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Abstract

Recently the second author introduced combinatorial gries that char-
acterize supercompactness for inaccessible cardinalsabualso hold true
for small cardinals. We prove that the proper forcing axiBFA implies
these principles hold fa#,. Using this, we argue to show that any of the
known methods for forcing models BFA from a large cardinal assumption
requires a strongly compact cardinal. If one forB&# using a proper forc-
ing, then we get the optimal result that a supercompact ralri necessary.

1 Introduction

Since their introduction in the seventies supercompaciicals played a central
role in set theory. They have been a fundamental assumptmst&in many of the
most interesting breakthroughs: Solovay’s original ptbat the singular cardinal
hypothesisSCH holds eventually above a large cardinal, Silver’s first proio
Con(=SCH), Baumgartner’s proof of the consistency of the properifay@axiom
PFA [2] and Foreman, Magidor, and Shelah’s proof of the conscstef Martin’s
maximumMM [5] all relied on the assumption of the existence of a supapart
cardinal.

While some of these result have been shown to have conslgdevabker con-
sistency strength, the exact large cardinal strength diottoeng axiomsPFA and
MM is one of the major open problems in set theory. It is what wetw@address
in this paper.

“Parts of the results of this paper are from the second asttoctoral dissertation [22] written
under the supervision of Dieter Donder, to whom the secotftbawishes to express his gratitude.
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Forcing axioms play an important role in contemporary sevtir. Historically
they evolved from Martin’s axiom, which was commonly usedhas axiomatic
counterparttoV = L.” The most prominent forcing axioms today &€A as well
as the stronge¥M. Not only do they serve as a natural extensioZB€, they
also answer a plethora of questions undecidabgH@ alone, from elementary
guestions like the size of the continuum to combinatoriedlynplicated ones like
the basis problem for uncountable linear orders [15]. Eveiblpms originating
from other fields of mathematics and apparently unrelatesgtsheory have been
settled appealing tBFA. For example, Farah![3] recently proved the nonexistence
of outer automorphisms of the Calkin algebra assurPiRg.

The consistency proofs ¢fFA andMM both start in a set theoretic universe
in which there is a supercompact cardirall hey then collapse to w; in such a
way that in the resulting mod@FA or MM holds, thus showing the consistency
strength of these axioms is at most that of the existenceu@sompact cardinal.

An early result onPFA by Baumgartner [1] was th&FA implies the tree
property onw,, that is,PFA implies there are n@,-Aronszajn trees. As a cardinal
k is weakly compact if and only if it is inaccessible and thetpeoperty holds on
k, this can be seen &A showing the “weak compactness” ©f, apart from its
missing inaccessibility. This is arffamation of the idea that collapsing a large
cardinal tow, is necessary to produce a modeR#A, and it actually implies the
consistency strength &fFA is at least the existence of a weakly compact cardinal,
for if the tree property holds ow,, thenw, is weakly compact i by [13].

This was the first insight that show@&¢A posses large cardinal strength, and
many heuristic results indicate that supercompactnessiacis the correct con-
sistency strength dPFA and thus in particular also &fiM. Still giving lower
bounds for the consistency strengthRFA or MM is one major open problem
today. While inner model theoretic methods were refined archeced tremen-
dously over the last three decades, the best lower boungsaimeestablish today
are still far below supercompactness [8].

In [21] the second author introduced combinatorial pritespwhich do for
strong compactness and supercompactness what the tresrtgrdpes for weak
compactness: A cardinalis strongly compact (supercompact) if and only if
is inaccessible an@P(x) or, equivalentlySP(x) (ITP(x) or, equivalentlyJSP(x))
holds. We will showPFA implies ISP(w-), the strongest of the four principles.
This, in the line of thought from above, sagBA showsw, is, modulo inaccessi-
bility, “supercompact.”

Apart from the strong heuristic evidence this gives, by ganguments for
pulling back these principles from generic extensionsalobsracterizations actu-
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ally allow us to show the following theorems: If one forces adal of PFA using
a forcing that collapses a large cardirab w, and satisfies the-covering and
k-approximation properti%thenk has to be strongly compact; if the forcing is
also proper, ther is supercompact. We will show that all known forcings forpro
ducing models oPFA by collapsing an inaccessible cardirdb w; satisfy these
properties.

Results of this kind have first been obtained by Neeman [16]sltbwed that
if one starts with a ground model that satisfies certain finecgiral properties
and forcePFA by means of a proper forcing, then of the generic extension has
to be a cardinak which is close to being*-supercompact in the ground model.
(More precisely, in the ground model k*] is aZ3-indescribable gap.) Our results,
which approach the issue from aférent perspective, are substantially stronger
in that they reach full supercompactness.

Notation

The notation used is mostly standard. For a regular cardinadfs denotes the
class of all ordinals of cofinality.
The phrasedor large enoughy andfor syficiently large6 will be used for
saying that there existspasuch that the sentence’s proposition holds fo6 &l¢'.
For an ordinak and a seX we letP X := {x c X | |X < «} and, ifk C X,

P.X:={xePX|xknxeOrd (x,e) < (X e

Forx e P Xwe setky, :=kNXx. Forf:P,X - PXletClf :={xe PX|Vze
P,x f(2) c x}. Cl; is club, and it is well known that for any club c P, X there is
anf : P, X — P.Xsuchthat Cl c C.

For section$ 2 and| 3; and A are assumed to be cardinakls< A, andx is
regular and uncountable.
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2 The principles TP, SP, ITP, and ISP

We recall the necessary definitions fromi[21]. Let us callqusacgd, | a € P)
aPA-listif dyc aforallae P,A.

Definition 2.1. LetD = (d, | a € P,A) be aP,A-list.

e Discalledthinif thereis a clulC c P,A suchthat{d,nc|cc ae P1}| < «
for everyc € C.

e D is calledslenderif for every suficiently larged there is a clulC c P,Hy
such thatly,, N"be MforallMeCandallbe MNP, A.

Note that ifD is a thin list, therD is slender.
Definition 2.2. LetD = (d, | a € P,1) be aP,A-list andd c A.

e dis called acofinal branch of Of for all a € P, A there isz, € P,A such that
aczanddna=d, na

e dis called anneffable branch of Of there is a stationary s& c P,1 such
thatdna=d,forallae S.

Definition 2.3. e TP(x, 1) holds if every thinP,A-list has a cofinal branch.
e SP(k, 1) holds if every slendeP, A-list has a cofinal branch.
e ITP(x, A) holds if every thinP,A-list has an inffable branch.

e ISP(k, 2) holds if every slendeP, 1-list has an infflable branch.
We let TP(x) abbreviate the statement theR(«, A) holds for allA > «, and
similarly for the other principles.

These definitions admit flerent ways of defining strong compactness and su-
percompactness.

Theorem 2.4. Suppose& is inaccessible. Thenis strongly compact if and only
if TP(x) holds.



Theorem 2.5. Suppose& is inaccessible. Ther is supercompact if and only if
ITP(x) holds.

Unlike other characterizations however, by|[21] the pphesI TP andISP also
make sense for small cardinals.
There exist ideals and filters naturally associated to tinepiesITP andISP.

Definition 2.6. Let A c P,A4 and letD = (d, | a € P,1) be aP,A-list. D is called
A-effableif for every S c A that is stationary iP, A there area, b € S such that
ac bandd, # d, na. D is calledeffableif it is P 1-effable.

Definition 2.7. We let

Iir[&, 4] == {A c P | there exists a thi-effable P, A-list},
Iis[k, 4] = {A c P | there exists a slendé+effable P, A-list}.

By Fit[«, 1] and F 5[k, 1] we denote the filters associateditgk, 1] and | g[«, 1]
respectively.

The idealdr[«, 1] and | g[«, A] are normal ideals oRA by [21].

3 Guessing models

We now introduce the concept ofguessing modelvhich gives an alternative
presentation of the principl&P.

Definition 3.1. Let M < H,, for some large enough
e Asetdis calledM-approximatedf dNnbe M forallbe Mn P, M.
e Asetdis calledM-guessedf there is anee€ M suchthad N M = en M.

M is calledz-guessingf every M-approximatedl c zis M-guessedM is called
guessingf for all ze M, M is z-guessing.

Note that since for everg € M there is a bijectionf : z — p in M for some
ordinalp, it holds thatM is guessing if and only iM is p-guessing for alp € M.
Also note that sinc®! cannot be supd N Ord)-guessing, any ordinalsuch that
M is p-guessing has to be bounded by dpt Ord).
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Define

G:X = {M e P.X| M is zguessing
G X ={M e P.X| M is guessinyg

Proposition 3.2. If ISP(k, |Hg|) holds, theng,Hy is stationary.

Proof. By working with a bijectionf : |Hy| — Hy, it is obvious that we can apply
ISP(k, [Hy|) to the sePH, directly.

Suppose to the contrary that there is a dukt P,H, such that ever € C
is not guessing, that is, therezg € M anddy c zy that isM-approximated but
not M-guessed. Then alsy, N M is M-approximated but na¥l-guessed, so we
may assumey, ¢ M. Consider the lisD = (dy | M € C).

ThenD is slender, for let’ be large enough and I&X := {M’ € P.Hy | M' N
Hy € C}. C’is club inP,Hy, and ifM” € C andb € P, Hy, " M’, thenb € M’ N H,,
SOdM/mHg NbeM N Hy ¢ M’.

By ISP(k, [Hg|), there is an inffable branctd for the listD. LetS = {M €
C|dy =dn M}. Sis stationary, and we may assumge= z for some fixedz and
all M € S. This meansl c z AsPzc Hy, there is arM € S such thad € M.
But thendy, is M-guessed, a contradiction. O

Proposition 3.3. Let6 be syficiently large and Me P,H, be a1-guessing model
such thatt* € M. ThenISP(k, 1) holds.

Proof. SinceM < Hy it is enough to show tha¥l = ISP(x, 1). So pick a slender
listD = (d, | a € P,.1) € M. Notice that the slenderness Dfis witnessed by a
clubC’ c P,H whichisinM. ThenM N H;+ € C’, soduy~, N b € M for all
be MnP,A This meanslyn, is anM-approximated subset &fl. So sinceM
is al-guessing model, there is &€ M such thaenN M = dyn,.

LetS:={ae P.1|dy=ena}. ThenS € M. To see€S is stationary, leC € M
be a club inP,A. ThenMNA1e€CnS,soH, ECNS # 0, soitalso holds iM.O

Notice that we cannot literally say thBis[«, Hy] is the club filter restricted to
G Hq: There might be a slender ligl, | M € S) indexed by some stationary set
S c G(Hy that does not have an ifiable branch. For such a list we necessarily
have thatdy, ¢ zforallze M and allM € S. Still the following holds.

Proposition 3.4. |5, X] is contained in the projection of the nonstationary ideal
restricted tog*H, onto X for any regulap such that Xe H.
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Proof. Assume to the contrary that there is@re I,s[«, X] such thatS* := {M €
GXH, | M n X € S} is stationary. Pick a slender liBt = (d, | a € S) witnessing
thatS € Iig[«, X]. Let C be a club subset d?,H, withessing thaD is slender.
Pick M € S* n C such thaD € M. Thendyx is anM-approximated subset of
asM € C. Thusdy~x = en M for somee € M sinceM is X-guessing. As in the
proof of Propositiofn 3]3 it follows thatis an ingfable branch fob, contradicting
the fact thaD witnessesS € Iis[k, X]. O

4 Implications under PFA

In this section, we are going to sha®¥A impliesISP(w,).

The following lemma is due to Woodin [23, Proof of Theorem3.5Recall
thatG c P is said to beM-genericif G is a filter onP andG N D N M # 0 for all
D € M that are dense iR.

Lemma 4.1. LetP be a proper forcing, and let be syficiently large. TherPFA
implies
{MeP,,Hy| 3G c P G is M-generi¢

is stationary in R,H,.

Definition 4.2. LetT be a tree an® be a set of cofinal branches™®f A function
g : B — T is calledBaumgartner functioif g is injective and for alb,b’ € Bit
holds that

1. g(b) € b,
2. g(b) < g(b’) — g(b) ¢ b.
The following lemma is due to Baumgartner, see [1].

Lemma 4.3. Let T be a tree and B be a set cofinal branches of T. Suppose
ht(T) is regular and/B| < x. Then there is a Baumgartner function @ — T.

Proof. Let (b, : @ < u) enumerateB, with u < «. Recursively defing by
g(b,) = min(b, — Ufbs : 8 < a}). This can be done sinaeis regular. Suppose
g(b,) < g(b,) for somea, o’ < u. Theng(b,/) € b,/, sog(b,) € b, , soa < o’ and
thusg(b,/) ¢ b,. |



Recall that a tred is said tonot split at limit levelsf for all t,t" € T such that
htt = htt’ isalimitordinalandse T : s<t} ={se T : s< t'} it follows that
t="r.

Lemma4.4. Let T be a tree that does not split at limit levels and suppose B
a set of cofinal branches of T. Suppose B — T is a Baumgartner function.
Suppos€a, : v < wy) is continuous and increasing. Let:= sup_,, @, and

t € T,. Suppose that for alt < w; thereis h € B suchthat(,) <t | a, € b,.
Then there is a stationary § w; such that b= b, forall v,v' € S. In particular
there is an s< t such that te g~%(s).

Proof. Forv < w; letr(v) := minjp < v | htg(b,) < a,}. Thenr is regressive
and thus constant on a stationarySet w;. As gis a Baumgartner function, this
implies g is constant on the s¢b, | v € S}. Butg is injective, sob, = b,, for
v,V €8S. O

Definition 4.5. LetV c W be a pair of transitive models @C.

e (V,W) satisfies the:i-covering property if the cIasl's’XV is cofinal in PXVV,
that is, for everyx € W with x ¢ V and|x < u there isz € P,YV such that
XCzZ

e (V,W) satisfies thes-approximation property if for alk € W, x c V, it
holds that ifxn ze V for all ze P}V, thenx € V.

A forcing P is said to satisfy tha-covering property or the-approximation prop-
erty if for everyV-genericG c P the pair ¥, V[G]) satisfies the:-covering prop-
erty or theu-approximation property respectively.

These properties have been introduced and extensiveliedtbg Hamkins, see
for examplel[7].

The following lemma is the essential argument in the proofioéoreni4.8.
Extracting it has the advantage that it can be applied to @wdthss of dierent
forcings, so that it can yield more information about theunatof the guessing
models ands[w,, 4].

Lemma 4.6. Let 6 be syficiently large. Assum satisfies thev;-covering and
thew;-approximation properties and collaps2sto w;. Then in \F there is a ccc
forcing Q and some v¢& H, such that

{M e P;JZHQ lwe M, AGC P * QG is M-generi¢ C gﬁHH’
and every such M is internally unbounded, that ispN?,,, M is cofinal in R,, M.
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Proof. Let B := 12,
Work in V. Let¢ : w; — P,,4 be continuous and cofinal. A&satisfies the
w1-covering property, we may assume that + 1) € V for all @ < w,. Define

T:={h!&e)|heB, a<w)

As P satisfies thev;-approximation property, we have thats the set of cofinal
branches througfh.

Since|B| = w;, we can apply Lemma_4.3 and get a Baumgartner function
g:B—T. Letl : w; — Bbe a bijection. Let

TO:={teT:3beBgb) <teb),
TL=T-TC.

Note thatT* does not have cofinal branches. Thus there is a ccc for@itiuat
specialize§ * with a specialization map.

Now work inV. Letw € Hy contain all the relevant information, and let
M € P,,H, be such thatv € M and there is aM-genericGo + Gy C P x Q.

By the usual density arguments,= ¢* : w; — P,,(M N 4) is continuous
and cofinal and(a + 1) € M for all @ < w;. ThereforeM is internally unbounded.
We letg == ¢, T = TG, TO := (T9)%, T := (T1)%, | := [6, andf = fGoC1,
DefineB I M :={h | M| he Bn M}. Then we can use the facts tl@& = G, is

an M-generic filter and tha¥® = rngl = B to argue that

e | : w; —» BN M is bijective,

T=Uhlcl@)|heBnNnM, a< wi},

e g: B M — T is a Baumgartner functidh,
e T=TOUTY!

o f:T! > wisa specialization map.

Claim 4.6.1.B | M is the set of uncountable branches of T.

2Here we naturally identify dom = BN M with B | M, which is a set of uncountable branches
of T.



Proof. It is clear thatB | M is included in the set of uncountable branched of
For the other inclusion, observe thahiis a branch througf', thenh must be a
branch throughly since the specialization mapwitnesses that; cannot have
uncountable branches. This means thatc(a) € Ty for eventually alle. So for
each suclw there is a uniqué, € B | M such thag(b,) c h | ¢(a) c b,. Thus
for eventually alle < w; we have dong(b,) = c¢(8,) for somes, < a, and we
may assume that there iga< w; such thap, = g for stationarily manyr < w;.
Hence ifa is such thaB, = 8, thenh=b, € B | M. .

Claim4.6.2.t € B I M if and only if t is the characteristic function of M for
some M-approximatedd A.

Proof. If t e B | M, thent = h [ M for someh € BN M, andhis the characteristic
function of somed € M N PA.

For the other direction pick aNl-approximatedd c A, and lett be the char-
acteristic function ol n M. We claim thatt is a branch throughi and thus in
B I M by Claim[4.6.1. To see this observe tlcgtr + 1) € M for all @ < wq, SO
thatt I c(a + 1) is the characteristic function dfn c(a + 1), which is inM since
dis M-approximated. Thus| c(a + 1) e T. 4

To seeM is A-guessing, letl c A be M-approximated. Then by Claim 4.6.2 the
characteristic function of d N M isin B | M. So there ish € BN M such
thatt = h | M. Lete € M be such thah is its characteristic function. Then
enM =dn M, and we are done. O

To apply Lemma 416, we need an appropriate forcing. The sistgind ear-
liest example comes from [13]. We I€tdenote the forcing for adding a Cohen
real. See/ [11] for a proof of the following theorem.

Theorem 4.7. Lety > w;. Then the forcing = Coll(w;, y) is proper and satisfies
thew;-approximation property.

Theorem 4.8. PFA impliesISP(w;) holds.

Proof. Let6 be large enoughl > w,, andP := C = Coll(w1, 2'). ThenP is proper
and satisfies the,-approximation property by Theorém #4.7. Thus by Lemimas 4.1
and4.6 the seF,H, is stationary irP,,,H,. Therefore by Propositidn 3.3 we can
conclude thatSP(w,, 1) holds. |
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Krueger [10| 12] has shown there is a great variety of forsipdjving in VC
such thatC = IP has thew;-approximation and the;-covering properties. These
forcings can be used to show that unBE€A, there are stationarily many guessing
models that are internally club. As guessing models aremetnally approach-
able, this gives another separation of the propertiesniatgrclub and internally
approachable. Und&tM, one can use these forcings to show there are stationarily
many guessing models that are internally unbounded buhitertially stationary
and also stationarily many that are internally stationayriot internally club, see
also [20].

Strullu [18] has shown the principl@P(w,) follows from MRP + MA, where
MRP is the mapping reflection principle introduced by Moore [14]

Itis furthermore worth noting that unlik€P(w,), the principldTP(w,) can al-
ready be proved by applyirRFA to a forcing of the formr-closed« ccc, see [22].

The next corollary is originally independently due to Foeenand Todatevic,
see|[9].

Corollary 4.9. PFA implies the approachability property fails far, thatis,w; ¢
I[w,], where [w;] denotes the approachability ideal as.

Proof. Itis not hard to see thdfw,] C lis[w,, w>]. O

The failure of various square principles un@eA is originally due to Todor-
Cevic and Magidor, see [19] and [17, Theorem 6.3]. See [21] fontitation used
in Corollary[4.10.

Corollary 4.10. Supposé@FA holds andcf A > w,. Then—Ocos(,) (w2, ).
Proof. This follow from Theorenh 418 and [21, Theorem 4.2]. O

5 Aninterlude on forcing

Definition 5.1. Let P be a forcing. We sa¥ is astandard iteration of length if

(i) P is the direct limit of an iteratiorP, | @ < «) that takes direct limits
stationarily often,

(i) P, has size less thanfor all @ < «.

It is a classical result that the-cc is preserved by iterations of lengthof
posets of size less tharthat take direct limits stationarily often. So the followin
lemma does not come as a surprise but nonetheless has nailissexed so far.
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Lemma 5.2. LetP be a standard iteration of length ThenP is k-cc and satisfies
thex-approximation property.

Proof. Let P be the direct limit of(lP, | @ < «). It suffices to verify thex-
approximation property for subsets of ordinals. The prgoby induction on
A > k.

We start with the proof of the base cake . We need to show that f§ € P
andh e VP are such thap |p h e «2 andp |Fp Ya < « h 1 a eV, then
p|Fp h e V. So assume to the contrary thergis p such thatp [l-p he V.

LetP = {p: | ¢ < «} and letCy be the club of alr < « such that J{IP; | £ <
a} = {p: | ¢ < a}. DefineS = {a < « | P, isdirectlimit}. S is stationary by
assumption, and it € S N Co, thenP, = {p; | £ < .

For¢ < k let A: ¢ P be a maximal antichain belopvthat decides the value of
h(&). ThenC = {@ € Co | V& < a A: c P,} is club. Fore € C let

he = {((& 1), P 1€ <@, peP,, plp h(E) =i}.
Thenh, € VP= andpp h, € 2.
Claim5.2.1.pJFph I @ =h, forall @ € C.

Proof. Suppose to the contrary that for somes C there areq < p andé < «
such thaty [Fp h(©) # h,(é). Letr € A: be compatible witt. Thenr |p h(£) =i
for somei < 2. But asA; c P,, this also means |-p h,(¢) = i, contradicting its
compatibility withq. |

Claim 5.2.2.p+p, h, € V foralla € C.

Proof. Assume towards a contradiction that some for same p anda € C
we haveq |Fp, h, ¢ V. Then for eacly € “2 there is a maximal antichaify
among the conditions i, belowq such that for any elememte A, there is
& < asuch thatr |Fp, h,(&) # 9(&). This means that any(&,i), p) € h,
such thatp is compatible withr is such thag(¢;) # i. This in turn means that
r e ho (&) # 9(&) for anyr € Ay and for anyg € “2.

Since a maximal antichain iR, is also a maximal antichain iR, this implies
thatq |p h, ¢ V, which is impossible by Claiin 5.2.1. 1

Fora € SNCy by Claim5.2.2p [}-p, h, € V, so there arg; € P,, p: < p, and
0. € “2 such thapy |-p, h, = g,. Sincea € S N Cy, we havet < a, so for some
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stationanS, ¢ SNCo we may assumgis fixed. Buttherp; |-p, h 1 a = h, = g,

for all @ € Sg, so thatp; [F-p h = Uues, e = Uses, e € V, contradictingp; < p.
Now we prove the lemma fot > k, assuming it has been shown forgalk A.

Let p € P andh € VP be such thap |Fp he *2 andp |Fp Yze PYV h [ ze V.

_ First suppose ci > «. By the induction hypothesis we know that-p Yy <
Ah T yeV. Foreveryy < Athere isa, < « andg, € 72 such thap,, < pand
Po, I h I y = g,. Thus there is an unboundétic 1 such that, = a,, for all
y,7' € U, so that fory € U we havep,, |- h= U,«,0, € V.

If cf A <k, letU c A be cofinal of order type cf, and set

Ti={ge“2|dg<pIyeUqlrphy =g

ThenT, ordered by end extension, is a tree of height.cAs IP is x-cc, all levels
of T have size less than Let X be a set of size at mostsuch that for every pair
of incompatible elementg, g’ € T there isa € X such thag(e) # g'(a). By the
induction hypothesis we haye|-p h [ X € V. Butp|rph=U{geT|g X =
h | X}, sothatp |Fp he V. O

6 The principles TP and ITP in generic extensions

Lemma6.1. Let V c W be a pair of models aZFC that satisfies the-covering
property, and supposeis inaccessible in V. SupposeH(d, | a € PY1) is a
PWA-list such that for every & PV A there is g € V such thatd = z,na. Then D
is thin.

Proof. Work in W. Letc € P,A. By thex-covering property there is € PY1A
such thatt c c. Also we haveld,Nnc|ccae PYl} ={zzncnc|ccace
PYA} c {znc| z e PYc}. But the latter set has cardinality less than thancex
is inaccessible iV. O

Proposition 6.2. Let V ¢ W be a pair of models oZFC that satisfies tha-
covering and the-approximation properties, and suppasés inaccessible in V.
Then

I [k, 4] € 1¥[, A].

Proof. Work in W. ForA € 1X[«, 4] let (d, | @ € P} 1) € V be A-effable inV.
Then by Lemma6lid, | a € P,1) is thin, whered, := 0 fora ¢ V.
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Suppos€d, | a € P,1) were notA-effable. LetS c A be stationary and c 1
such thatdy = dn x for all x € S. Supposel ¢ V. Then, byk-approximation
property, there is @ € PYA such thadnz ¢ V. But forx € S with z c x we
havednz=dnxnz=dynze V, acontradiction. Thereford € V, and
ScS:={xeP/aldy=dnx € V. Since(d, | a € P/1) € V is A-effable
in V, S is not stationary ifV. So there exist€ € V, C c P/ club inV such
thatCnS = 0. Letf : P,4 — P beinV such that Cf c C. But then, by
the stationarity ofS, there is anx € S such thatx € Cls, sothatx e CNn S, a
contradiction. O

Theorem 6.3. Let V c W be a pair of models afFC that satisfies the-covering
property and ther-approximation property for some< «, and suppose is inac-
cessiblein V. Then

PYA-PYA e 1]k, A,

which furthermore implies
FYlx, A c FYIk 4]
So in particular, if WE ITP(«, 2), then VE ITP(k, 1).

Proof. Work in W. LetB := P,.4 — PYA. Forx € Bleta, € PYA be such that
XN ay ¢ V, which exists by the-approximation property. Pk, := a, N x. For
x e P - B, letd, := 0. Then(d | x € P,2) is thin by Lemma 6.1.

Supposedy | x € P.1) were notB-effable. Then there are c 2 andU c B
be such that) is cofinal andd, = d n x for all x € U. Define ac-increasing
sequenceéx, | @ < ") with x, € U for all @ < ™ and a sequenc@, | a < )
such thatx, c e, ande, € P’A for all « < 7+ as follows. Letg < 7" and
SUpposeEx, | @ < B) and(e, | @ < B) have been defined. L&t € U be such that
Ua<p(Xe U @, U &) C X3, and letes € PYA be such thak; c €5, which exists by
thek-covering property.

Then(dy, | @ < ") is c-increasing asly, = d N x, for all @ < *, and since
dy,| < 7 forall @ < 7%, there isy < t* such that,, = d,, for all @, e’ € [y, 7).
But thena,,, Ne, C ay,, N X1 = dy,, = dy, C € anddy,, C a,,, SO that
dy, = a,, N € €V, acontradiction.

To seeF [k, 4] c F{[«, ], let A € Fi[«,A]. ThenP{A - A € 1%[«, 4], so by
Propositiod 6P/ 1 — A € 1{[«, 2]. ThusPYA- A= (PYA-P/A)U(P/A1-A) €
I¥[, 4], which meandA € F{[«, A]. i
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Note that by|[5, Theorem 1.1] the $8¥A — PV in Theoreni 6.1 is stationary for
A > «* ifthere is areal iV — V. We will now weaken the assumption th&t (V)
satisfies ther-approximation property for some < « to the k-approximation
property, so that this kind of argument can be exploited feicer range of forcing
constructions.

Theorem 6.4. Let V c W be a pair of models afFC that satisfies the-covering
and thex-approximation properties, and supposés inaccessible in V. If W=
TP(x, 1), then V= TP(x, A).

Proof. InV, letD = (d, | a € P,1) be aP,A-list.

Now work inW. For everya € P, 1 let, by thex-covering propertyz, € PY1
be such tha& c z,. Define aP,A-listE = (e, | a € P,A) by e, := d,, na. ThenE
is thin by Lemma6.1.

Thus byTP(k, 1) there is a cofinal branathfor E. So for ally € P,1 there is
aeP.,yca, suchthae,ny=dny. In particular

dny=eny=d,nany=d,nNy.

Thus ify € PY4, thendny € V, so thatd € V by thex-approximation property.
This meangl € V. Butd s also a cofinal branch fdd in V. O

Corollary 6.5. LetlP be a standard iteration of lengthand suppose is inacces-
sible. If IP forcesTP(«), thenk is strongly compact.

Proof. This follows directly from LemmaX’l2 and Theoréml6.4. m|

Notice that, together with Theorem 4.8, Corollary]6.5 iraplthe following re-
markable corollary.

Corollary 6.6. Suppose is inaccessible an®FA is forced by a standard itera-
tion of lengthk that collapsex to w,. Thenk is strongly compact.

Corollary[6.6 says that any of the known methods for prodweirmodel ofPFA
from a large cardinal assumption requires at least a styocmihpact cardinal.
This can be improved to the optimal result if we require tleeation for forcing
PFA to be proper. For this purpose we introduce an ad-hoc deimiti

Definition 6.7. LetV c W be a pair of models afFC that satisfies the-covering
and thex-approximation properties, and suppasis inaccessible iV. We say
M € (P,H))" is V-guessindf for all ze M and alld € P¥zthere is are € M

suchthad N M =en M.
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The following two propositions should be seen as analogsaidsitions 3.2
and 3.3.

Proposition 6.8. Let V ¢ W be a pair of models oZFC that satisfies tha-
covering and the-approximation properties, and suppasés inaccessible in V.
Assume WE ITP(x, |H)|) for some large enougf Then in W the set

{M e P.H}/ | M is V-guessing and closed under countable supjema

is stationar;E

Proof. Work in W. By [21, Theorem 3.5], we have that the set ofMlle P,HY
that are closed under countable suprema belongg fe, HY]. Assume that there
were a sef ¢ Iir[x, HY] such that for allM € Athere iszy € M anddy € PYzy
such thady N M # en M forallee M. ThenD = (dy N M | M € A) is thin by
Lemmd®6.1. Thus b§TP(k, |[H)|) there is an infflable branchl for D, and by thex-
approximation property we hawkee V. LetS = {M € A|dynM = dnM}. Then
S € V is stationary, and we may assumg = z for somez € Hy and allM € S.
As PYzc HY andd c z, there is arM € S such thatl € M, a contradiction. O

Theorem 6.9. Let V c W be a pair of models afFC that satisfies the-covering

and thex-approximation properties. Letbe inaccessible in V antlbe regular in

W. Suppose that for ajl < x and every Sc cof(w) Ny in V it holds that Vi “S

is stationary iny” if and only if W | “S s stationary iny.” Let 6 be large enough.
Suppose Me (P,HY)" is a V-guessing model closed under countable suprema
such thatt € M. Then Mn 1 € V and VE ITP(«, ).

Proof. Let(S, | @ < 2) € M be a partition of cof®) N A into sets stationary iN.
Let Ay := supM N Q).

Claim 6.9.1. It holds that

MNAa={6<A|V ES;is stationary inly} € V.

Proof. For one direction, led be such thaV E “S; is stationary inly.” Notice
that cf’ Ay < k, SOW k= “S; is stationary imy.” As M is closed under countable
suprema, we get th&; N M # 0. Thus if8 € S; N M, thené is definable inM as
thea for whichpB € S, so thats € M.

SHowever, it need not be a subset\of
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For the other direction, lef € M n 1 and letC € V be club indy. As
Cc e MandM isV-guessingC N M =en M for somee € M. SinceCnM
is closed under countable supreni,l= “e is closed under countable suprema.”
ThusM E en S; # 0, which proveC N S; # asenSsNM c CnN Ss. .

Now to argue thaV k= ITP(k, 1), it is enough to check that) | ITP(k, A).
SinceM < HY, itin turn sufices to verifyM [ ITP(k,1). So letD € M be
a P}’/l-list. SinceM is V-guessingdyn: € V, anddyn, € 4 € M, we get that
duwni = €N M for somee € M. ThenM k “eis an indfable branch foD.” O

Corollary 6.10. LetP be a proper standard iteration of lengkrand suppose is
inaccessible. IfP forcesITP(k), thenk is supercompact.

Proof. This follows from Lemma5J2, Proposition 6.8, and Theofefh 6. O

Under the additional premise of properness, Corollaryl6riies the follow-
ing strongest possible version of Corollaryl6.6.

Corollary 6.11. Suppose is inaccessible anBFA is forced by a proper standard
iteration of lengthk that collapsex to w,. Thenk is supercompact.

It should be noted that Sakai has pointed out a serious @bistinin removing
the assumption dP being proper in Corollary 6.11.

Theorem 6.12 (Sakai, 2010)Let x be a supercompact cardinad, > « be syfi-
ciently large, and suppose there is a Woodin cardjmat 6. Suppose W is the
standard semiproper forcing extension such thaEWIM + k = w,. Then in W it
holds that for every stationary preserving forciRghe set

{(MeP,,Hy| 3G c P G is M-generic M N w3 ¢ V}

is stationary in R,H,.

In the setting of Theorem 6.112, if one carries out the prodfludoreni 4.8 irW,
one gets thaP\'A — PYA ¢ |¥[«, 4] for A such thak < 2 and 2 < ¢. This should
be contrasted with Theordm 6.3.
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7 Conclusion

There are several open problems which the results pressemge@st. The most ap-
pealing deals with the construction of an inner model in \wlakg has an arbitrary
degree of supercompactness starting from a universe ahsgkschMM holds. It
seems plausible to conjecture thaSP(x) holds, then for each there is a simply
definable transitive class in whiatis A-supercompact. Such a line of thought has
already been pursued by Foreman [4], where he proved thataarcstrong form
of Chang’s conjecture for a small cardinaimplies that there is aX such that

is huge inL[X]. It has yet to be understood to what extent Foreman'’s idaas ¢
be applied to the results of this paper; a key issue in thisexbvmppears to be a
thorough study of the properties of guessing models andeafibalsl;s[wy, 1] in
models ofMM.

We also expect that many of the known consequenc@®s-afand supercom-
pactness might be obtained directly from the princiigle. Examples are given
in [21], where it is shown thdT P(w;) implies the failure of some of the weakest
forms of square incompatible withFA, and in [20], where, using properties of
guessing models, a new proof thHREA implies SCH is provided. On the other
hand we conjecture th#P(w,) does not decide the size of the continuum.
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