ(0)−βQ(t) |T > t]

=

(
ζ⋆ · ψ̂(α+ ϑ⋆)− (α+ ϑ⋆)ψ̂′(α+ ϑ⋆)

ψ̂2(α+ ϑ⋆)

)(
ζ⋆

ζ⋆ − ψ̂(β)

)
.(14)

Proof. By [SP1-SP2] and Prop. 5 L(ϑ, α, β), as given in (10) as a function of ϑ, is analytic in Gζ⋆(φ) for

π/2 < φ ≤ π when ψ̂(α + Φ̂(z)) is analytical there. Recall that Φ̂ is analytic in this region and note

that ψ̂(α+ Φ̂(z)) is analytical there since ψ̂(Φ̂(z)) = z is analytical in this region. Thus condition (A1)

of Thm. 1 is satisfied.

To check that condition (A2) of Thm. 1 holds for L(ϑ, α, β), it suffices to prove that

(15)

∣∣∣∣∣
1

z

α+ Φ̂(z)

ψ̂(α + Φ̂(z))

∣∣∣∣∣

tends to 0 for z ∈ Gζ⋆(φ) tending to ∞ two-dimensionally, that is in particular for ℑ z → ±∞. From

(13) it follows that b := ℑ Φ̂(z) → ±∞. Similarly one can prove that either a := α + ℜ Φ̂(z) ≤ 0 is

constant or tends to −∞. Then

ℑ ψ̂(a+ bi)

|a+ bi| =
1√

a2 + b2

(
ψ̂′(0)b + abσ2 +

∫ 0

∞
(sin bx− b1{|x|≤1}x)Π̂(dx)

)

∼ ψ̂′(0)−
∫ 0

−1

xΠ̂(dx) + aσ2,

which is either bounded or tends to −∞ when a is constant or a→ −∞. Taking into account the term

1/z in (15), this completes the verification of condition (A2). We will check now that also condition

(A3) of Thm. 1 is satisfied. Now using Lemma 10 we write

ψ̂(α+ Φ̂(ϑ)) = ψ̂(α+ ϑ⋆ + k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2)

= ψ̂(α+ ϑ⋆) + ψ̂
′

(α+ ϑ⋆)k⋆(ϑ− ζ⋆)1/2 + o((ϑ− ζ⋆)1/2).

Hence by Prop. 5 (for ϑ ↓ ζ⋆) we have, for some K̄ ,

L(ϑ;α, β) =
ψ̂′(0+)

ϑ− ψ̂(β)

(
α+ β

ψ̂(α+ β)
− α+ ϑ⋆ + k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2)

ψ̂(α+ ϑ⋆ + γ(ϑ− ζ⋆)1/2 + o((ϑ− ζ⋆)1/2)

)

= K̄ − ψ̂′(0+)

ϑ− ψ̂(β)

α+ ϑ⋆ + k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2

ψ̂(α+ ϑ⋆) + ψ̂′(α+ ϑ⋆)k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2)

= K̄ − ψ̂′(0+)

ϑ− ψ̂(β)

α+ ϑ⋆ + k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2

ψ̂(α+ ϑ⋆) + ψ̂′(α+ ϑ⋆)k⋆(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2)

× ψ̂(α+ ϑ⋆)− ψ̂
′
(α+ ϑ⋆)k⋆(ϑ− ζ⋆)1/2 + o((ϑ− ζ⋆)1/2)

ψ̂(α+ ϑ⋆)− ψ̂′(α+ ϑ⋆)k⋆(ϑ− ζ⋆)1/2 + o((ϑ− ζ⋆)1/2)
.

Thus we obtain that, for some K ,

L(ϑ;α, β) = K − ψ̂′(0+)k⋆

ζ⋆ − ψ̂(β)

ψ̂(α+ ϑ⋆)− (α+ ϑ⋆)ψ̂′(α+ ϑ⋆)

ψ̂2(α+ ϑ⋆)
(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2).

Conclude by invoking ‘Heaviside’ that

Eπ[e
−αQ(0)−βQ(t), T > t] =

ψ̂′(0+)k⋆

ζ⋆ − ψ̂(β)

ψ̂(α + ϑ⋆)− (α+ ϑ⋆)ψ̂′(α+ ϑ⋆)

ψ̂2(α+ ϑ⋆)

t−3/2

Γ(−1/2)
eζ

⋆t(1 + o(1)).
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By setting α = β = 0 we have

P(T > t) =
ψ̂′(0+)k⋆

(ζ⋆)2
t−3/2

Γ(−1/2)
eζ

⋆t(1 + o(1)).

It is now seen that Eqn. (14) holds and the proof is completed. �

Proof of Theorem 8. From Prop. 11 it follows that

µ̃(α, β) =

∫ ∞

0

∫ ∞

0

e−αxe−βy µ(dx, dy) = Ã+(α)B̃+(β),

where

Ã+(α) := ζ⋆ · ψ̂(α+ ϑ⋆)− (α+ ϑ⋆)ψ̂′(α+ ϑ⋆)

ψ̂2(α+ ϑ⋆)
, B̃+(β) :=

ζ⋆

ζ⋆ − ψ̂(β)
.

• By the Pollaczek-Khintchine formula (11) and [11, (4.14), p. 101] applied for the dual, we derive
∫ ∞

0

e−(α+ϑ⋆)xx π(dx) = −π̃′(ϑ)|ϑ=α+ϑ⋆ = −ψ̂′(0+)
ψ̂(α+ ϑ⋆)− (α+ ϑ⋆)ψ̂′(α+ ϑ⋆)

ψ̂2(α+ ϑ⋆)
.

Hence, µQS
L (·) has the desired form.

• The dual process X̂ is spectrally negative, so that V̂−ϑ⋆(y) = y and κ̂−ϑ⋆(0, ϑ) = ϑ for all ϑ ≥ 0. The

Wiener-Hopf factorization gives (up to a multiplicative constant k that relates to the normalization of

the local time) that under P−ϑ⋆

for all ϑ ∈ R we have

(16) ψ−ϑ⋆(ϑ) = −kϑκ−ϑ⋆(0,−ϑ)

for all ϑ ≤ −ϑ+. From (4) and (6) we have that
∫ ∞

0

e−βyeϑ
⋆yV−ϑ⋆(y) dy =

1

(β − ϑ⋆)κ−ϑ⋆(0, β − ϑ⋆)

=
k

ψ−ϑ⋆(−β + ϑ⋆)
=

k

ψ(−β)− ψ(−ϑ⋆) =
k

ψ̂(β)− ζ⋆
.

Conclude that µQS
R (·) has the desired form, which completes the proof. �.

Remark 12. The transform Ã+(·) can be used to interpret the quasi-stationary distributions. Because

of Pollaczek-Khinchine,
α+ ϑ⋆

ψ̂(α+ ϑ⋆)

φ̂(ϑ⋆)

ϑ⋆

is a Laplace transform (i.e., corresponding to an exponentially twisted version of the steady-state

workload). In addition, by virtue of [5, Lemma 3.5],

2

ψ̂′(0)

αψ̂′(α)− ψ̂(α)

α2

is a Laplace transform, and therefore also its ϑ⋆-twisted version

(17)
(α+ ϑ⋆)ψ̂′(α+ ϑ⋆)− ψ̂(α + ϑ⋆)

(α+ ϑ⋆)2
(ϑ⋆)2

ϑ⋆ψ̂′(ϑ⋆)− ψ̂(ϑ⋆)
.

This reasoning indicates that, conditional on a long busy period, Q(0) is distributed as the sum of

three independent random variables. Two of these are distributed as the ϑ⋆-twisted version of the

steady-state workload, while a third has transform (17). ♦
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4.2. Spectrally negative Lévy process. Like for the spectrally positive case, also in the spectrally

negative case we need to impose additional assumptions to find the quasi-stationary distribution.

[SN1] There exists ϑ− > 0 such that

• ψ(ϑ) <∞ for 0 < ϑ < ϑ−,

• ψ(ϑ) attains its strictly negative minimum at ϑ⋆ > 0, where 0 < ϑ⋆ < ϑ− (and hence ψ′(ϑ⋆) =

0).

[SN2] Φ is analytical in Gζ⋆(φ) for π/2 < φ ≤ π, where ζ⋆ := ψ(ϑ⋆) < 0.

Example 13. Since for spectrally negative Lévy process Φ(ϑ) is the Laplace exponent of a subordinator

(viz. a first passage time process), the spectral representation

(18) Φ(ϑ) = d−ϑ+

∫ ∞

0

(1− e−ϑx)Π−(dx),

applies, with
∫∞
0

(x ∧ 1)Π−(dx) <∞; cf. (13). This means that if there exists a density of Π− which is

of semixponential type, then Prop. 3 entails that Φ is analytic in Gζ⋆(φ) and hence assumption [SN2]

is satisfied. ♦

Theorem 14. If X is a spectrally negative Lévy process satisfying conditions [SN1-SN2], then

µ(dx, dy) = Q−(ϑ
⋆)2ye−ϑ

⋆(x+y)e−Φ(0)xV̂ϑ⋆(x) dxdy 1{x≥0,y≥0},

where Q− := (
∫∞
0 e−(Φ(0)+ϑ⋆)zVϑ⋆(z) dz)−1.

Corollary 15. We have

µQS
L (dy) = Q−e

−(Φ(0)+ϑ⋆)xV̂ϑ⋆(x) dx1{x≥0}

and

µQS
R (dy) = (ϑ⋆)2ye−ϑ

⋆ydy1{y≥0} .

Observe that µQS
R (·) corresponds with an Erlang(2) distribution. The proof of these results is based on

the following lemma, which is proven as Lemma 10.

Lemma 16. Under [SN1-SN2],

Φ(ϑ) = ϑ⋆ + k⋆(ϑ− ζ∗)1/2 + o((ϑ− ζ∗)1/2)

as ϑ ↓ ζ⋆, where k⋆ :=
√
2/ψ′′(ϑ⋆).

Proof of Theorem 14. Note that all assumptions of Thm. 1 are satisfied by Prop. 6. In particular, as |z|
tends to infinity in Gζ⋆(φ) function |Φ(z)| is either bounded or tends to infinity. In both cases condition

(A2) is satisfied. Moreover, for some K ,

L(α, β;ϑ) = K − Φ(0)k⋆

(ϑ⋆ + β)2
1

ψ(α+Φ(0))− ζ⋆
(ϑ− ζ⋆)1/2 + o((ϑ − ζ⋆)1/2)

as ϑ ↓ ζ⋆, and we can conclude by ‘Heaviside’ that

Eπ[e
−αQ(0)−βQ(t), T > t] =

Φ(0)k⋆

(ϑ⋆ + β)2
1

ψ(α+Φ(0))− ζ⋆
t−3/2

Γ(−1/2)
e−ζ

⋆t(1 + o(1))

as t→ ∞. Therefore,

µ̃(α, β) = lim
t→∞

Eπ [e
−αQ(0)−βQ(t) |T > t] = Ã−(α)B̃−(β),

where

Ã−(α) :=
−ζ⋆

ψ(α+Φ(0))− ζ⋆
, B̃−(β) :=

(ϑ⋆)2

(ϑ⋆ + β)2
.
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It is not hard to see that the proposed density indeed corresponds with this transform. �

5. EXAMPLES

In this section we illustrate our theory by means of a number of examples. We indicate for what Lévy

processes our assumptions are fulfilled, and for a few of those processes we perform the computa-

tions.

According to Vigon’s theory of philanthropy [19], a (killed) subordinator is called a philanthropist if

its Lévy measure has a decreasing density on R+. Moreover, given any two subordinators H1 and H2

which are philanthropists, providing that at least one of them is not killed, there exists a Lévy process

X such that H1 and H2 have the same law as the ascending and descending ladder height processes

of X , respectively. Suppose we denote the killing rate, drift coefficient and Lévy measures of H1 and

H2 by the respective triples (b, δ,ΠH1
) and (b̂, δ̂,ΠH2

). Then [19] shows that the Lévy measure of X

satisfies the following identity

Π(x,∞) =

∫ ∞

0

ΠH2
(u,∞)ΠH1

(x+ du) + δ̂πH1
(x) + b̂ΠH1

(x,∞), x > 0,

where πH1
(x) is the density corresponding to ΠH1

. By symmetry, an obvious analogue of the above

equation holds for the negative tail Π(−∞, x), with x < 0.

Choosing then e.g. H2(t) = t and H1(t) = τ(t) with Laplace exponent Φ̂ and jump measure Π+ being

semiexponential, then, using the above construction, we can easily give examples of a spectrally

positive Lévy process X satisfying conditions [SP1-SP2]. Similarly, using the above method we can

construct spectrally negative Lévy processes satisfying [SN1-SN2].

Usually these conditions can be verified in a straightforward manner, as we did in the examples

below.

Example 17. M/M/1 queue. In this case

X(t) =

N(t)∑

i=1

σi − t,(19)

where σi (where i = 1, 2, ...) are i.i.d. service times that have an exponential distribution with mean

1/ν. The arrival process is a homogeneous Poisson process N(t) with rate λ; it is assumed that ̺ :=

λ/ν < 1. We apply the theory of Section 4.1.

We have

ψ̂(η) = η − λ

(
1− ν

η + ν

)
= η − λη

η + ν
,

yielding ϑ⋆ =
√
λν − ν, and ζ⋆ = −(

√
ν −

√
λ)2. Furthermore

Φ̂(η) =
η + λ− ν +

√
(η + λ− ν)2 + 4θν

2

and hence assumptions [SP1-SP2] are satisfied.

Let us first concentrate on µQS
L (·). We use Remark 12. Using that

ηψ̂′(η)− ψ̂(η) =
λη2

(η + ν)2
,

we obtain

(α+ ϑ⋆)ψ̂′(α+ η⋆)− ψ̂(α+ ϑ⋆)

(α+ ϑ⋆)2
(ϑ⋆)2

ϑ⋆ψ̂′(ϑ⋆)− ψ̂(ϑ⋆)
=

( √
λν

α+
√
λν

)2

.
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This corresponds with the sum of two Exp(
√
λν) random variables. Also,

α+ ϑ⋆

ψ̂(α+ ϑ⋆)

ψ̂(ϑ⋆)

ϑ⋆
= (1−√

̺)
α+

√
λν

α+
√
λν − λ

= (1−√
̺)

∞∑

n=0

(
√
̺)n

( √
λν

α+
√
λν

)n
,

corresponding with a shifted-Geom(
√
̺)-distributed number of Exp(

√
λν) random variables. Con-

clude that µQS
L (·) corresponds to the sum of M independent Exp(

√
λν) random variables, where

P(M = m) = (m− 1)(
√
̺)m−2(1−√

̺)2,

i.e., M has a negative binomial distribution with parameters 2 and
√
̺. A similar form is found for

the general light-tailed M/G/1 case.

Let us now study µQS
R (·). It is a matter of straightforward calculus to find that

B̃+(β) = (ν + β)

( √
ν −

√
λ

β +
√
ν(
√
ν −

√
λ)

)2

.

A partial fraction expansion argument gives that this equals

(1−√
̺)

ν −
√
λν

ν −
√
λν + β

+
√
̺

(
ν −

√
λν

ν −
√
λν + β

)2

.

In other words, the quasi-stationary distribution at time t (for t large) equals a mixture of an expo-

nential and an Erlang(2) distribution. ♦

Example 18. Linear Brownian motion. In this caseX(t) = σB(t)−t, where σ > 0 andB(t) is a standard

Brownian motion. Remark that this process is spectrally positive and spectrally negative, so we can

use both Thm. 8 and Thm. 14.

Let us first see what the spectrally positive results would give. It is not hard to check that

ψ̂(ϑ) = ϑ+
σ2ϑ2

2
,

so that, in the setting of Section 4.1, ϑ⋆ = −1/σ2 and ζ⋆ = −1/(2σ2). It is a matter of straightforward

computations now to obtain that

Ã+(α) =

(
1/σ2

1/σ2 + α

)2

, B̃+(β) =

(
1/σ2

1/σ2 + β

)2

.

Conclude that the quasi-stationary distributions of Q(0) and Q(t) (t large) are both Erlang(2) with

mean 2/σ2, whereas the stationary workload has an exponential distribution with mean 1/(2σ2). (In

the decomposition of Remark 12, the first two random variables have exponential distributions with

mean 1/σ2, the third is equal to 0). Interestingly, the relation with the Erlang(2) distribution has also

been observed in, e.g., [8, 13, 15].

The same result can be obtained by using the results from Section 4.2. Now ϑ⋆ = 1/σ2 and ζ⋆ =

−1/(2σ2). It is easily checked that Φ(0) = 2/σ2. As expected, we obtain Ã−(α) = Ã+(α) and B̃−(β) =

B̃+(β).

In fact, in this case the quasi-stationarity distributions can be found in an explicit manner. For ease

we restrict ourselves to studying just µQS
L (·); we do so by investigating the density

d

dq
Pπ(Q(0) ≤ q | T > t) =: ft(q).
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We rely on the standard equality

Pq(T > t) = ΨN

(
t− q√
t

)
− e2qΦN

(−t− q√
t

)
,

and the fact that Q(0) (unconditioned) has an exponential distribution with mean 1
2 ; here, ΦN(·) de-

notes the distribution function of a standard Normal random variable, where ΨN(x) := 1 − ΦN(x) is

its tail. It is known that, as x→ ∞,

(20) ΨN(x) ∼
(
1

x
− 1

x3
+

3

x5

)
1√
2π
e−

1

2
x2

.

Let us first determine Pπ(T > t) (where Q(0) has an exponential distribution with mean 1
2 ), which

can evidently be rewritten as

1−
∫ ∞

0

2e−2qΦN

(
t− q√
t

)
dq − 2

∫ ∞

0

ΦN

(−t− q√
t

)
dq.

Consider the first integral of the previous display. It can be evaluated as

∫ ∞

0

∫ t−q√
t

−∞
2e−2q · 1√

2π
e−

1

2
y2dydq =

∫ √
t

−∞

∫ t−y
√
t

0

2e−2q · 1√
2π
e−

1

2
y2dqdy

=

∫ √
t

−∞

(
1− e−2(t−y

√
t)
)
· 1√

2π
e−

1

2
y2dy = ΦN(

√
t)− ΦN(−

√
t).

Likewise, the second integral can be rewritten as

∫ ∞

0

∫ −t−q√
t

−∞
2 · 1√

2π
e−

1

2
y2dydq =

∫ −
√
t

−∞

∫ −t−y
√
t

0

2 · 1√
2π
e−

1

2
y2dqdy

=

∫ −
√
t

−∞
(−2t− 2y

√
t) · 1√

2π
e−

1

2
y2dy = −2tΦN(−

√
t) + 2

√
t · 1√

2π
e−

1

2
t.

We arrive at

(21) Pπ(T > t) = ΨN(
√
t) + ΦN(−

√
t) + 2tΦN(−

√
t)− 2

√
t · 1√

2π
e−

1

2
t.

Using (20) it is readily verified that, for t large,

Pπ(T > t) ∼ 4

t
√
t
· 1√

2π
e−

1

2
t.

Also, it holds that

(22)
d

dq
Pπ(Q0 ≤ q, T > t) = 2e−2qΨN

(
t− q√
t

)
− 2ΦN

(−t− q√
t

)
,

so that we now have an explicit expression for ft(q), viz. the ratio of (22) and (21). Due to the asymp-

totic equivalence (20), Expression (22) behaves for t large as

2√
2π

√
t

(
1

t− q
− 1

t+ q

)
exp

(
−1

2

(q + t)2

t

)
∼ 4

(
1

t
√
t

1√
2π
e−

1

2
t

)
qe−q.

We conclude that we again find that the quasi-stationary distribution of Q(0) is Erlang(2) with ex-

pected value 2. ♦
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