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On the consistency strength of the proper
forcing axiom

Matteo Viale, Christoph Weiß∗

Abstract

Recently the second author introduced combinatorial principles that char-
acterize supercompactness for inaccessible cardinals butcan also hold true
for small cardinals. We prove that the proper forcing axiomPFA implies
these principles hold forω2. Using this, we argue to show that any of the
known methods for forcing models ofPFA from a large cardinal assumption
requires a strongly compact cardinal. If one forcesPFA using a proper forc-
ing, then we get the optimal result that a supercompact cardinal is necessary.

1 Introduction

Since their introduction in the seventies supercompact cardinals played a central
role in set theory. They have been a fundamental assumption to obtain many of the
most interesting breakthroughs: Solovay’s original proofthat the singular cardinal
hypothesisSCH holds eventually above a large cardinal, Silver’s first proof of
Con(¬SCH), Baumgartner’s proof of the consistency of the proper forcing axiom
PFA [2] and Foreman, Magidor, and Shelah’s proof of the consistency of Martin’s
maximumMM [5] all relied on the assumption of the existence of a supercompact
cardinal.

While some of these result have been shown to have considerably weaker con-
sistency strength, the exact large cardinal strength of theforcing axiomsPFA and
MM is one of the major open problems in set theory. It is what we want to address
in this paper.

∗Parts of the results of this paper are from the second author’s doctoral dissertation [22] written
under the supervision of Dieter Donder, to whom the second author wishes to express his gratitude.
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Forcing axioms play an important role in contemporary set theory. Historically
they evolved from Martin’s axiom, which was commonly used asthe axiomatic
counterpart to “V = L.” The most prominent forcing axioms today arePFA as well
as the strongerMM. Not only do they serve as a natural extension ofZFC, they
also answer a plethora of questions undecidable inZFC alone, from elementary
questions like the size of the continuum to combinatoriallycomplicated ones like
the basis problem for uncountable linear orders [15]. Even problems originating
from other fields of mathematics and apparently unrelated toset theory have been
settled appealing toPFA. For example, Farah [3] recently proved the nonexistence
of outer automorphisms of the Calkin algebra assumingPFA.

The consistency proofs ofPFA andMM both start in a set theoretic universe
in which there is a supercompact cardinalκ. They then collapseκ toω2 in such a
way that in the resulting modelPFA or MM holds, thus showing the consistency
strength of these axioms is at most that of the existence of a supercompact cardinal.

An early result onPFA by Baumgartner [1] was thatPFA implies the tree
property onω2, that is,PFA implies there are noω2-Aronszajn trees. As a cardinal
κ is weakly compact if and only if it is inaccessible and the tree property holds on
κ, this can be seen asPFA showing the “weak compactness” ofω2, apart from its
missing inaccessibility. This is an affirmation of the idea that collapsing a large
cardinal toω2 is necessary to produce a model ofPFA, and it actually implies the
consistency strength ofPFA is at least the existence of a weakly compact cardinal,
for if the tree property holds onω2, thenω2 is weakly compact inL by [13].

This was the first insight that showedPFA posses large cardinal strength, and
many heuristic results indicate that supercompactness actually is the correct con-
sistency strength ofPFA and thus in particular also ofMM. Still giving lower
bounds for the consistency strength ofPFA or MM is one major open problem
today. While inner model theoretic methods were refined and enhanced tremen-
dously over the last three decades, the best lower bounds they can establish today
are still far below supercompactness [8].

In [21] the second author introduced combinatorial principles which do for
strong compactness and supercompactness what the tree property does for weak
compactness: A cardinalκ is strongly compact (supercompact) if and only ifκ
is inaccessible andTP(κ) or, equivalently,SP(κ) (ITP(κ) or, equivalently,ISP(κ))
holds. We will showPFA implies ISP(ω2), the strongest of the four principles.
This, in the line of thought from above, saysPFA showsω2 is, modulo inaccessi-
bility, “supercompact.”

Apart from the strong heuristic evidence this gives, by using arguments for
pulling back these principles from generic extensions these characterizations actu-
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ally allow us to show the following theorems: If one forces a model ofPFA using
a forcing that collapses a large cardinalκ to ω2 and satisfies theκ-covering and
κ-approximation properties,1 thenκ has to be strongly compact; if the forcing is
also proper, thenκ is supercompact. We will show that all known forcings for pro-
ducing models ofPFA by collapsing an inaccessible cardinalκ toω2 satisfy these
properties.

Results of this kind have first been obtained by Neeman [16]. He showed that
if one starts with a ground model that satisfies certain fine structural properties
and forcesPFA by means of a proper forcing, thenω2 of the generic extension has
to be a cardinalκ which is close to beingκ+-supercompact in the ground model.
(More precisely, in the ground model [κ, κ+] is aΣ2

1-indescribable gap.) Our results,
which approach the issue from a different perspective, are substantially stronger
in that they reach full supercompactness.

Notation

The notation used is mostly standard. For a regular cardinalδ, cofδ denotes the
class of all ordinals of cofinalityδ.

The phrasesfor large enoughθ and for sufficiently largeθ will be used for
saying that there exists aθ′ such that the sentence’s proposition holds for allθ ≥ θ′.

For an ordinalκ and a setX we letPκX ≔ {x ⊂ X | |x| < κ} and, ifκ ⊂ X,

P′κX ≔ {x ∈ PκX | κ ∩ x ∈ Ord, 〈x, ∈〉 ≺ 〈X, ∈〉}.

For x ∈ PκX we setκx ≔ κ ∩ x. For f : PωX → PκX let Clf ≔ {x ∈ PκX | ∀z ∈
Pωx f(z) ⊂ x}. Cl f is club, and it is well known that for any clubC ⊂ PκX there is
an f : PωX→ PκX such that Clf ⊂ C.

For sections 2 and 3,κ andλ are assumed to be cardinals,κ ≤ λ, andκ is
regular and uncountable.

Acknowledgments

The authors wish to express their gratitude to David Asperó,Sean Cox, Dieter
Donder, Hiroshi Sakai, Ralf Schindler, and Boban Veličković for valuable com-
ments and feedback on this research. They are indebted to Menachem Magidor
for supplying them with the idea of the proof of Theorem 6.9, that is, Claim 6.9.1.

1See Definition 4.5.
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2 The principlesTP, SP, ITP, and ISP

We recall the necessary definitions from [21]. Let us call a sequence〈da | a ∈ Pκλ〉
a Pκλ-list if da ⊂ a for all a ∈ Pκλ.

Definition 2.1. Let D = 〈da | a ∈ Pκλ〉 be aPκλ-list.

• D is calledthin if there is a clubC ⊂ Pκλ such that|{da∩c | c ⊂ a ∈ Pκλ}| < κ
for everyc ∈ C.

• D is calledslenderif for every sufficiently largeθ there is a clubC ⊂ PκHθ
such thatdM∩λ ∩ b ∈ M for all M ∈ C and allb ∈ M ∩ Pω1λ.

Note that ifD is a thin list, thenD is slender.

Definition 2.2. Let D = 〈da | a ∈ Pκλ〉 be aPκλ-list andd ⊂ λ.

• d is called acofinal branch of Dif for all a ∈ Pκλ there isza ∈ Pκλ such that
a ⊂ za andd ∩ a = dza ∩ a.

• d is called anineffable branch of Dif there is a stationary setS ⊂ Pκλ such
thatd ∩ a = da for all a ∈ S.

Definition 2.3. • TP(κ, λ) holds if every thinPκλ-list has a cofinal branch.

• SP(κ, λ) holds if every slenderPκλ-list has a cofinal branch.

• ITP(κ, λ) holds if every thinPκλ-list has an ineffable branch.

• ISP(κ, λ) holds if every slenderPκλ-list has an ineffable branch.
We let TP(κ) abbreviate the statement thatTP(κ, λ) holds for allλ ≥ κ, and

similarly for the other principles.

These definitions admit different ways of defining strong compactness and su-
percompactness.

Theorem 2.4. Supposeκ is inaccessible. Thenκ is strongly compact if and only
if TP(κ) holds.
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Theorem 2.5. Supposeκ is inaccessible. Thenκ is supercompact if and only if
ITP(κ) holds.

Unlike other characterizations however, by [21] the principles ITP andISP also
make sense for small cardinals.

There exist ideals and filters naturally associated to the principlesITP andISP.

Definition 2.6. Let A ⊂ Pκλ and letD = 〈da | a ∈ Pκλ〉 be aPκλ-list. D is called
A-effable if for every S ⊂ A that is stationary inPκλ there area, b ∈ S such that
a ⊂ b andda , db ∩ a. D is calledeffable if it is Pκλ-effable.

Definition 2.7. We let

IIT [κ, λ] ≔ {A ⊂ Pκλ | there exists a thinA-effablePκλ-list},

IIS[κ, λ] ≔ {A ⊂ Pκλ | there exists a slenderA-effablePκλ-list}.

By FIT[κ, λ] andFIS[κ, λ] we denote the filters associated toIIT[κ, λ] and IIS[κ, λ]
respectively.

The idealsIIT[κ, λ] and IIS[κ, λ] are normal ideals onPκλ by [21].

3 Guessing models

We now introduce the concept of aguessing modelwhich gives an alternative
presentation of the principleISP.

Definition 3.1. Let M ≺ Hθ for some large enoughθ.

• A setd is calledM-approximatedif d ∩ b ∈ M for all b ∈ M ∩ Pω1M.

• A setd is calledM-guessedif there is ane ∈ M such thatd∩ M = e∩ M.

M is calledz-guessingif every M-approximatedd ⊂ z is M-guessed.M is called
guessingif for all z ∈ M, M is z-guessing.

Note that since for everyz ∈ M there is a bijectionf : z → ρ in M for some
ordinalρ, it holds thatM is guessing if and only ifM is ρ-guessing for allρ ∈ M.
Also note that sinceM cannot be sup(M ∩Ord)-guessing, any ordinalρ such that
M is ρ-guessing has to be bounded by sup(M ∩Ord).
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Define

Gz
κX ≔ {M ∈ P′κX | M is z-guessing},

GκX ≔ {M ∈ P′κX | M is guessing}.

Proposition 3.2. If ISP(κ, |Hθ|) holds, thenGκHθ is stationary.

Proof. By working with a bijectionf : |Hθ| → Hθ, it is obvious that we can apply
ISP(κ, |Hθ|) to the setPκHθ directly.

Suppose to the contrary that there is a clubC ⊂ P′κHθ such that everyM ∈ C
is not guessing, that is, there iszM ∈ M anddM ⊂ zM that isM-approximated but
not M-guessed. Then alsodM ∩ M is M-approximated but notM-guessed, so we
may assumedM ⊂ M. Consider the listD ≔ 〈dM | M ∈ C〉.

ThenD is slender, for letθ′ be large enough and letC′ ≔ {M′ ∈ PκHθ′ | M′ ∩
Hθ ∈ C}. C′ is club inPκHθ, and ifM′ ∈ C andb ∈ Pω1Hθ ∩M′, thenb ∈ M′ ∩Hθ,
sodM′∩Hθ ∩ b ∈ M′ ∩ Hθ ⊂ M′.

By ISP(κ, |Hθ|), there is an ineffable branchd for the list D. Let S ≔ {M ∈
C | dM = d∩M}. S is stationary, and we may assumezM = z for some fixedzand
all M ∈ S. This meansd ⊂ z. As Pz ⊂ Hθ, there is anM ∈ S such thatd ∈ M.
But thendM is M-guessed, a contradiction. �

Proposition 3.3. Let θ be sufficiently large and M∈ P′κHθ be aλ-guessing model
such thatλ+ ∈ M. ThenISP(κ, λ) holds.

Proof. SinceM ≺ Hθ it is enough to show thatM |= ISP(κ, λ). So pick a slender
list D = 〈da | a ∈ Pκλ〉 ∈ M. Notice that the slenderness ofD is witnessed by a
club C′ ⊂ PκHλ+ which is in M. ThenM ∩ Hλ+ ∈ C′, sodM∩λ ∩ b ∈ M for all
b ∈ M ∩ Pω1λ. This meansdM∩λ is anM-approximated subset ofM. So sinceM
is aλ-guessing model, there is ane ∈ M such thate∩ M = dM∩λ.

Let S ≔ {a ∈ Pκλ | da = e∩ a}. ThenS ∈ M. To seeS is stationary, letC ∈ M
be a club inPκλ. ThenM ∩ λ ∈ C∩S, soHθ |= C∩S , ∅, so it also holds inM.�

Notice that we cannot literally say thatFIS[κ,Hθ] is the club filter restricted to
GκHθ: There might be a slender list〈dM | M ∈ S〉 indexed by some stationary set
S ⊂ GκHθ that does not have an ineffable branch. For such a list we necessarily
have thatdM 1 z for all z ∈ M and allM ∈ S. Still the following holds.

Proposition 3.4. IIS[κ,X] is contained in the projection of the nonstationary ideal
restricted toGX

κ Hθ onto X for any regularθ such that X∈ Hθ.
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Proof. Assume to the contrary that there is anS ∈ IIS[κ,X] such thatS∗ ≔ {M ∈
GX
κ Hθ | M ∩ X ∈ S} is stationary. Pick a slender listD = 〈da | a ∈ S〉 witnessing

that S ∈ IIS[κ,X]. Let C be a club subset ofPκHθ witnessing thatD is slender.
Pick M ∈ S∗ ∩C such thatD ∈ M. ThendM∩X is anM-approximated subset ofX
asM ∈ C. ThusdM∩X = e∩ M for somee ∈ M sinceM is X-guessing. As in the
proof of Proposition 3.3 it follows thate is an ineffable branch forD, contradicting
the fact thatD witnessesS ∈ IIS[κ,X]. �

4 Implications under PFA

In this section, we are going to showPFA impliesISP(ω2).
The following lemma is due to Woodin [23, Proof of Theorem 2.53]. Recall

thatG ⊂ � is said to beM-genericif G is a filter on� andG∩ D ∩ M , ∅ for all
D ∈ M that are dense in�.

Lemma 4.1. Let� be a proper forcing, and letθ be sufficiently large. ThenPFA
implies

{M ∈ Pω2Hθ | ∃G ⊂ � G is M-generic}

is stationary in Pω2Hθ.

Definition 4.2. Let T be a tree andB be a set of cofinal branches ofT. A function
g : B→ T is calledBaumgartner functionif g is injective and for allb, b′ ∈ B it
holds that

1. g(b) ∈ b,

2. g(b) < g(b′)→ g(b′) < b.

The following lemma is due to Baumgartner, see [1].

Lemma 4.3. Let T be a tree and B be a set cofinal branches of T. Supposeκ ≔

ht(T) is regular and|B| ≤ κ. Then there is a Baumgartner function g: B→ T.

Proof. Let 〈bα : α < µ〉 enumerateB, with µ ≤ κ. Recursively defineg by
g(bα) ≔ min(bα −

⋃
{bβ : β < α}). This can be done sinceκ is regular. Suppose

g(bα) < g(bα′) for someα, α′ < µ. Theng(bα′) ∈ bα′ , sog(bα) ∈ bα′ , soα < α′ and
thusg(bα′) < bα. �
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Recall that a treeT is said tonot split at limit levelsif for all t, t′ ∈ T such that
ht t = ht t′ is a limit ordinal and{s ∈ T : s < t} = {s ∈ T : s < t′} it follows that
t = t′.

Lemma 4.4. Let T be a tree that does not split at limit levels and suppose Bis
a set of cofinal branches of T. Suppose g: B → T is a Baumgartner function.
Suppose〈αν : ν < ω1〉 is continuous and increasing. Letα ≔ supν<ω1

αν and
t ∈ Tα. Suppose that for allν < ω1 there is bν ∈ B such that g(bν) < t ↾ αν ∈ bν.
Then there is a stationary S⊂ ω1 such that bν = bν for all ν, ν′ ∈ S . In particular
there is an s< t such that t∈ g−1(s).

Proof. For ν < ω1 let r(ν) ≔ min{ρ < ν | htg(bν) < αρ}. Thenr is regressive
and thus constant on a stationary setS ⊂ ω1. As g is a Baumgartner function, this
implies g is constant on the set{bν | ν ∈ S}. But g is injective, sobν = bν′ for
ν, ν′ ∈ S. �

Definition 4.5. Let V ⊂W be a pair of transitive models ofZFC.

• (V,W) satisfies theµ-covering property if the classPV
µV is cofinal inPW

µ V,
that is, for everyx ∈ W with x ⊂ V and|x| < µ there isz ∈ PV

µV such that
x ⊂ z.

• (V,W) satisfies theµ-approximation property if for allx ∈ W, x ⊂ V, it
holds that ifx∩ z ∈ V for all z ∈ PV

µV, thenx ∈ V.

A forcing� is said to satisfy theµ-covering property or theµ-approximation prop-
erty if for everyV-genericG ⊂ � the pair (V,V[G]) satisfies theµ-covering prop-
erty or theµ-approximation property respectively.

These properties have been introduced and extensively studied by Hamkins, see
for example [7].

The following lemma is the essential argument in the proof ofTheorem 4.8.
Extracting it has the advantage that it can be applied to a wider class of different
forcings, so that it can yield more information about the nature of the guessing
models andIIS[ω2, λ].

Lemma 4.6. Let θ be sufficiently large. Assume� satisfies theω1-covering and
theω1-approximation properties and collapses2λ toω1. Then in V� there is a ccc
forcing �̇ and some w∈ Hθ such that

{M ∈ P′ω2
Hθ | w ∈ M, ∃G ⊂ � ∗ �̇G is M-generic} ⊂ GλκHθ,

and every such M is internally unbounded, that is, M∩ Pω1M is cofinal in Pω1 M.

8



Proof. Let B≔ λ2.
Work in V�. Let ċ : ω1 → Pω1λ be continuous and cofinal. As� satisfies the

ω1-covering property, we may assume that ˙c(α + 1) ∈ V for all α < ω1. Define

Ṫ ≔ {h ↾ ċ(α) | h ∈ B, α < ω1}

As � satisfies theω1-approximation property, we have thatB is the set of cofinal
branches througḣT.

Since |B| = ω1, we can apply Lemma 4.3 and get a Baumgartner function
ġ : B→ Ṫ. Let l̇ : ω1→ B be a bijection. Let

Ṫ0
≔ {t ∈ Ṫ : ∃b ∈ B ġ(b) < t ∈ b},

Ṫ1
≔ Ṫ − Ṫ0.

Note thatṪ1 does not have cofinal branches. Thus there is a ccc forcing�̇ that
specializeṡT1 with a specialization maṗf .

Now work in V. Let w ∈ Hθ contain all the relevant information, and let
M ∈ P′ω2

Hθ be such thatw ∈ M and there is anM-genericG0 ∗G1 ⊂ � ∗ �̇.
By the usual density arguments,c ≔ ċG0 : ω1 → Pω1(M ∩ λ) is continuous

and cofinal andc(α+1) ∈ M for all α < ω1. ThereforeM is internally unbounded.
We letg ≔ ġG0, T ≔ ṪG0, T0

≔ (Ṫ0)G0, T1
≔ (Ṫ1)G0, l ≔ l̇G, and f ≔ ḟ G0∗G1.

DefineB ↾ M ≔ {h ↾ M | h ∈ B∩ M}. Then we can use the facts thatG0 ∗G1 is
anM-generic filter and thatV� |= rng l̇ = B to argue that

• l : ω1→ B∩ M is bijective,

• T =
⋃
{h ↾ c(α) | h ∈ B∩ M, α < ω1},

• g : B ↾ M → T is a Baumgartner function,2

• T = T0 ∪ T1,

• f : T1→ ω is a specialization map.

Claim 4.6.1. B ↾ M is the set of uncountable branches of T.

2Here we naturally identify domg = B∩M with B ↾ M, which is a set of uncountable branches
of T.
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Proof. It is clear thatB ↾ M is included in the set of uncountable branches ofT.
For the other inclusion, observe that ifh is a branch throughT, thenh must be a
branch throughT0 since the specialization mapf witnesses thatT1 cannot have
uncountable branches. This means thath ↾ c(α) ∈ T0 for eventually allα. So for
each suchα there is a uniquebα ∈ B ↾ M such thatg(bα) ⊂ h ↾ c(α) ⊂ bα. Thus
for eventually allα < ω1 we have domg(bα) = c(βα) for someβα < α, and we
may assume that there is aβ < ω1 such thatβα = β for stationarily manyα < ω1.
Hence ifα is such thatβα = β, thenh = bα ∈ B ↾ M. ⊣

Claim 4.6.2. t ∈ B ↾ M if and only if t is the characteristic function of d∩ M for
some M-approximated d⊂ λ.

Proof. If t ∈ B ↾ M, thent = h ↾ M for someh ∈ B∩M, andh is the characteristic
function of somed ∈ M ∩ Pλ.

For the other direction pick anM-approximatedd ⊂ λ, and lett be the char-
acteristic function ofd ∩ M. We claim thatt is a branch throughT and thus in
B ↾ M by Claim 4.6.1. To see this observe thatc(α + 1) ∈ M for all α < ω1, so
thatt ↾ c(α + 1) is the characteristic function ofd∩ c(α + 1), which is inM since
d is M-approximated. Thust ↾ c(α + 1) ∈ T. ⊣

To seeM is λ-guessing, letd ⊂ λ be M-approximated. Then by Claim 4.6.2 the
characteristic functiont of d ∩ M is in B ↾ M. So there ish ∈ B ∩ M such
that t = h ↾ M. Let e ∈ M be such thath is its characteristic function. Then
e∩ M = d ∩ M, and we are done. �

To apply Lemma 4.6, we need an appropriate forcing. The simplest and ear-
liest example comes from [13]. We let� denote the forcing for adding a Cohen
real. See [11] for a proof of the following theorem.

Theorem 4.7. Letγ ≥ ω1. Then the forcing� ∗Coll(ω1, γ) is proper and satisfies
theω1-approximation property.

Theorem 4.8. PFA impliesISP(ω2) holds.

Proof. Let θ be large enough,λ ≥ ω2, and� ≔ � ∗Coll(ω1, 2λ). Then� is proper
and satisfies theω1-approximation property by Theorem 4.7. Thus by Lemmas 4.1
and 4.6 the setGλω2

Hθ is stationary inPω2Hθ. Therefore by Proposition 3.3 we can
conclude thatISP(ω2, λ) holds. �
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Krueger [10, 12] has shown there is a great variety of forcings �̇ living in V�

such that� ∗ �̇ has theω1-approximation and theω1-covering properties. These
forcings can be used to show that underPFA, there are stationarily many guessing
models that are internally club. As guessing models are not internally approach-
able, this gives another separation of the properties internally club and internally
approachable. UnderMM, one can use these forcings to show there are stationarily
many guessing models that are internally unbounded but not internally stationary
and also stationarily many that are internally stationary but not internally club, see
also [20].

Strullu [18] has shown the principleITP(ω2) follows fromMRP +MA, where
MRP is the mapping reflection principle introduced by Moore [14].

It is furthermore worth noting that unlikeISP(ω2), the principleITP(ω2) can al-
ready be proved by applyingPFA to a forcing of the formσ-closed∗ ccc, see [22].

The next corollary is originally independently due to Foreman and Todořcevíc,
see [9].

Corollary 4.9. PFA implies the approachability property fails forω1, that is,ω2 <

I [ω2], where I[ω2] denotes the approachability ideal onω2.

Proof. It is not hard to see thatI [ω2] ⊂ IIS[ω2, ω2]. �

The failure of various square principles underPFA is originally due to Todor-
čevíc and Magidor, see [19] and [17, Theorem 6.3]. See [21] for thenotation used
in Corollary 4.10.

Corollary 4.10. SupposePFA holds andcf λ ≥ ω2. Then¬�cof(ω1)(ω2, λ).

Proof. This follow from Theorem 4.8 and [21, Theorem 4.2]. �

5 An interlude on forcing

Definition 5.1. Let� be a forcing. We say� is astandard iteration of lengthκ if

(i) � is the direct limit of an iteration〈�α | α < κ〉 that takes direct limits
stationarily often,

(ii) �α has size less thanκ for all α < κ.

It is a classical result that theµ-cc is preserved by iterations of lengthµ of
posets of size less thanµ that take direct limits stationarily often. So the following
lemma does not come as a surprise but nonetheless has not beenobserved so far.
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Lemma 5.2. Let� be a standard iteration of lengthκ. Then� is κ-cc and satisfies
theκ-approximation property.

Proof. Let � be the direct limit of〈�α | α < κ〉. It suffices to verify theκ-
approximation property for subsets of ordinals. The proof is by induction on
λ ≥ κ.

We start with the proof of the base caseλ = κ. We need to show that ifp ∈ �
and ḣ ∈ V� are such thatp ‖−� ḣ ∈ κ2 andp ‖−� ∀α < κ ḣ ↾ α ∈ V, then
p ‖−� ḣ ∈ V. So assume to the contrary there is ¯p ≤ p such that ¯p ‖−� ḣ < V.

Let P = {pξ | ξ < κ} and letC0 be the club of allα < κ such that
⋃
{�ξ | ξ <

α} = {pξ | ξ < α}. DefineS ≔ {α < κ | �α is direct limit}. S is stationary by
assumption, and ifα ∈ S ∩C0, then�α = {pξ | ξ < α}.

For ξ < κ let Aξ ⊂ � be a maximal antichain below ¯p that decides the value of
ḣ(ξ). ThenC ≔ {α ∈ C0 | ∀ξ < α Aξ ⊂ �α} is club. Forα ∈ C let

ḣα ≔ {〈(ξ, i), p〉 | ξ < α, p ∈ �α, p ‖−� ḣ(ξ) = i}.

Thenḣα ∈ V�α and p̄ ‖−� ḣα ∈ α2.

Claim 5.2.1. ¯p ‖−� ḣ ↾ α = ḣα for all α ∈ C.

Proof. Suppose to the contrary that for someα ∈ C there areq ≤ p̄ andξ < α
such thatq ‖−� ḣ(ξ) , ḣα(ξ). Let r ∈ Aξ be compatible withq. Thenr ‖−� ḣ(ξ) = i
for somei < 2. But asAξ ⊂ �α, this also meansr ‖−� ḣα(ξ) = i, contradicting its
compatibility withq. ⊣

Claim 5.2.2. ¯p ‖−�α ḣα ∈ V for all α ∈ C.

Proof. Assume towards a contradiction that some for someq ≤ p̄ andα ∈ C
we haveq ‖−�α ḣα < V. Then for eachg ∈ α2 there is a maximal antichainAg

among the conditions in�α below q such that for any elementr ∈ Ag, there is
ξr < α such thatr ‖−�α ḣα(ξr) , g(ξr). This means that any〈(ξr , i), p〉 ∈ ḣα
such thatp is compatible withr is such thatg(ξr) , i. This in turn means that
r ‖−� ḣα(ξr) , g(ξr) for anyr ∈ Ag and for anyg ∈ α2.

Since a maximal antichain in�α is also a maximal antichain in�, this implies
thatq ‖−� ḣα < V, which is impossible by Claim 5.2.1. ⊣

Forα ∈ S∩C0 by Claim 5.2.2 ¯p ‖−�α ḣα ∈ V, so there arepξ ∈ �α, pξ ≤ p̄, and
gα ∈ α2 such thatpξ ‖−�α ḣα = gα. Sinceα ∈ S ∩C0, we haveξ < α, so for some
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stationaryS0 ⊂ S∩C0 we may assumeξ is fixed. But thenpξ ‖−�α ḣ ↾ α = ḣα = gα
for all α ∈ S0, so thatpξ ‖−� ḣ =

⋃
α∈S0

ḣα =
⋃
α∈S0

gα ∈ V, contradictingpξ ≤ p̄.
Now we prove the lemma forλ > κ, assuming it has been shown for allγ < λ.

Let p ∈ � andḣ ∈ V� be such thatp ‖−� ḣ ∈ λ2 andp ‖−� ∀z ∈ PV
κ V ḣ ↾ z ∈ V.

First suppose cfλ > κ. By the induction hypothesis we know thatp ‖−� ∀γ <
λ ḣ ↾ γ ∈ V. For everyγ < λ there isαγ < κ andgγ ∈ γ2 such thatpαγ < p and
pαγ ‖− ḣ ↾ γ = gγ. Thus there is an unboundedU ⊂ λ such thatαγ = αγ′ for all
γ, γ′ ∈ U, so that forγ ∈ U we havepαγ ‖− ḣ =

⋃
γ∈Ugγ ∈ V.

If cf λ ≤ κ, let U ⊂ λ be cofinal of order type cfλ, and set

T ≔ {g ∈ <λ2 | ∃q ≤ p ∃γ ∈ U q ‖−� ḣ ↾ γ = g}.

ThenT, ordered by end extension, is a tree of height cfλ. As� is κ-cc, all levels
of T have size less thanκ. Let X be a set of size at mostκ such that for every pair
of incompatible elementsg, g′ ∈ T there isα ∈ X such thatg(α) , g′(α). By the
induction hypothesis we havep ‖−� ḣ ↾ X ∈ V. But p ‖−� ḣ =

⋃
{g ∈ T | g ↾ X =

ḣ ↾ X}, so thatp ‖−� ḣ ∈ V. �

6 The principlesTP and ITP in generic extensions

Lemma 6.1. Let V ⊂ W be a pair of models ofZFC that satisfies theκ-covering
property, and supposeκ is inaccessible in V. Suppose D= 〈da | a ∈ PW

κ λ〉 is a
PW
κ λ-list such that for every a∈ PW

κ λ there is za ∈ V such that da = za∩ a. Then D
is thin.

Proof. Work in W. Let c ∈ Pκλ. By the κ-covering property there is ¯c ∈ PV
κ λ

such thatc ⊂ c̄. Also we have{da ∩ c | c ⊂ a ∈ PW
κ λ} = {za ∩ c̄ ∩ c | c ⊂ a ∈

PV
κ λ} ⊂ {z∩ c | z ∈ PVc̄}. But the latter set has cardinality less than thanκ sinceκ

is inaccessible inV. �

Proposition 6.2. Let V ⊂ W be a pair of models ofZFC that satisfies theκ-
covering and theκ-approximation properties, and supposeκ is inaccessible in V.
Then

IV
IT[κ, λ] ⊂ IW

IT [κ, λ].

Proof. Work in W. ForA ∈ IV
IT[κ, λ] let 〈da | a ∈ PV

κ λ〉 ∈ V beA-effable inV.
Then by Lemma 6.1〈da | a ∈ Pκλ〉 is thin, whereda ≔ ∅ for a < V.

13



Suppose〈da | a ∈ Pκλ〉 were notA-effable. LetS ⊂ A be stationary andd ⊂ λ
such thatdx = d ∩ x for all x ∈ S. Supposed < V. Then, byκ-approximation
property, there is az ∈ PV

κ λ such thatd ∩ z < V. But for x ∈ S with z ⊂ x we
haved ∩ z = d ∩ x ∩ z = dx ∩ z ∈ V, a contradiction. Therefored ∈ V, and
S ⊂ S̄ ≔ {x ∈ PV

κ λ | dx = d ∩ x} ∈ V. Since〈da | a ∈ PV
κ λ〉 ∈ V is A-effable

in V, S̄ is not stationary inV. So there existsC ∈ V, C ⊂ PV
κ λ club in V such

thatC ∩ S̄ = ∅. Let f : Pωλ → Pκλ be in V such that ClVf ⊂ C. But then, by
the stationarity ofS, there is anx ∈ S such thatx ∈ Cl f , so thatx ∈ C ∩ S̄, a
contradiction. �

Theorem 6.3. Let V⊂W be a pair of models ofZFC that satisfies theκ-covering
property and theτ-approximation property for someτ < κ, and supposeκ is inac-
cessible in V. Then

PW
κ λ − PV

κ λ ∈ IW
IT [κ, λ],

which furthermore implies

FV
IT[κ, λ] ⊂ FW

IT [κ, λ].

So in particular, if W|= ITP(κ, λ), then V|= ITP(κ, λ).

Proof. Work in W. Let B ≔ Pκλ − PV
κ λ. For x ∈ B let ax ∈ PV

τ λ be such that
x∩ ax < V, which exists by theτ-approximation property. Putdx ≔ ax ∩ x. For
x ∈ Pκλ − B, let dx ≔ ∅. Then〈dx | x ∈ Pκλ〉 is thin by Lemma 6.1.

Suppose〈dx | x ∈ Pκλ〉 were notB-effable. Then there ared ⊂ λ andU ⊂ B
be such thatU is cofinal anddx = d ∩ x for all x ∈ U. Define a⊂-increasing
sequence〈xα | α < τ+〉 with xα ∈ U for all α < τ+ and a sequence〈eα | α < τ+〉
such thatxα ⊂ eα andeα ∈ PV

κ λ for all α < τ+ as follows. Letβ < τ+ and
suppose〈xα | α < β〉 and〈eα | α < β〉 have been defined. Letxβ ∈ U be such that
⋃
α<β(xα ∪ aα ∪ eα) ⊂ xβ, and leteβ ∈ PV

κ λ be such thatxβ ⊂ eβ, which exists by
theκ-covering property.

Then〈dxα | α < τ
+〉 is ⊂-increasing asdxα = d ∩ xα for all α < τ+, and since

|dxα | < τ for all α < τ+, there isγ < τ+ such thatdxα = dxα′ for all α, α′ ∈ [γ, τ+).
But thenaxγ+1 ∩ eγ ⊂ axγ+1 ∩ xγ+1 = dxγ+1 = dxγ ⊂ eγ anddxγ+1 ⊂ axγ+1, so that
dxγ = axγ+1 ∩ eγ ∈ V, a contradiction.

To seeFV
IT[κ, λ] ⊂ FW

IT[κ, λ], let A ∈ FV
IT[κ, λ]. ThenPV

κ λ − A ∈ IV
IT [κ, λ], so by

Proposition 6.2PV
κ λ − A ∈ IW

IT [κ, λ]. ThusPW
κ λ − A = (PW

κ λ − PV
κ λ) ∪ (PV

κ λ − A) ∈
IW
IT [κ, λ], which meansA ∈ FW

IT[κ, λ]. �
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Note that by [6, Theorem 1.1] the setPW
κ λ − PV

κ λ in Theorem 6.3 is stationary for
λ ≥ κ+ if there is a real inW−V. We will now weaken the assumption that (V,W)
satisfies theτ-approximation property for someτ < κ to the κ-approximation
property, so that this kind of argument can be exploited for awider range of forcing
constructions.

Theorem 6.4. Let V⊂W be a pair of models ofZFC that satisfies theκ-covering
and theκ-approximation properties, and supposeκ is inaccessible in V. If W|=
TP(κ, λ), then V|= TP(κ, λ).

Proof. In V, let D = 〈da | a ∈ Pκλ〉 be aPκλ-list.
Now work in W. For everya ∈ Pκλ let, by theκ-covering property,za ∈ PV

κ λ

be such thata ⊂ za. Define aPκλ-list E = 〈ea | a ∈ Pκλ〉 by ea ≔ dza ∩ a. ThenE
is thin by Lemma 6.1.

Thus byTP(κ, λ) there is a cofinal branchd for E. So for ally ∈ Pκλ there is
a ∈ Pκλ, y ⊂ a, such thatea ∩ y = d∩ y. In particular

d ∩ y = ea ∩ y = dza ∩ a∩ y = dza ∩ y.

Thus if y ∈ PV
κ λ, thend ∩ y ∈ V, so thatd ∈ V by theκ-approximation property.

This meansd ∈ V. But d is also a cofinal branch forD in V. �

Corollary 6.5. Let� be a standard iteration of lengthκ and supposeκ is inacces-
sible. If � forcesTP(κ), thenκ is strongly compact.

Proof. This follows directly from Lemma 5.2 and Theorem 6.4. �

Notice that, together with Theorem 4.8, Corollary 6.5 implies the following re-
markable corollary.

Corollary 6.6. Supposeκ is inaccessible andPFA is forced by a standard itera-
tion of lengthκ that collapsesκ toω2. Thenκ is strongly compact.

Corollary 6.6 says that any of the known methods for producing a model ofPFA
from a large cardinal assumption requires at least a strongly compact cardinal.
This can be improved to the optimal result if we require the iteration for forcing
PFA to be proper. For this purpose we introduce an ad-hoc definition.

Definition 6.7. LetV ⊂W be a pair of models ofZFC that satisfies theκ-covering
and theκ-approximation properties, and supposeκ is inaccessible inV. We say
M ∈ (P′κH

V
θ
)W is V-guessingif for all z ∈ M and alld ∈ PVz there is ane ∈ M

such thatd∩ M = e∩ M.
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The following two propositions should be seen as analogs of Propositions 3.2
and 3.3.

Proposition 6.8. Let V ⊂ W be a pair of models ofZFC that satisfies theκ-
covering and theκ-approximation properties, and supposeκ is inaccessible in V.
Assume W|= ITP(κ, |HV

θ
|) for some large enoughθ. Then in W the set

{M ∈ P′κH
V
θ | M is V-guessing and closed under countable suprema}

is stationary.3

Proof. Work in W. By [21, Theorem 3.5], we have that the set of allM ∈ P′κH
V
θ

that are closed under countable suprema belongs toFIT[κ,HV
θ
]. Assume that there

were a setA < IIT[κ,HV
θ
] such that for allM ∈ A there iszM ∈ M anddM ∈ PVzM

such thatdM ∩ M , e∩ M for all e ∈ M. ThenD ≔ 〈dM ∩ M | M ∈ A〉 is thin by
Lemma 6.1. Thus byITP(κ, |HV

θ
|) there is an ineffable branchd for D, and by theκ-

approximation property we haved ∈ V. LetS ≔ {M ∈ A | dM∩M = d∩M}. Then
S ∈ V is stationary, and we may assumezM = z for somez ∈ HV

θ
and allM ∈ S.

As PVz⊂ HV
θ

andd ⊂ z, there is anM ∈ S such thatd ∈ M, a contradiction. �

Theorem 6.9. Let V⊂W be a pair of models ofZFC that satisfies theκ-covering
and theκ-approximation properties. Letκ be inaccessible in V andλ be regular in
W. Suppose that for allγ < κ and every S⊂ cof(ω) ∩ γ in V it holds that V|= “S
is stationary inγ” if and only if W |= “S is stationary inγ.” Let θ be large enough.
Suppose M∈ (P′κH

V
θ
)W is a V-guessing model closed under countable suprema

such thatλ ∈ M. Then M∩ λ ∈ V and V |= ITP(κ, λ).

Proof. Let 〈Sα | α < λ〉 ∈ M be a partition of cof(ω) ∩ λ into sets stationary inV.
Let λM ≔ sup(M ∩ λ).

Claim 6.9.1. It holds that

M ∩ λ = {δ < λ | V |= Sδ is stationary inλM} ∈ V.

Proof. For one direction, letδ be such thatV |= “Sδ is stationary inλM.” Notice
that cfV λM < κ, soW |= “Sδ is stationary inλM.” As M is closed under countable
suprema, we get thatSδ ∩ M , ∅. Thus ifβ ∈ Sδ ∩ M, thenδ is definable inM as
theα for whichβ ∈ Sα, so thatδ ∈ M.

3However, it need not be a subset ofV.
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For the other direction, letδ ∈ M ∩ λ and letC ∈ V be club inλM. As
C ⊂ λ ∈ M andM is V-guessing,C ∩ M = e∩ M for somee ∈ M. SinceC ∩ M
is closed under countable suprema,M |= “e is closed under countable suprema.”
ThusM |= e∩ Sδ , ∅, which provesC ∩ Sδ , ∅ ase∩ Sδ ∩ M ⊂ C ∩ Sδ. ⊣

Now to argue thatV |= ITP(κ, λ), it is enough to check thatHV
θ
|= ITP(κ, λ).

SinceM ≺ HV
θ
, it in turn suffices to verifyM |= ITP(κ, λ). So letD ∈ M be

a PV
κ λ-list. SinceM is V-guessing,dM∩λ ∈ V, anddM∩λ ⊂ λ ∈ M, we get that

dM∩λ = e∩ M for somee ∈ M. ThenM |= “e is an ineffable branch forD.” �

Corollary 6.10. Let� be a proper standard iteration of lengthκ and supposeκ is
inaccessible. If� forcesITP(κ), thenκ is supercompact.

Proof. This follows from Lemma 5.2, Proposition 6.8, and Theorem 6.9. �

Under the additional premise of properness, Corollary 6.10implies the follow-
ing strongest possible version of Corollary 6.6.

Corollary 6.11. Supposeκ is inaccessible andPFA is forced by a proper standard
iteration of lengthκ that collapsesκ toω2. Thenκ is supercompact.

It should be noted that Sakai has pointed out a serious obstruction in removing
the assumption of� being proper in Corollary 6.11.

Theorem 6.12 (Sakai, 2010).Let κ be a supercompact cardinal,θ > κ be suffi-
ciently large, and suppose there is a Woodin cardinalµ > θ. Suppose W is the
standard semiproper forcing extension such that W|= MM + κ = ω2. Then in W it
holds that for every stationary preserving forcing� the set

{M ∈ Pω2Hθ | ∃G ⊂ �G is M-generic, M ∩ ω3 < V}

is stationary in Pω2Hθ.

In the setting of Theorem 6.12, if one carries out the proof ofTheorem 4.8 inW,
one gets thatPW

κ λ − PV
κ λ < IW

IT [κ, λ] for λ such thatκ < λ and 2λ < θ. This should
be contrasted with Theorem 6.3.

17



7 Conclusion

There are several open problems which the results presentedsuggest. The most ap-
pealing deals with the construction of an inner model in whichω2 has an arbitrary
degree of supercompactness starting from a universe of setsin whichMM holds. It
seems plausible to conjecture that ifISP(κ) holds, then for eachλ there is a simply
definable transitive class in whichκ is λ-supercompact. Such a line of thought has
already been pursued by Foreman [4], where he proved that a certain strong form
of Chang’s conjecture for a small cardinalκ implies that there is anX such thatκ
is huge inL[X]. It has yet to be understood to what extent Foreman’s ideas can
be applied to the results of this paper; a key issue in this context appears to be a
thorough study of the properties of guessing models and of the idealsIIS[ω2, λ] in
models ofMM.

We also expect that many of the known consequences ofPFA and supercom-
pactness might be obtained directly from the principleISP. Examples are given
in [21], where it is shown thatITP(ω2) implies the failure of some of the weakest
forms of square incompatible withPFA, and in [20], where, using properties of
guessing models, a new proof thatPFA implies SCH is provided. On the other
hand we conjecture thatISP(ω2) does not decide the size of the continuum.
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