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SYSTEMS OF DYADIC CUBES IN A DOUBLING METRIC SPACE

TUOMAS HYTÖNEN AND ANNA KAIREMA

Abstract. A number of recent results in Euclidean Harmonic Analysis have exploited several
adjacent systems of dyadic cubes, instead of just one fixed system. In this paper, we extend
such constructions to general spaces of homogeneous type, making these tools available for
Analysis on metric spaces. The results include a new (non-random) construction of boundedly
many adjacent dyadic systems with useful covering properties, and a streamlined version of the
random construction recently devised by H. Martikainen and the first author. We illustrate the
usefulness of these constructions with applications to weighted inequalities and the BMO space;
further applications will appear in forthcoming work.

1. Introduction

The standard system of dyadic cubes,

D := {2−k
(

[0, 1)n +m
)

: k ∈ Z,m ∈ Z
n},

plays an indispensable role in Harmonic Analysis on the Euclidean space R
n. The fundamental

properties of these cubes are that any two of them are either disjoint or one is contained in the
other, and that the cubes of a given size partition all space. Also, the cubes are not too far away
from balls, which are usually more natural objects from the geometric point of view.

Accordingly, there has been interest in constructing analogues of dyadic cubes in more general
metric spaces, to provide tools for Analysis in such settings. The first results in this direction, as far
as we know, are due to G. David [6], Appendix A; see also [7], Appendix I. A more comprehensive
construction was provided by M. Christ [4], in the full generality of Coifman–Weiss spaces of
homogeneous type [5], and this has become the standard reference on the topic. In addition to
the basic geometric properties expected from the cubes, Christ also obtained a certain smallness
of the boundary condition (in terms of an underlying doubling measure), which has turned out
useful in applications to singular integrals. A more elementary construction, without addressing
the boundary control but nevertheless sufficient for many purposes, was provided by E. Sawyer
and R. L. Wheeden [26]. Some further variants have been considered by other authors [1, 14].

Meanwhile, new developments in R
n have seen the need to consider not just one but several

adjacent dyadic systems. Two types of constructions are of particular interest here. On the one
hand, there are the random dyadic systems due to F. Nazarov, S. Treil and A. Volberg [23],
Section 4,

D(ω) :=
{

2−k
(

[0, 1)n +m
)

+
∑

j>k

2−jωj : k ∈ Z,m ∈ Z
n
}

, ω = (ωj)j∈Z ∈ Ω := ({0, 1}n)Z,

where Ω is equipped with the natural product probability measure. The randomization provides
a powerful way of controlling edge effects, even when the space is equipped with a non-doubling
measure, by proving that any given point x ∈ R

n has a small probability of ending up close to the
boundary of a randomly chosen cube. These random dyadic systems have been instrumental in
the development of the non-doubling theory of singular integrals [23, 24] and its applications to
analytic capacity [27, 28] as well as sharp one-weight [9, 13] and two-weight [16, 25] inequalities
for classical singular integrals. A version of such random cubes in metric spaces, starting from
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Christ’s construction, was recently obtained by the first author and H. Martikainen [12], to study
singular integrals in metric spaces with non-doubling measures.

On the other hand, there is a non-random choice of just boundedly many dyadic systems, say

D
t := {2−k

(

[0, 1)n +m+ (−1)kt
)

: k ∈ Z,m ∈ Z
n}, t ∈ {0, 13 ,

2
3}

n,

which have the following useful property: for every ball B, there exists a cube Q in at least one
of the D t such that B ⊆ 9

10Q while diam(Q) ≤ C diam(B). These adjacent systems have been
exploited, e.g., in the work of C. Muscalu, T. Tao and C. Thiele [22, 21] on multi-linear operators,
and very recently by M. Lacey, E. Sawyer and I. Uriarte-Tuero [15] on two-weight inequalities.
We are not aware of the precise original occurrence of this latter set of systems: Lacey et al.
([15], Section 2.2) attribute them to J. Garnett and P. Jones; Muscalu et al. ([22], Section 5) to
M. Christ, at least what comes to the observation on B ⊆ 9

10Q. T. Mei [20] has shown that a
similar conclusion can be obtained with just n+ 1 (rather than 3n) cleverly chosen systems D t.

The goals of the present paper are two-fold. First, we recall and streamline the construction
of the Christ-type dyadic cubes in a metric space, including the recent randomized version D(ω)
from [12]. Second, we provide a metric space version of the non-random choice of boundedly
many dyadic systems D t, with the property that any B is contained in some Q ∈

⋃

t D t with
diam(Q) ≤ C diam(B), which is a completely new result. We even combine the two constructions,
yielding a random family of adjacent dyadic systems D t(ω).

We have strived for a reasonably comprehensive and transparent presentation, including some
results which could be found elsewhere. In the hope of making the paper a useful reference, we
have tried to make the statements of our theorems easily applicable as “black boxes”, but also paid
attention to the details of the proofs. As in R

n, where the open (2−k((0, 1)n + m)), half-open
(2−k([0, 1)n+m)) and closed (2−k([0, 1]n+m)) dyadic cubes each serve their different purpose, we
also present (as in [12]) a unified construction of three related systems of open, half-open and closed
cubes. While this may not be the absolute shortest route to the half-open cubes alone (for which
one should probably consult the recent paper of A. Käenmäki, T. Rajala and V. Suomala [14]),
we find the properties of the open and closed cubes proven on the way to be useful as well.

The basic idea behind the construction of several adjacent dyadic systems is from [12]: New
centre points for the cubes of sidelength δk (where δ > 0 is a small parameter playing the role of
the constant 1

2 in the classical Euclidean dyadic system) are chosen among the old centre points

of the (one level smaller) cubes of sidelength δk+1. In the non-probabilistic selection, instead of
doing this randomly, we need to do it in a “clever” way. The basic conflict to avoid is two new
centres getting too close to each other. This is achieved by equiping the points with suitable
labels, which help us in avoiding these conflicts. As it turns out, this philosophy can also be used
to simplify the original random construction from [12], where originally the conflicts were first
allowed among the new dyadic points, and yet another selection process was needed to remove
some of them, thereby yielding the final points. This simplification already proved useful in the
consideration of vector-valued singular integrals by the random cubes method by Martikainen [18],
and it is expected to be of interest elsewhere. A particular feature of the new selection process is
a natural one-to-one correspondence between the old and new cubes, which was not present, when
some of the new centres were first removed; thus the original cubes may be used as an index set
for the new cubes, a technical property which was much exploited in some of the recent Euclidean
applications [9, 13].

As an illustration of the use of the new adjacent dyadic systems, we provide easy extensions of
two results in Euclidean harmonic analysis to metric spaces X with a doubling measure µ: First,
Buckley’s theorem [2] on the sharp weighted norm of the Hardy–Littlewood maximal operator,

‖Mf‖Lp(w) ≤ C‖w‖
1/(p−1)
Ap

‖f‖Lp(w), ‖w‖Ap
:= sup

B

(

 

B

w dµ
)(

 

B

w−1/(p−1) dµ
)p−1

,

where the supremum is over all metric balls in X , and C only depends on X , µ and p ∈ (1,∞).
Second, the representation of BMO(µ) as an intersection of finitely many dyadic BMO spaces,
extending the Euclidean result in [20].
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In extending Buckley’s theorem, we follow the Euclidean approach due to Lerner [17]. A
noteworthy feature of our argument is the circumvention of the use of the Besicovitch covering
theorem, an essentially Euclidean device used in Lerner’s original proof, by the trivial covering
properties exhibited by the adjacent dyadic systems. We believe that this displays a more general
principle of avoiding the Besicovitch theorem and thereby allowing extensions of other Euclidean
results to metric spaces.

Note that only these applications, but not the construction of the cubes as such, depends on
the existence of a doubling measure µ on X ; for the cubes, we only need the weaker geometric
doubling property that any ball of radius r can be covered by at most A1 (a fixed constant) balls
of radius 1

2r. Further applications will be considered in a forthcoming paper by the second author.

2. Definition and construction of a dyadic system

2.1. Set-up. Let ρ be a quasi-metric on the space X , i.e., it satisfies the axioms of a metric except
for the triangle inequality, which is assumed in the weaker form

ρ(x, y) ≤ A0

(

ρ(x, z) + ρ(z, y)
)

with a constant A0 ≥ 1. The quasi-metric space (X, ρ) is assumed to have the following (geometric)
doubling property: There exists a positive integer A1 ∈ N such that for every x ∈ X and for every
r > 0, the ball B(x, r) := {y ∈ X : ρ(y, x) < r} can be covered by at most A1 balls B(xi, r/2).

Until further notice, no other properties of the quasi-metric space (X, ρ) will be required; in
particular, we do not assume any measurability of X . Some of the arguments are valid even
without the assumption of geometric doubling.

Set a1 := log2 A1. The following properties are easy to check; cf. [10, Lemmas 2.3 and 2.5]:

(1) Any ball B(x, r) can be covered by at most A1δ
−a1 balls of radius δr for any δ ∈ (0, 1].

(2) Any ball B(x, r) contains at most A1δ
−a1 centres xi of pairwise disjoint balls B(xi, δr).

(3) Any disjoint family of balls in X is at most countable.
(4) If x, y ∈ X have ρ(x, y) ≥ r, then the balls B(x, r/(2A0)) and B(y, r/(2A0)) are disjoint.

A subset Ω ⊆ X is open if for every x ∈ Ω there exist ε > 0 such that B(x, ε) ⊆ Ω. A subset
F ⊆ X is closed if its complement is open. The usual proof of the fact that F ⊆ X is closed, if
and only if it contains its limit points, carries over to the quasimetric spaces. However, some balls
B(x, r) may fail to be open. (E.g., consider X = {−1} ∪ [0,∞) with the usual distance between
all other pairs of points except ρ(−1, 0) := 1

2 . Then B(−1, 1) = {−1, 0} does not contain any ball
of the form B(0, ε), and hence cannot be open.)

2.2. Theorem. Suppose that constants 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1) satisfy

(2.3) 12A3
0C0δ ≤ c0.

Given a set of points {zkα}α, α ∈ Ak, for every k ∈ Z, with the properties that

(2.4) ρ(zkα, z
k
β) ≥ c0δ

k (α 6= β), min
α

ρ(x, zkα) < C0δ
k ∀x ∈ X,

we can construct families of sets Q̃k
α ⊆ Qk

α ⊆ Q̄k
α — called open, half-open and closed dyadic cubes

— such that:

(2.5) Q̃k
α and Q̄k

α are the interior and closure of Qk
α;

(2.6) if ℓ ≥ k, then either Qℓ
β ⊆ Qk

α or Qk
α ∩Qℓ

β = ∅;

(2.7) X =
⋃

α

Qk
α (disjoint union) ∀k ∈ Z;

(2.8) B(zkα, c1δ
k) ⊆ Qk

α ⊆ B(zkα, C1δ
k) =: B(Qk

α), where c1 := (3A2
0)

−1c0 and C1 := 2A0C0;

(2.9) if k ≤ ℓ and Qℓ
β ⊆ Qk

α, then B(Qℓ
β) ⊆ B(Qk

α).
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The open and closed cubes Q̃k
α and Q̄k

α depend only on the points zℓβ for ℓ ≥ k. The half-open

cubes Qk
α depend on zℓβ for ℓ ≥ min(k, k0), where k0 ∈ Z is a preassigned number entering the

construction.

To some extent, this combines the benefits of the alternative constructions of Christ and Sawyer–
Wheeden: on the one hand, we obtain dyadic cubes on all length scales (rather than from a given
level up), as in Christ’s construction, and we also obtain an exact partition of the space (rather
than up to measure zero) as in Sawyer and Wheeden. The fact that things would be slightly
simpler if we started from a fixed finest level of partition, like Sawyer and Wheeden, is reflected
by the dependence of the half-open cubes also on the points of the coarser scales once we go past
the preassigned threshold level k0.

The proof consists of several steps.

2.10. Lemma (Partial order for dyadic points). Under the assumptions of Theorem 2.2, there is
a partial order ≤ among the pairs (k, α) such that:

• if ρ(zk+1
β , zkα) < (2A0)

−1c0δ
k then (k + 1, β) ≤ (k, α);

• if (k + 1, β) ≤ (k, α) then ρ(zk+1
β , zkα) < C0δ

k;

• for every (k + 1, β), there is exactly one (k, α) ≥ (k + 1, β), called its parent;
• for every (k, α), there are between 1 and M pairs (k + 1, β) ≤ (k, α), called its children;
• there holds (ℓ, β) ≤ (k, α) if and only if ℓ ≥ k and there are (j + 1, γj+1) ≤ (j, γj) for all
j = k, k + 1, . . . , ℓ− 1, for some γk = α, γk+1, . . . , γℓ−1, γℓ = β; then (ℓ, β) and (k, α) are
called one another’s descendant and ancestror, respectively.

Proof. Indeed, these properties essentially define ≤: Given a point (k + 1, β), check whether

there exists α such that ρ(zkα, z
k+1
β ) < (2A0)

−1c0δ
k. If one exists, it is necessarily unique by

(2.4) and we decree that (k + 1, β) ≤ (k, α). If no such good α exists, choose any α for which

ρ(zkα, z
k+1
β ) < C0δ

k (at least one such α exists by (2.4)) and decree that (k+1, β) ≤ (k, α). (From

(2.4) and the geometric doubling property, it follows readily that the index sets Ak, k ∈ Z, are
countable. By assuming that the countable number of indices α are taken from N, we could choose
the smallest α, thereby eliminating the arbitrariness of this choice in the construction.) In either
case, we decree that (k + 1, β) is not related to any other (k, γ), and finally we extend ≤ by
transitivity to obtain a partial ordering.

It only remains to check the claim concerning the number of children. If (k + 1, β) ≤ (k, α),

we have ρ(zkα, z
k+1
β ) < C0δ

k, but also ρ(zk+1
β , zk+1

γ ) ≥ c0δ
k+1 for any γ 6= β. Thus the geometric

doubling property implies that there can be at most boundedly many, say M , such (k + 1, β).

Conversely, for (k, α), there exists at least one (k+1, β) with ρ(zkα, z
k+1
β ) < C0δ

k+1 ≤ (2A0)
−1c0δ

k,

and thus (k + 1, β) ≤ (k, α), so there is at least one child. �

With the partial order defined, it is possible to formulate the rest of the construction, although
proving all the stated properties needs some more work. As a preliminary version, we define for
every k ∈ Z and every α

Q̂k
α := {zℓβ : (ℓ, β) ≤ (k, α)}.

Then

Q̄k
α := Q̂k

α,

the closure of Q̂k
α, and

Q̃k
α :=

(

⋃

β 6=α

Q̄k
β

)c

.

It is clear from the definition that these depend only on zℓβ for ℓ ≥ k.
In the following section we prove:

2.11. Proposition (Properties of closed and open dyadic cubes). Suppose that for every k ∈ Z

we have a set of points with properties (2.4) and constants that satisfy (2.3) as in Theorem 2.2.

Then the cubes Q̃k
α and Q̄k

α satisfy:

(2.12) Q̃k
α and Q̄k

α are one another’s interior and closure, respectively;
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(2.13) for ℓ ≥ k, there holds Q̃ℓ
β ⊆ Q̃k

α if (ℓ, β) ≤ (k, α), and Q̃ℓ
β ∩ Q̄k

α = Q̄ℓ
β ∩ Q̃k

α = ∅ else;

(2.14) X =
⋃

α

Q̄k
α (possibly with overlap) ∀k ∈ Z;

(2.15) (i) B(zkα, c1δ
k) ⊆ Q̃k

α, (ii) Q̄k
α ⊆ B(zkα, C1δ

k);

(2.16) if (ℓ, β) ≤ (k, α) then B(zℓβ , C1δ
ℓ) ⊆ B(zkα, C1δ

k).

Moreover,

(2.17) Q̄k
α =

⋃

β:(ℓ,β)≤(k,α)

Q̄ℓ
β ∀k ≤ ℓ.

Assuming this result, which contains the essence of Theorem 2.2, we can complete the proof of
the Theorem by the following lemma:

2.18. Lemma (Construction of half-open cubes). Assuming Proposition 2.11, we can construct
Qk

α which satisfy the assertions of Theorem 2.2.

Proof. Here it is convenient to assume that the pairs (k, α) are parameterised by α ∈ N for each
k ∈ Z. For the given threshold level k = k0, we define recursively

Qk0
0 := Q̄k0

0 , Qk0
α := Q̄k0

α \

α−1
⋃

β=0

Qk0

β , α ≥ 1.

By construction, it is clear that the Qk0
α are pairwise disjoint and satisfy

(2.19) Q̄k0
α ⊇ Qk0

α ⊇ Q̄k0
α \

⋃

β 6=α

Q̄k0

β ⊇ Q̃k0
α \ (Q̃k0

α )c = Q̃k0
α ,

α
⋃

β=0

Qk0

β =

α
⋃

β=0

Q̄k0

β −→
α→∞

X.

For k < k0 we define

Qk
α :=

⋃

β:(k0,β)≤(k,α)

Qk0

β .

Then clearly Qk
α ⊆ Q̄k

α, these partition X for a fixed k, and (2.6) holds for all k ≤ ℓ ≤ k0. Finally,

(Qk
α)

c =
⋃

β:(k0,β) 6≤(k,α)

Qk0

β ⊆
⋃

γ 6=α

⋃

β:(k0,β) 6≤(k,γ)

Q̄k0

β =
⋃

γ 6=α

Q̄k
γ = (Q̃k

α)
c,

so that Q̃k
α ⊆ Qk

α.
For k > k0, we proceed by induction as follows. Suppose that the cubes Qℓ

α, ℓ ≤ k − 1, are
already defined as required. For every α, consider the finitely many (k, β) ≤ (k−1, α), and relabel
them temporarily with β = 0, 1, . . . (up to some finite number). Then define

Qk
0 := Qk−1

α ∩ Q̄k
0 , Qk

β := Qk−1
α ∩ Q̄k

β \

β−1
⋃

γ=0

Qk
γ , β ≥ 1.

Disjointness is clear, and as in (2.19) we get Q̄k
β ⊇ Qk

β ⊇ Qk−1
α ∩ Q̃k

β ⊇ Q̃k−1
α ∩ Q̃k

β = Q̃k
β, and

⋃

β:(k,β)≤(k−1,α)

Qk
β = Qk−1

α ∩
⋃

β:(k,β)≤(k−1,α)

Q̄k
β = Qk−1

α .

This easily implies (2.6) and (2.7) in all the remaining cases.

Finally, (2.12)⇒(2.5) and (2.15)⇒(2.8) are clear from Q̃k
α ⊆ Qk

α ⊆ Q̄k
α. To see that (2.16)⇒(2.9),

observe that if k ≤ ℓ and Qℓ
β ⊆ Qk

α, then (2.6) and (2.13) imply that (ℓ, β) ≤ (k, α), and thus

(2.16) can be used. �
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2.20. Remark. We work with several adjacent sets of cubes, as stated. Given a system of dyadic
points, the preliminary cubes Q̂k

α determine the open cubes Q̃k
α and the closed cubes Q̄k

α unam-
biguously but not the half-open cubes Qk

α as their construction involves selection. If we know the

final half-open cubes Qk
α as pointsets, they determine the open cubes Q̃k

α and the closed cubes
Q̄k

α unambiguously as these are nothing but the set of interior points and the closure respectively.

The family of the preliminary cubes Q̂k
α, however, is not uniquely determined by the point sets

Qk
α. But usually we think that the cubes Qk

α carry the information of their centre point zkα and
generation k as well. The ideology here is the very same as when defining a metric ball.

2.21. Existence of a dyadic system. Consider the maximal collection of points xk
α ∈ X satis-

fying the two inequalities

(2.22) ρ(xk
α, x

k
β) ≥ c0δ

k (α 6= β), min
α

ρ(x, xk
α) < C0δ

k ∀x ∈ X

with constants c0 = 1 = C0. It follows from the maximality argument that such a point set exists
for any given δ ∈ (0, 1) and every k ∈ Z. From the first condition and the geometric doubling
property it follows that a minimum in the second condition is indeed attained. Note that we may,
of course, choose the maximal point sets in such a way that given a fixed point x0 ∈ X , for every
k ∈ Z, there exists α such that xk

α = x0. Finally, we may choose δ such that the restriction (2.3)
introduced in Theorem 2.2 holds.

3. Verification of the properties

This section contains the proof of Proposition 2.11, which consists of the more technical aspects
of Theorem 2.2. Suppose that for every k ∈ Z we have a set of points with properties (2.4) and
constants that satisfy (2.3) as in Theorem 2.2. Recall that c1 := (3A2

0)
−1c0 and C1 := 2A0C0. We

start with simple inclusion properties.

3.1. Lemma. If (ℓ, β) ≤ (k, α), then ρ(zkα, z
ℓ
β) < C1δ

k.

Proof. Consider the chain

(k, α) = (k, γ0) ≥ (k + 1, γ1) ≥ . . . ≥ (k + (ℓ− k), γℓ−k) = (ℓ, β)

with ρ(zk+i
γi

, zk+i+1
γi+1

) ≤ C0δ
k+i for all i ∈ {0, . . . , l − k − 1}. By iterating the triangle inequality,

ρ(zkα, z
ℓ
β) ≤

k−ℓ−1
∑

i=0

Ai+1
0 ρ(zk+i

γi
, zk+i+1

γi+1
)

≤

k−ℓ−1
∑

i=0

Ai+1
0 C0δ

k+i <
A0C0δ

k

1−A0δ
≤ 2A0C0δ

k. �

3.2. Lemma (Containing balls; (2.15)(ii) and (2.16)). We have Q̄k
α ⊆ B(zkα, C1δ

k), and also
B(zℓβ , C1δ

k) ⊆ B(zkα, C1δ
k) for all (ℓ, β) ≤ (k, α).

Proof. For the first inclusion, let x ∈ Q̄k
α; hence it is a limit of some xr ∈ Q̂k

α, r ∈ Z+. If xr = zkα
infinitely often, then also x = zkα, and there is nothing to prove. Otherwise, infinitely many xr are
of the form zℓβ for some (ℓ, β) = (ℓ(r), β(r)) ≤ (k + 1, γ) = (k + 1, γ(r)) ≤ (k, α), and then

ρ(zkα, x) ≤ A0ρ(z
k
α, z

k+1
γ ) +A2

0ρ(z
k+1
γ , zℓβ) +A2

0ρ(z
ℓ
β, x)

≤ A0C0δ
k +A2

0 · 2A0C0δ
k+1 +A2

0ρ(xr , x)

< A0C0δ
k + 1

2A0C0δ
k + 1

2A0C0δ
k = 2A0C0δ

k,

(3.3)

for such xr with r ≥ r0, since ℓ ≥ k + 1 and 4A2
0δ ≤ 1.

The inclusion between the balls is clear if ℓ = k, so let again (ℓ, β) ≤ (k + 1, γ) ≤ (k, α). Let
x ∈ B(zℓβ , C1δ

ℓ). As in (3.3), we deduce (now using ρ(zℓβ , x) ≤ C1δ
ℓ instead of ρ(zℓβ, x) = ρ(zℓβ, xr))

that

ρ(zkα, x) < A0C0δ
k +A2

0 · 2A0C0δ
k+1 +A2

0 · C1δ
ℓ ≤ 2A0C0δ

k. �
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3.4. Lemma. For any Λ,
⋃

α∈Λ Q̄k
α is the closure of

⋃

α∈Λ Q̂k
α; in particular, this union is closed.

Hence the open cubes Q̃k
α :=

(

⋃

γ 6=α

Q̄k
γ

)c

are indeed open sets.

Proof. Let k ∈ Z be fixed. It is clear that each Q̄k
α, α ∈ Λ, is a subset of the closure of

⋃

α∈Λ Q̂k
α.

From the geometric doubling property and the inclusion Q̂k
α ⊆ B(zkα, C1δ

k), it follows readily

that a bounded set can intersect at most finitely many different Q̂k
α. Hence, if a convergent, thus

bounded, sequence of points xr belong to
⋃

α∈Λ Q̄k
α, then they belong to some sub-union with a

finite Λ1 ⊆ Λ in place of Λ. A union of finitely many closed sets is closed, so also the limit of
the sequence (xr) must belong to the same union. Thus all limit points of

⋃

α∈Λ Q̂k
α belong to

⋃

α∈Λ Q̄k
α. �

3.5. Lemma (Unions of closed cubes; (2.14) and (2.17)). For all k, ℓ ∈ Z with ℓ > k, we have

X =
⋃

α

Q̄k
α, Q̄k

α =
⋃

β:(ℓ,β)≤(k,α)

Q̄ℓ
β.

Proof. The union
⋃

α Q̂k
α contains the points zℓβ with ℓ ≥ k and β arbitrary, which are dense in X

by (2.4). Hence the closure of this union is X , but it is also equal to
⋃

α Q̄k
α by Lemma 3.4.

We turn to the second identity, first with ℓ = k + 1. It is clear that

Q̂k
α = {zkα} ∪

⋃

β:(k+1,β)≤(k,α)

Q̂k+1
β ;

hence by taking closures with the help of Lemma 3.4,

Q̄k
α = {zkα} ∪

⋃

β:(k+1,β)≤(k,α)

Q̄k+1
β .

Since the cubes Q̄k+1
β cover all X , it is clear that zkα ∈ Q̄k+1

β ⊆ B(zk+1
β , C1δ

k+1) for some β, and

we only need to check that (k + 1, β) ≤ (k, α). But this follows, using 4A2
0C0δ ≤ c0, from

ρ(zkα, z
k+1
β ) < C1δ

k+1 = 2A0C0δ · δ
k ≤

c0
2A0

δk.

The case of a general ℓ > k follows by an (ℓ− k)-fold iteration of the identity for ℓ = k + 1. �

3.6. Lemma. Q̄k
β ⊆ B(zkα, c1δ

k)c for β 6= α.

Proof. By Lemma 3.5, we need to show that Q̄k+1
γ ⊆ B(zkα, c1δ

k)c for all (k + 1, γ) ≤ (k, β). If

not, then Q̄k+1
γ ⊆ B(zk+1

γ , C1δ
k+1) and B(zkα, c1δ

k) have a common point x; whence

ρ(zk+1
γ , zkα) ≤ A0ρ(z

k+1
γ , x) +A0ρ(x, z

k
α) < A0C1δ

k+1 +A0c1δ
k

= (2A2
0C0δ +

c0
3A0

)δk ≤ (
c0
6A0

+
c0
3A0

)δk =
c0
2A0

δk,

by 12A3
0C0δ ≤ c0, and this implies that (k + 1, γ) ≤ (k, α), a contradiction with α 6= β. �

3.7. Lemma (Nestedness and contained balls; (2.13) and (2.15)(i)). If ℓ ≥ k, then Q̃ℓ
β ⊆ Q̃k

α

for (ℓ, β) ≤ (k, α), or Q̃ℓ
β ∩ Q̄k

α = Q̄ℓ
β ∩ Q̃k

α = ∅ otherwise. Moreover, Q̂k
α ⊆ Q̃k

α ⊆ Q̄k
α and

B(zkα, c1δ
k) ⊆ Q̃k

α.

Proof. Let first (ℓ, β) ≤ (k, α). Then

(Q̃k
α)

c =
⋃

γ 6=α

Q̄k
γ =

⋃

γ 6=α

⋃

η:(ℓ,η)≤(k,γ)

Q̄ℓ
η =

⋃

η:(ℓ,η) 6≤(k,α)

Q̄ℓ
η ⊆

⋃

η 6=β

Q̄ℓ
η = (Q̃ℓ

β)
c;

hence Q̃ℓ
β ⊆ Q̃k

α. By Lemma 3.6, we have

B(zℓβ , c1δ
ℓ)c ⊇

⋃

η 6=β

Q̄ℓ
η = (Q̃ℓ

β)
c;

thus zℓβ ∈ B(zℓβ , c1δ
ℓ) ⊆ Q̃ℓ

β ⊆ Q̃k
α. This gives both Q̂k

α ⊆ Q̃k
α and B(zkα, c1δ

k) ⊆ Q̃k
α.
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To see that Q̃k
α ⊆ Q̄k

α, observe from Lemma 3.5 that X =
⋃

α Q̄k
α = Q̄k

α ∪
(

⋃

β 6=α Q̄k
β

)

, so that

Q̃k
α =

(

⋃

β 6=α

Q̄k
β

)c

⊆ Q̄k
α.

Let then (ℓ, β) 6≤ (k, α), and thus (ℓ, β) ≤ (k, γ) for some γ 6= α. By what was already proven,

Q̃ℓ
β ⊆ Q̃k

γ ⊆ (Q̄k
α)

c, and (taking closures) Q̄ℓ
β ⊆ Q̄k

γ ⊆
⋃

η 6=α Q̄k
η = (Q̃k

α)
c. �

3.8. Lemma (Closure and interior; (2.12)). The cubes Q̄k
α and Q̃k

α are each other’s closure and
interior.

Proof. From Q̂k
α ⊆ Q̃k

α ⊆ Q̄k
α and the fact that Q̄k

α is the closure of Q̂k
α, it is clear that it is also

the closure of Q̃k
α.

Concerning the interior, it is clear that the open set Q̃k
α ⊆ Q̄k

α is a subset of the interior of Q̄k
α.

For the other direction, observe that Q̂k
β ⊆ Q̃k

β ⊆ (Q̄k
α)

c for all β 6= α; hence

(Q̄k
α)

c ⊇
⋃

β 6=α

Q̂k
β =

⋃

β 6=α

Q̄k
β = (Q̃k

α)
c.

Thus the interior of Q̄k
α, which is the complement of (Q̄k

α)
c, is a subset of (Q̃k

α)
cc = Q̃k

α. �

4. Adjacent dyadic systems

In this section we will prove the following theorem.

4.1. Theorem. Given a set of reference points {xk
α}, k ∈ Z, α ∈ Ak, suppose that constant δ ∈

(0, 1) satisfies 96A6
0δ ≤ 1. Then there exists a finite collection of families D t, t = 1, 2, . . . ,K =

K(A0, A1, δ) < ∞, where each D t is a collection of dyadic cubes with the properties (2.5)–(2.9) of
Theorem 2.2. In addition, the following property is satisfied:

(4.2) for every B(x, r) ⊂ X, there exists t and Q ∈ D
t with B(x, r) ⊂ Q and diam(Q) ≤ Cr.

The constant C < ∞ in (4.2) only depends on the quasi-metric constant A0 and parameter δ.

We will also prove the following variant of Theorem 4.1:

4.3. Proposition. Given a fixed point x0 ∈ X, there exists a finite collection of families D t,
t = 1, 2, . . . ,K = K(A0, A1, δ) < ∞, where each D t is a collection of dyadic cubes with the
properties (2.5)–(2.9) of Theorem 2.2, and the property (4.2) of Theorem 4.1 is satisfied. In
addition, the following property is satisfied: For every t = 1, 2, . . . ,K, for every k, there exists α
such that x0 = zkα, the center point of Qk

α ∈ D t.

4.4. Reference dyadic points. Recall from 2.21 that for every k ∈ Z there exists a point set
{xk

α}α∈Ak
such that

ρ(xk
α, x

k
β) ≥ δk (α 6= β), min

α
ρ(x, xk

α) < δk ∀x ∈ X.

We will refer to the set {xk
α}k,α of dyadic points as the set of reference points.

Suppose that δ ∈ (0, 1) satisfies 96A6
0δ ≤ 1, and set c0 := (4A2

0)
−1. In particular, δ < c0 and

(4.5)
1

2A2
0

− δ >
1

2A2
0

− c0 = c0.

4.6. Definition. Reference points xk
α and xk

β , α 6= β, of the same generation are in conflict if

ρ(xk
α, x

k
β , ) < c0δ

k−1.

4.7. Definition. Reference points xk
α and xk

β , α 6= β, of the same generation are neighbours if

there occurs a conflict between their children. More precisely, the points xk
α and xk

β , α 6= β, are

neighbours if there exist points (k+1, γ) ≤ (k, α) and (k+1, σ) ≤ (k, β) such that ρ(xk+1
γ , xk+1

σ ) <

c0δ
k.
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Recall from 2.10 that due to the doubling property, the number of children is bounded from
above by the constant M . By similar arguments, also the number of neighbours is bounded from
above by a constant, say L.

4.8. Labeling of the reference points. Fix the generation k. We label the reference points xk
α

of generation k as follows: Begin with some index pair (k, α) and label it with number 0. Then, for
every (k, β), β 6= α, check whether any of its neighbours (boundedly many) already have a label.
If not, label it with number 0. Otherwise, pick the smallest positive integer not yet in use among
the neighbours. As the number of neighbours a point can have is bounded above by constant L,
every point xk

α gets a primary label label1(k, α) := ℓ not bigger than L. Furthermore, we have the
following: if (k, α) and (k, β), α 6= β, have same label ℓ ∈ {0, . . . , L}, they are not neighbours.

Next we label the reference points xk+1
γ of the following generation k+1 with duplex labels: If

label1(k, α) = ℓ, each of its children (k + 1, β) ≤ (k, α) (boundedly many) gets a different duplex
label label2(k + 1, β) := (ℓ,m) where m = m(β) ∈ {1, 2, . . . ,M}. Then we have the following: if
(k + 1, γ) and (k + 1, σ), γ 6= σ, have same primary label ℓ ∈ {0, . . . , L}, they are not in conflict.

We next define new dyadic points zkα of generation k by selecting them from the set of reference
points of generation k + 1. We will first allow this selection with only little restriction and then
consider a more spesific choice.

4.9. Definition (General selection rule). For every k ∈ Z, pick some ℓ = ℓk ∈ {0, . . . , L} which we
refer to as the master label. For every α, check if label1(k, α) = ℓ. If so, pick any (k+1, β) ≤ (k, α)
and declare that (k, α) ց (k + 1, β) and (k, α) 6ց (k + 1, γ) for every γ 6= β. Also decree that

zkα := xk+1
β .

Otherwise, pick some (k+1, β) ≤ (k, α) with ρ(xk+1
β , xk

α) < δk+1 (this always exists) and declare

that (k, α) ց (k + 1, β) and (k, α) 6ց (k + 1, γ) for every γ 6= β. Also decree that zkα := xk+1
β .

Note that, by construction, every (k, α) is related to some (k+1, β) by the relation ց but it may
or may not be related to any (k − 1, σ).

The point sets obtained by the general selection rule have the distribution property (2.4) of
Theorem 2.2:

4.10. Lemma. Set c0 := (4A2
0)

−1 and C0 := 2A0. For every k ∈ Z we have

ρ(zkα, z
k
β) ≥ c0δ

k, α 6= β,

and for every x ∈ X and every k ∈ Z we find α such that

ρ(x, zkα) < C0δ
k.

Proof. Let us fix k ∈ N and ℓ = ℓk ∈ {0, . . . , L}. By the general selection rule, zkα = xk+1
γ and

zkβ = xk+1
σ for some reference points xk+1

γ and xk+1
σ . First assume that at least one of the reference

points xk
α and xk

β has primary label different from the master label ℓ. We may, without loss of

generality, assume that label1(k, α) 6= ℓ. This implies ρ(zkα, x
k
α) < δk+1. Since (k + 1, σ) is not a

child of (k, α), we have ρ(zkβ , x
k
α) ≥ (2A0)

−1δk. Thus,

(2A0)
−1δk ≤ ρ(zkβ , x

k
α) ≤ A0ρ(x

k
α, z

k
α) +A0ρ(z

k
α, z

k
β) ≤ A0δ

k+1 +A0ρ(z
k
α, z

k
β),

or equivalently, by (4.5),

ρ(zkα, z
k
β) ≥

1

A0

(

δk

2A0
−A0δ

k+1

)

=

(

1

2A2
0

− δ

)

δk > c0δ
k.

Otherwise, both xk
α and xk

β have primary label ℓ. In this case, the points xk
α and xk

β are not
neighbours and there is no conflict between their children. The first assertion follows.

Fix x ∈ X . There exists α such that ρ(x, xk
α) < δk where xk

α is a reference point. Point zkα is a
child of xk

α thus, ρ(xk
α, z

k
α) < δk. It follows that

ρ(x, zkα) ≤ A0ρ(x, x
k
α) +A0ρ(x

k
α, z

k
α) < A0δ

k +A0δ
k = 2A0δ

k.

�
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4.11. Definition (Specific selection rule). Fix (ℓ,m) ∈ {0, . . . , L} × {1, . . . ,M}. For every index
pair (k, α), check whether there exists (k + 1, β) ≤ (k, α) with label pair (ℓ,m). If so, decree

that zkα := xk+1
β . Otherwise, pick some (k + 1, β) ≤ (k, α) with ρ(xk+1

β , xk
α) < δk+1 and decree

zkα := xk+1
β .

Note that the specific selection rule is more precise than the general selection rule. Indeed,
in case a reference point has primary label same as the master label ℓ, we do not just choose
any child but the one with duplex label (ℓ,m) (if one exists). Thus, it is a special case of the
general selection rule. In particular, the point sets obtained by the specific selection rule satisfy
the distribution properties of Lemma 4.10.

Let ϕ be a bijection {0, . . . , L} × {1, . . . ,M} → {1, . . . ,K} ⊂ N, (ℓ,m) 7→ t. We identify
t = ϕ(ℓ,m) with (ℓ,m). Each t gives rise to a set {tzkα : k ∈ Z, α ∈ Ak} of new dyadic points
assosiated with the dublex label (ℓ,m) = t. Note that, by repeating the specific selection rule for
every ordered pair of labels (ℓ,m), Lemma 4.10 and Theorem 2.2 complete the proof of the first
part of Theorem 4.1. We denote by D t the family of dyadic cubes Qk

α = tQk
α corresponding to the

point set {tzkα : k ∈ Z, α ∈ Ak}, t = 1, . . . ,K.

The collection of dyadic families D t, t = 1, . . . ,K, obtained by repeating the specific selection
rule with all the choices of (ℓ,m) further have the following property:

4.12. Lemma. For every B(x, r) ⊆ X there exists a dyadic cube Q ∈ D t for some t such that

B(x, r) ⊆ Q and diam(Q) ≤ C r,

where C = C(A0, δ) is a constant independent of x and t.

4.13. Remark. Note that the proof will show that for r with δk+2 < r ≤ δk+1, we may assume
that the containing cube Q ∈ D t is of generation k. Further, ρ(x, xk

α) < δk+1 where xk
α denotes

the center of Q. Also note that this is the second part of Theorem 4.1.

Proof. Pick k ∈ Z so that δk+2 < r ≤ δk+1. There exists a reference point xk+1
β with dublex label,

say (ℓ,m), such that

ρ(x, xk+1
β ) < δk+1.

Let α be the unique index for which (k + 1, β) ≤ (k, α). Then xk+1
β = tzkα which is a new dyadic

point of generation k in the system D t, t = (ℓ,m). We will prove that B(x, r) ⊆ B(tzkα, c1δ
k)

where c1 = (3A2
0)

−1c0 = (12A4
0)

−1. Indeed, assume y ∈ B(x, r). Then

ρ(y, tzkα) ≤ A0ρ(y, x) +A0ρ(x,
tzkα) < A0r +A0δ

k+1 ≤ 2A0δ
k+1 ≤ c1δ

k,

since 24A5
0δ ≤ 1. Thus, y ∈ Q := tQk

α ∈ D t, t = (ℓ,m). For the diameter of Q we get

diam(Q) ≤ diam
(

B(tzkα, C1δ
k)
)

≤ 2A0C1δ
k =

2A0C1

δ2
δk+2 ≤ Cr,

with C := 2A0C1δ
−2 = 8A3

0δ
−2. �

4.14. Definition (Specific selection rule with a distinguished point). Assume that x0 ∈ X is given.
Recall from 2.21 that the set of reference points can be chosen in such a way that for every k ∈ Z

there exists α such that xk
α = x0. Fix (ℓ,m) ∈ {0, . . . , L} × {1, . . . ,M}. For every k, begin with

x0 = xk
α and decree that zkα := x0. For every β 6= α, choose the new points zkβ by the specific

selection rule, as defined earlier.

Note that the specific selection rule with a distinguished point is again a special case of the
general selection rule. It is not, however, a special case of the specific selection rule. Hence, we
need to verify that the dyadic systems, obtained by repeating the specific selection rule with a
distinguished point with all the choices of (ℓ,m) also satisfy the assertions of Lemma 4.12:

4.15. Lemma. Given a fixed point x0 ∈ X, there exist finitely many point sets {zkα}k,α such that
each of them satisfy the assertions of Lemma 4.10 and further have the property that for every
k ∈ Z there exists α such that zkα = x0. In addition, the family of dyadic systems defined by these
point sets have the property of Lemma 4.12.
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4.16. Remark. Note that the proof will show that for r with δk+2 < r ≤ δk+1, we may assume that
the containing cube Q ∈ D t is of generation k − 1. Further, ρ(x, xk

α) < 2A0δ
k where xk

α denotes
the center point of Q. Also note that Lemma 4.15 completes the proof of Proposition 4.3.

Proof. The assertions of Lemma 4.10 are clear, since we are still in the regime of the general
selection rule. We consider the assertion of Lemma 4.12. Fix a ball B = B(x, r) in X with

δk+2 < r ≤ δk+1. There exists a reference point xk+1
β such that ρ(x, xk+1

β ) < δk+1.

Assume first that xk
α = x0 for the unique (k, α) ≥ (k+1, β). Then also xk−1

γ = x0 for the unique

(k−1, γ) ≥ (k, α) implying that tzk−1
γ = x0 by the specific selection rule with a distinguished point

with every t = (ℓ,m). Take y ∈ B(x, r). Then

ρ(y, tzk−1
γ ) = ρ(y, x0) ≤ A2

0ρ(y, x) +A2
0ρ(x, x

k+1
β ) +A0ρ(x

k+1
β , x0) < A2

0r +A2
0δ

k+1 +A0δ
k

≤
(

2A2
0δ

2 + A0δ)δ
k−1 ≤

(

2A2
0

1

242A10
0

+A0
1

24A5
0

)

δk−1 <
1

12A4
0

δk−1 = c1δ
k−1

since 24A5
0δ ≤ 1 and c1 = (3A2

0)
−1c0 = (12A4

0)
−1. Thus, y ∈ Q := tQk−1

γ for any t. For the
diameter of Q we have

diam(Q) ≤ diam
(

B(tzk−1
γ , C1δ

k−1)
)

≤ 2A0C1δ
k−1 =

2A0C1

δ3
δk+2 ≤ Cr,

with C := 2A0C1δ
−3 = 8A3

0δ
−3.

If xk
α 6= x0 for (k, α) ≥ (k+1, β), then the new dyadic point tzkα is chosen among the xk+1

σ with
(k + 1, σ) ≤ (k, α) exactly as in the specific selection rule (without a distinguished point). Thus,

the reference point xk+1
β = tzkα for t = label2(k + 1, β), and the proof is completed by the same

argument as in Lemma 4.12. �

5. Random dyadic systems

In this section we will prove the following theorem, originally from [12]. The present contribution
consists of a detailed and streamlined construction of the underlying probability space Ω, the
details of which already turned out helpful in an application to singular integrals in [18].

5.1. Theorem. Given a set of reference points {xk
α}, k ∈ Z, α ∈ Ak, suppose that constant δ ∈

(0, 1) satisfies 96A6
0δ ≤ 1. Then there exists a probability space (Ω,P) such that every ω ∈ Ω defines

a dyadic system D(ω) = {Qk
α(ω)}k,α, related to new dyadic points {zkα(ω)}k,α, with the properties

(2.5)–(2.9) of Theorem 2.2. Further, the probability space (Ω,P) has the following properties:

Ω =
∏

k∈Z

Ωk; ω = (ωk)k∈Z ∈ Ω with coordinates ωk ∈ Ωk which are independent;(5.2)

zkα(ω) = zkα(ωk);(5.3)

(5.4) if (k + 1, β) ≤ (k, α), then P({ω ∈ Ω: zkα(ω) = xk+1
β }) ≥ τ0 > 0.

5.5. Remark. In this chapter we will construct a probability space (Ω,P) by randomizing the choice
of new dyadic points from the reference points with respect to all the possible degrees of freedom.
The properties (5.2)–(5.4) can, however, be obtained with much less randomness. We will return
to this in Section 6.

We will first provide the following theorem which presents the general properties of all the
random dyadic systems with the properties (5.2)–(5.4). For the slightly different random sys-
tems originally constructed in [12], the property (5.7) below was already established in [12]; its
consequences stated as (5.8) and (5.9) were observed and applied in [11].

5.6. Theorem. Given a set of reference points {xk
α}, k ∈ Z, α ∈ Ak, suppose that constant δ ∈

(0, 1) satisfies 144A8
0δ ≤ 1. Suppose (Ω,P) is any probability space such that every ω ∈ Ω defines

a dyadic system D(ω) = {Qk
α(ω)}k,α, related to new dyadic points {zkα(ω)}k,α, with the properties

(2.5)–(2.9) of Theorem 2.2. Suppose further that the space (Ω,P) has the properties (5.2)–(5.4)
of Theorem 5.1. Then the following probabilistic statements hold:
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For every x ∈ X, τ > 0 and k ∈ Z,

(5.7) P
(

{ω ∈ Ω: x ∈
⋃

α

∂τδkQ
k
α(ω)}

)

≤ C2τ
η for some C2, η > 0,

where

∂εQ := {x ∈ Q̄ : ρ(x, Q̃c) ≤ ε}, ε > 0;

For every x ∈ X,

(5.8) P
(

{ω ∈ Ω: x ∈
⋃

k,α

∂Qk
α(ω)}

)

= 0;

Given a positive measure µ on X,

(5.9) µ
(

⋃

k,α

∂Qk
α(ω)

)

= 0 for a.e. ω ∈ Ω.

5.10. The probability space. Keeping with the fixed set {xk
α}, k ∈ Z, α ∈ Ak, of reference

dyadic points, we randomize the construction of new dyadic points from them. This amounts to
formalizing the underlying space of all possible choices of new dyadic points allowed by the general
selection rule, and then defining a natural probability measure on this space. The underlying
probability space Ω will be formed by countable products and unions of finite probability spaces
as follows:

Ω :=
∏

k∈Z

Ωk; Ωk :=
⋃

ℓk∈{0,...,L}

(

{ℓk} ×
∏

α∈Ak
label1(k,α)=ℓk

{γ : (k + 1, γ) ≤ (k, α)}

×
∏

α∈Ak
label1(k,α)6=ℓk

{γ : ρ(xk+1
γ , xk

α) < δk+1}
)

.

For the finite sets {γ : (k + 1, γ) ≤ (k, α)} and {γ : ρ(xk+1
γ , xk

α) < δk+1}, α ∈ Ak, we use the
σ-algebras consisting of all sub-sets. The σ-algebra Gk of the set Ωk is the σ-algebra generated by
these sets. We will further consider

Hk :=
{

∏

j<k

Ωj ×Gk ×
∏

j>k

Ωj : Gk ∈ Gk

}

, k ∈ Z.

Then σ-algebra H of Ω is the one generated by the σ-albegras Hk.
The points ω ∈ Ω admit the natural coordinate representation ω = (ωk)k∈Z, where moreover

ωk = (ℓk;ωk,α : α ∈ Ak) ∈ Ωk,

where ℓk ∈ {0, . . . , L} and each ωk,α ∈ Ak+1 satisfies (k+1, ωk,α) ≤ (k, α), as well as ρ(xk+1
ωk,α

, xk
α) <

δk+1 if label1(k, α) 6= ℓk.
We define a probability P on Ω by requiring the coordinates ωk to be independent and dis-

tributed as follows: First,

P(ℓk = ℓ) =
1

L+ 1
, ℓ = 0, . . . , L.

Second, given the master label ℓk, the subcoordinates ωk,α, α ∈ Ak, are again independent, with
distribution

P(ωk,α = β|ℓk = ℓ)

=

{

[#{γ : (k + 1, γ) ≤ (k, α)}]−1 ∀(k + 1, β) ≤ (k, α), if label1(k, α) = ℓk,

[#{γ : ρ(xk+1
γ , xk

α) < δk+1}]−1 ∀(k + 1, β) : ρ(xk+1
β , xk

α) < δk+1, if label1(k, α) 6= ℓk.

Note that there is an obvious one-to-one correspondence between the coordinates ωk ∈ Ωk

and the admissible choices of the relation ց between index pairs on levels k and k + 1, subject
to the general selection rule. This relation in turn uniquely determines the new dyadic points
zkα = zkα(ωk) for the given level k ∈ Z, and thus the choice of ω = (ωk)k∈Z uniquely determines
the new dyadic points zkα = zkα(ω) on all levels k ∈ Z. By a random choice of the new dyadic
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points, we understand the new dyadic points zkα(ω), where ω ∈ Ω is distributed according to the
probability P.

Once the points zkα(ω) are chosen, they uniquely determine the relation ≤ω between the index
pairs (k, α) (not to be confused with the original relation ≤, which is in general not the same);
recall that it is possible to make the choice of ≤ω in such a way that it only depends on the dyadic
points without any arbitrariness. Then the points zkα(ω) and the relation ≤ω together determine
the new dyadic cubes Qk

α(ω) as a function of ω ∈ Ω, and their random choice corresponds to the
random choice of ω according to the law P.

It is evident, by Lemma 4.10, that for every ω ∈ Ω, the dyadic system D(ω) satisfies the
properties (2.5)–(2.9) of Theorem 2.2.

Note that by construction, for every (k + 1, β) ≤ (k, α),

P({ω ∈ Ω: zkα(ω) = xk+1
β }) ≥ [(L+ 1)#{γ : (k + 1, γ) ≤ (k, α)}]−1 ≥ [(L+ 1)M ]−1 =: τ0 > 0.

This completes the proof of Theorem 5.1.

5.11. A technical lemma. Before turning to a more thorough investigation of the random dyadic
cubes as just defined, we provide a technical lemma, which has nothing to do with the randomness,
but is a general property of all dyadic systems. However, we will only make use of this lemma
in the randomized context, which is the reason of including it in this section. Roughly speaking,
the lemma states that in order to reach the boundary of a cube from its centre, along a direct
line of ancestry of dyadic points, one needs to make jumps of non-trivial size at every step. This
result goes back to Christ [4], and appeared as part of the proof of his Lemma 17. Christ’s
lemma concerned the smallness of the boundary region of the dyadic cubes with respect to an
underlying doubling measure; the technical intermediate result is valid even without the presence
of a measure, and we will apply it to get analogous smallness results for the boundary with respect
to the probability P defined above.

5.12. Lemma. Suppose that constants 0 < c0 ≤ C0 < ∞ and δ ∈ (0, 1) satisfy 18A5
0C0δ ≤ c0.

Let {zkα}k,α be a set of points as in Theorem 2.2. Given an N ∈ Z+ and τ > 0, suppose that

12A4
0τ ≤ c0δ

N . Let x ∈ Q̄k
α with ρ(x, (Q̃k

α)
c) < τδk. For all chains

(k +N, σ) = (k +N, σk+N ) ≤ . . . ≤ (k + 1, σk+1) ≤ (k, σk)

such that x ∈ Q̄k+N
σ , there holds ρ(zjσj

, ziσi
) ≥ ε1δ

j, ε1 := (12A4
0)

−1c0, for all k ≤ j < i ≤ k +N .

Proof. Let (k, α) be fixed and consider x ∈ Q̄k
α with ρ(x, (Q̃k

α)
c) < τδk for some τ > 0. Let (j, σj)

be the intermediate pairs as in the assertion, and abbreviate zj := zjσj
for k ≤ j ≤ k+N . Suppose

for contradiction that ρ(zj , zi) < ε1δ
j for some k ≤ j < i ≤ k + N . There are two possibilities:

σk = α or not.
First assume σk = α (i.e. the chain travels in Qk

α). Then, as x ∈ Q̄k+N
σ ⊂ Q̄i

σi
, also x ∈

B(zi, C1δ
i) for (i, σi) ≥ (k +N, σ). We also have B(zj , c1δ

j) ⊆ Q̃j
σj

⊆ Q̃k
α, and so it follows that

c1δ
j ≤ ρ(zj, (Q̃k

α)
c) ≤ A0ρ(x, (Q̃

k
α)

c) +A2
0ρ(x, z

i) +A2
0ρ(z

i, zj)

< A0τδ
k +A2

0C1δ
i +A2

0ε1δ
j ≤

1

4
c1δ

N+k +
1

3
c1δ

i−1 +
1

4
c1δ

j ≤ c1δ
j ,

since c1 := (3A2
0)

−1c0, C1 := 2A0C0, 4A
2
0τ ≤ c1δ

N , 3A2
0C1δ ≤ c1 and 4A2

0ε1 ≤ c1, and this is a
contradiction.

If σk 6= α (and the chain travels outside Qk
α), we have x ∈ Q̄k+N

σ ⊆ Q̄k
σk

and ρ(x, (Q̃k
σk
)c) = 0 <

τδk. Thus we are in the identical situation as before but with σk in place of α. Hence the same
conclusion applies. �

5.13. The proof of Theorem 5.6. From now on, assume (Ω,P) is a probability space with the
properties (5.2)–(5.4) of Theorem 5.1, and that 144A8

0δ ≤ 1.

5.14. Definition (Boundary zone of a dyadic cube). For ε > 0, we denote

∂εQ := {x ∈ Q̄ : ρ(x, Q̃c) ≤ ε}.
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If the space (X, ρ) supports a doubling measure µ, Lemma 5.12 has the following consequence
[4, Lemma 17]: For every ε > 0 there exists τ ∈ (0, 1] such that for every Qk

α,

µ(∂τδkQ
k
α) < εµ(Qk

α).

Here, we are concerned with the following probabilistic analogue:

5.15. Lemma ((5.7) of Theorem 5.6). For a given x ∈ X and τ > 0 and a fixed k ∈ Z, there holds

P

({

ω ∈ Ω: x ∈
⋃

α

∂τδkQ
k
α(ω)

})

≤ C2τ
η

for some constants C2, η > 0.

5.16. Reduction. We consider the event

E =
{

ω ∈ Ω: x ∈
⋃

α

∂τδkQ
k
α(ω)

}

.

First note that for every x ∈ X and k ∈ Z, there exists a finite set A = Ak(x) of indices such
that if x ∈ Q̄k

α(ω) for any ω ∈ Ω, it follows that α ∈ Ak(x). Indeed, if x ∈ Q̄k
α(ω) we have

ρ(x, zkα(ω)) < C1δ
k, and thus

ρ(x, xk
α) ≤ A0ρ(x, z

k
α(ω)) +A0ρ(z

k
α(ω), x

k
α) < A0(C1 + 1)δk,

since ρ(zkα(ω), x
k
α) < δk by the choice of zkα(ω). By the geometric doubling property, the ball

B(x,A0(C1 + 1)δk) can contain at most boundedly many centers xk
α of the disjoint balls

B(xk
α, (2A0)

−1δk).

In particular, if x ∈
⋃

α ∂τδkQ
k
α(ω), then x ∈

⋃

α∈Ak(x)
∂τδkQ

k
α(ω) where #Ak(x) ≤ C < ∞

and C is independent of x and k. It follows that

E =
{

ω ∈ Ω: x ∈
(

⋃

α

∂τδkQ
k
α(ω)

)

∩
(

⋃

σ

Q̄k+N
σ (ω)

)}

,

=
{

ω ∈ Ω: x ∈
(

⋃

α∈Ak(x)

∂τδkQ
k
α(ω)

)

∩
(

⋃

σ∈Ak+N (x)

Q̄k+N
σ (ω)

)}

=
{

ω ∈ Ω: x ∈
⋃

α∈Ak(x)

σ∈Ak+N (x)

(

∂τδkQ
k
α(ω) ∩ Q̄k+N

σ (ω)
)}

,

since the closed dyadic cubes of any generation k +N cover X . Here the union is bounded, and
we have

P(E) ≤
∑

α∈Ak(x)

σ∈Ak+N (x)

P
({

ω ∈ Ω: x ∈ ∂τδkQ
k
α(ω) ∩ Q̄k+N

σ (ω)
})

.

Thus, in order to prove Lemma 5.15, it suffices to prove that

P
({

ω ∈ Ω: x ∈ ∂τδkQ
k
α(ω) ∩ Q̄k+N

σ (ω)
})

≤ C2τ
η

for some constants C2, η > 0 with fixed x ∈ X , τ > 0, N ∈ N, k ∈ Z, α and σ.
We first state the following basic probability lemma, which we have included for the convenience

of readers less experienced with conditional expectations; this is essentially the only place where
probabilistic reasoning beyond standard measure theory will be needed.

5.17. Lemma. Let {Fj}, j = 1, . . . , k, be a finite collection of σ-algebras and suppose that Fj+1 ⊂
Fj and Aj ∈ Fj for all j. Then

E

k−1
∏

j=1

χAj
= EEFk

χAk−1
EFk−1

χAk−2
. . .EF2χA1

where EFj
[ · ] := E[ · |Fj ] denotes the conditional expectation given Fj.
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Proof. By the properties of conditional expectation, see for example [29], §9.7,

E

(

k−1
∏

j=1

χAj

)

= E

(

EFk

[

k−1
∏

j=1

χAj

])

.

First we use the so-called Tower Property: Since Fk ⊂ Fk−1, there holds

(5.18) EFk

[

k−1
∏

j=1

χAj

]

= EFk

[

EFk−1

[

k−1
∏

j=1

χAj

]]

.

Secondly, the fact that χAk−1
is Fk−1-measurable implies that

(5.19) EFk−1

[

k−1
∏

j=1

χAj

]

= χAk−1
EFk−1

[

k−2
∏

j=1

χAj

]

.

We now repeat steps (5.18) and (5.19) k − 1 times to conclude that

E

(

k−1
∏

j=1

χAj

)

= E
(

EFk
[χAk−1

EFk−1
[χAk−2

. . . χA2EF2 [χA1 ] . . .]
)

. �

Proof of Lemma 5.15. Fix x ∈ X and k ∈ Z. Given τ ∈ (0, (4A2
0)

−1c1), pick the unique N ∈
N := {0, 1, . . .} so that c1δ

N+1 < 4A2
0τ ≤ c1δ

N . (Since any probability is at most 1, the claim is
of course true for any η when τ ≥ (2A0)

−2c1, taking large enough C2.) Note that, in particular,
12A4

0τ ≤ c0δ
N since c1 := (3A2

0)
−1c0. Also note that, by the assumption 144A8

0δ ≤ 1, we have
18A5

0C0δ ≤ c0 since c0 = (4A2
0)

−1 and C0 = 2A0. Thus, the parameter assumptions of Lemma 5.12
hold. By the reduction in 5.16, it suffices to consider the event

Eα,σ :=
{

ω ∈ Ω: x ∈ ∂τδkQ
k
α(ω) ∩ Q̄k+N

σ (ω)
}

for fixed α and σ.
Let σ =: σk+N . For every j = k, k + 1, . . . , k +N − 1, let us denote

Aj := {ω ∈ Ω: ρ(zjσj
(ω), zj+1

σj+1
(ω)) ≥ ε1δ

j for (j, σj) ≥ω (j + 1, σj+1) ≥ω (k +N, σ)}

where ε1 := (2A0)
−2c1 is the constant from Lemma 5.12. Note that the sets Aj only depend on

the choice of points of levels from k+N to j and, by (5.3), the choice of these points only depend
on Ωj for j = k, k + 1, . . . , k +N − 1. By Lemma 5.12, it particularly holds that

Eα,σ ⊂

k+N−1
⋂

j=k

Aj .

Let us denote by

Fj := σ
(

Hi : i ≥ j
)

,

the σ-algebra generated by the class of subsets of Ω with the points of level i ≥ j fixed. Note that

Aj ∈ Fj for every j = 1, . . . , N and Fj+1 ⊂ Fj for every j = k, . . . , k +N − 1.

By Lemma 5.17, we have

P(Eα,σ) = E(χEα,σ
) ≤ E

(

k+N−1
∏

j=k

χAj

)

= EEFk+N
χAk+N−1

EFk+N−1
χAk+N−2

. . .EFk+1
χAk

.

(5.20)

We first calculate
EFk+1

[χAk
] = P(Ak|Fk+1).

Note that for a given index pair (k+1, σk+1), there always exists a reference point xk+1
γ such that

ρ(xk+1
γ , zk+1

σk+1
(ω)) < δk+1 < ε1δ

k. On the other hand, by (5.4), there is a positive probability τ0
that xk+1

γ = zkγ(ω). Thus, for a given index pair (k + 1, σk+1), there is a positive probability that

the pair (k, σk) for which (k, σk) ≥ω (k+1, σk+1) satisfies ρ(zkσk
, zk+1

σk+1
) < ε1δ

k. Since the negation
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for the event Ak with given Fk+1 is that for some index pair (k + 1, σk+1), the parent is within
the distance ε1δ

k, we conclude with

(5.21) EFk+1
χAk

= P(Ak|Fk+1) ≤ 1− τ0, τ0 > 0.

Further, we have by the above, monotonicity and linearity

(5.22) EFk+2

[

χAk+1
EFk+1

χAk

]

≤ EFk+2

[

χAk+1
(1 − τ0)

]

= (1 − τ0)EFk+2
[χAk+1

]

since 1−τ0 is a constant. We now proceed backwards and travel from the end of the chain in (5.20)
repeating the steps in (5.21) and (5.22) N−1 times. Each time the term EFk+i

χAi
, i = 1, . . . , N is

estimated from above by constant 1− τ0 ∈ (0, 1), which can then be relocated by equation (5.22).
What is obtained is the following:

P(Eα,σ) ≤ (1− τ0)
N < C2τ

η

with C2 := 4A2
0(c1δ)

−1 and η := log(1− τ0)/ log δ > 0. �

5.23. Corollary ((5.8) of Theorem 5.6). For x ∈ X,

P

({

ω ∈ Ω: x ∈ ∪α,k∂Q
k
α(ω)

})

= 0.

Proof. Recall from (2.5) that the cubes Q̄k
α and Q̃k

α are the interior and closure of Qk
α, respectively.

Thus,
∂Qk

α = Q̄k
α \ Q̃k

α = Q̄k
α ∩ (Q̃k

α)
c ⊆ {x ∈ Q̄k

α : ρ(x, (Q̃
k
α)

c) = 0}.

It follows that, for any τ > 0 there holds

∂Qk
α ⊆ {x ∈ Q̄k

α : ρ(x, (Q̃
k
α)

c) ≤ τδk} = ∂τδkQ
k
α.

Thus,
{

ω ∈ Ω: x ∈ ∪α∂Q
k
α(ω)

}

⊆
{

ω ∈ Ω: x ∈ ∪α∂τδkQ
k
α(ω)

}

,

and consequently, by Lemma 5.15,

P

({

ω ∈ Ω: x ∈ ∪α∂Q
k
α(ω)

})

≤ P

({

ω ∈ Ω: x ∈ ∪α∂τδkQ
k
α(ω)

})

≤ C2τ
η.

Thus, by passing τ to zero we obtain

P

({

ω ∈ Ω: x ∈ ∪α∂Q
k
α(ω)

})

= 0.

Finally,

P

({

ω ∈ Ω: x ∈ ∪α,k∂Q
k
α(ω)

})

≤
∑

k

P

({

ω ∈ Ω: x ∈ ∪α∂Q
k
α(ω)

})

= 0.

�

5.24. Lemma ((5.9) of Theorem 5.6). Assume that µ is a positive measure on X. Then

(5.25) µ
(

∪α,k∂Q
k
α(ω)

)

= 0 for a.e. ω ∈ Ω.

In particular, given a measure µ we may choose ω ∈ Ω such that (5.25) holds.

Proof. For a fixed ω ∈ Ω, denote

Bω :=
⋃

α,k

∂Qk
α(ω),

and for a fixed x ∈ X , denote
Bx := {ω ∈ Ω: x ∈ Bω}.

By Fubini’s Theorem,
ˆ

Ω

µ(Bω) dP(ω) =

ˆ

Ω

ˆ

X

χBω
(x) dµ(x)dP(ω)

=

ˆ

X

ˆ

Ω

χBx(ω) dP(ω)dµ(x) =

ˆ

X

P(Bx) dµ(x) = 0

since P(Bx) = 0 by Corollary 5.23. The assertion follows. �
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6. Random adjacent dyadic systems

In this section we will prove the following theorem.

6.1. Theorem. Given a set of reference points {xk
α}k,α, suppose that constant δ ∈ (0, 1) satisfies

144A8
0δ ≤ 1. Then there exists a probability space (Ω,P) such that every ω ∈ Ω defines a family

of dyadic systems (D t(ω))Kt=1 where each D t(ω) = {tQk
α(ω)}k,α, related to new dyadic points

{tzkα(ω)}k,α, satisfies the properties (2.5)–(2.9) of Theorem 2.2. Further,

for every ω ∈ Ω, (D t(ω))Kt=1 satisfies the property of Lemma 4.12;(6.2)

for every t ∈ {1, . . . ,K}, (D t(ω))ω∈Ω satisfies the properties (5.2)–(5.4) of Theorem 5.1.(6.3)

One immediate application of such a construction is the following. Notice that the statement
of this result makes no reference to randomness but the proof does, and it is not clear how to
prove something like this without the help of randomization. In more classical set-ups, similar
conclusions could be reached with the help of strongly Euclidean devices like rotations; cf. [19],
Theorem 2 and its proof.

6.4. Corollary. Given a set of reference points {xk
α}k,α, suppose that constant δ ∈ (0, 1) satisfies

144A8
0δ ≤ 1. Let µ be a σ-finite measure on X. Then the finite collection of adjacent dyadic

systems D t, t = 1, . . . ,K, as in Theorem 4.1, may be chosen to satisfy the additional property that

µ(∂Q) = 0 ∀Q ∈

K
⋃

t=1

D
t.

Proof. Let D t(ω) be the random adjacent systems guaranteed by Theorem 6.1. By (6.3) and (5.9)
of Theorem 5.6, we have that

∀t ∈ {1, . . . ,K}, for a.e. ω ∈ Ω, µ
(

⋃

Q∈Dt(ω)

∂Q
)

= 0.

Since there are only finitely many choices of t, we can reverse the order of “∀t” and “for a.e. ω ∈ Ω”
above, and then it suffices to choose any ω ∈ Ω outside the event of probability zero implicit in
the “a.e.”, and take D t := D t(ω) for this chosen ω ∈ Ω. �

6.5. The probability space. We define a probability space Ω by setting

Ω :=
∏

k∈Z

Ωk, Ωk := {1, 2, . . . ,K}.

The points ω ∈ Ω admit the natural coordinate representation ω = (ωk)k∈Z where ωk ∈ {1, 2, . . . ,K}.
We define a probability P on Ω by requiring the coordinates ωk to be independent and dis-

tributed with equal probabilities

P(ωk = T ) =
1

K
for every T = 1, 2, . . . ,K.

Given ωk = Tk, define a permutation of (1, 2, . . . ,K) by

πk(t) := t+ Tk (mod K), t = 1, 2, . . . ,K.

Given Tk, t ∈ {1, 2, . . . ,K}, they together define an ordered pair πk(t) = (ℓk(t),mk(t)) via the
bijection ϕ introduced in 4.11. We define the new dyadic points {tzkα}α of generation k as follows.
For every (k, α), check whether there exists (k + 1, β) ≤ (k, α) such that label2(k + 1, β) = πk(t).

If so, decree tzkα := xk+1
β . Otherwise, pick any (k + 1, β) ≤ (k, α) with ρ(xk+1

β , xk
α) < δk+1 and

decree tzkα := xk+1
β . (We could, for example, choose the nearest child of xk

α and eliminate the

arbitrariness of this choice.)
The choice of ω = (ωk) then uniquely determines the permutation πk on every level k which in

turn determines a family of new dyadic points tzkα(ω) =
tzkα(ωk) = zkα(πk(t)) for each t = 1, . . . ,K.

Once the points tzkα(ωk), t = 1, . . .K, are chosen, they uniquely determine the relation ≤ω,t

between the index pairs (k, α). Then, for every t = 1, . . . ,K, the points tzkα(ωk) and the relation
≤ω,t together determine the new dyadic cubes tQk

α(ωk), and their random choice corresponds to
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the random choice of ω according to the law P. Note that the choice of the new dyadic points
tzkα(ω) = zkα(πk(t)) coincides with the specific selection rule defined in 4.11.

It is evident, by Lemma 4.10 in view of 4.11, that for every ω ∈ Ω and every t = 1, . . .K, the
dyadic system D t(ω) satisfies the properties (2.5)–(2.9) of Theorem 2.2. We may complete the
proof of Theorem 6.1 by the following lemma:

6.6. Lemma. For every ω ∈ Ω, the family (D t(ω))Kt=1 satisfies the property of Lemma 4.12. For
every t = 1, . . . ,K, (D t(ω))ω∈Ω satisfies the properties (5.2)–(5.4) of Theorem 5.1.

Proof. Suppose ω ∈ Ω, ω = (ωk)k∈Z, and let πk be the permutation defined by Tk := ωk. Going

back to the proof of Lemma 4.12, it suffices to proove that for every (k+1, β), there holds xk+1
β = tzkα

for (k, α) ≥ (k+1, β) and some t = 1, . . . ,K. But this is clear since label2(k+1, β) =: t = πk(t−Tk)

where t− Tk is defined modulo K. By construction, tzkα = xk+1
β , and the first assertion follows.

With fixed t ∈ {1, . . . ,K} and (k+ 1, β) ≤ (k, α), there is a positive probability τ0 = 1/K that
πk(t) = s for s = label2(k + 1, β). Thus,

P({ω ∈ Ω: tzkα(ω) = xk+1
β }) = P({ω ∈ Ω: πk(t) = label2(k + 1, β)}) = τ0 > 0,

and hence, (5.4) of Theorem 5.1 holds. The other properties follow directly from the construction
of (Ω,P). The second assertion follows. �

6.7. Remark. By the construction of the probability space (Ω,P), while the random choice of new
dyadic points is independent on different levels, on a given level k it only depends on the choice of
ωk. Thus, the choice of points {tzkα}α is not independent. By slightly changing the construction of
Ωk, we may obtain independence also among the choice of non-neighbouring points on same level:
We define a probability space Ω by setting

Ω :=
∏

k∈Z

Ωk, Ωk := {1, 2, . . . ,K} ×
∏

α∈Ak

{1, 2, . . . ,Mk,α},

where Mk,α := #{γ : (k + 1, γ) ≤ (k, α)}, the number of children of reference point (k, α).
The points ω ∈ Ω again admit the natural coordinate representation ω = (ωk)k∈Z. Moreover,

ωk = (Tk,mk,α : α ∈ Ak) ∈ Ωk where Tk ∈ {1, . . . ,K} and mk,α ∈ {1, . . . ,Mk,α}.
We define a probability P on Ω by requiring the coordinates ωk to be independent and dis-

tributed as follows. First,

P(Tk = T ) =
1

K
, T = 1, 2, . . . ,K.

Second, the subcoordinates mk,α are again independent with distribution

P(mk,α = m) =
1

Mk,α
, m = 1, 2, . . . ,Mk,α.

Given ωk = (Tk,mk,α : α ∈ Ak), we define the new dyadic points as follows. First, Tk defines a
cyclic permutation πk of (1, 2, . . . ,K) as before. Then, for every t = 1, . . . ,K and (k, α), check
whether there exists (k + 1, β) ≤ (k, α) such that

label2(k + 1, β) = (pr1(πk(t)), pr2(πk(t)) +mk,α (mod Mk,α)).

If so, decree tzkα := xk+1
β . Otherwise, pick any (k + 1, β) ≤ (k, α) with ρ(xk+1

β , xk
α) < δk+1 and

decree tzkα := xk+1
β . (We could again choose, for example, the nearest child of xk

α and eliminate

the arbitrariness of this choice.)

7. Applications

7.1. Set-up. Let (X, ρ) be a quasi-metric space and suppose that µ is a positive Borel-measure
on X satisfying the doubling condition

(7.2) µ(2B) ≤ Cµ(B) for all balls B.

Note that if µ satisfies the above doubling condition then 0 < µ(B) < ∞ for all balls B. Let us
state the following well-known lemma.
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7.3. Lemma. For every x ∈ X and 0 < r ≤ R we have

µ(B(x,R))

µ(B(x, r))
≤ Cµ

(

R

r

)cµ

where cµ = log2 Cµ and Cµ is the smallest constant satisfying (7.2).

There is an immediate sequel to dyadic cubes:

7.4. Corollary. There exist constants C2 ≥ 1 and C3 ≥ 1 such that for every dyadic cube Q there
holds µ(BQ) ≤ C2µ(Q), where BQ ⊇ Q is the containing ball of Q. Conversely, for every ball
B := B(x, r), there exists a dyadic system D t and a dyadic cube QB ∈ D t such that B ⊆ QB and
µ(QB) ≤ C3µ(B).

Proof. Given a dyadic cube Q and a ball B(x, r), consider the balls B(xk
α, c1δ

k) ⊆ Qk
α ⊆ B(xk

α, C1δ
k) =:

BQ from Theorem 2.2 and the cube QB from Lemma 4.12 with B(x, r) ⊆ QB ⊆ B(x,Cr). The
assertion follows readily from Lemma 7.3. �

7.5. Maximal operators. Let ω be a weight on X , i.e. ω ≥ 0 and ω ∈ L1
loc(µ). Given a

measurable set E, denote ω(E) :=
´

E
ω dµ. Define weighted Hardy–Littlewood maximal operator

Mω by

(7.6) Mωf(x) = sup
B∋x

1

ω(B)

ˆ

B

|f |ωdµ, f ∈ L1
loc(µ), x ∈ X,

where the supremum is taken over all balls B containing x. We drop the subscript ω if ω ≡ 1.
Given a weight ω and p > 1, set σ = ω−1/(p−1). We say that ω satisfies the Ap-condition and

denote ω ∈ Ap if

‖ω‖Ap
:= sup

B

ω(B)σ(B)p−1

µ(B)p
< ∞.

Note that ω ∈ Ap, if and only if σ ∈ Ap′ where 1/p+ 1/p′ = 1.
By the fundamental result of B. Muckenhoupt, the classical Hardy–Littlewood maximal oper-

ator M is bounded on Lp
ω, 1 < p < ∞, if and only if ω ∈ Ap. In this section, we will provide a

quantitative formulation of this well-known result on the metric space (X,µ).
Let D t denote any fixed dyadic grid of cubes Qk

α, k ∈ Z, α ∈ Ak constructed in Section 4. We

define the weighted dyadic maximal operator MD
t

ω by

(7.7) MD
t

ω f(x) = sup
Q∋x

1

ω(Q)

ˆ

Q

|f |ωdµ, f ∈ L1
loc(X), x ∈ X,

where the supremum is taken over all dyadic cubes Q ∈ D t containing x.

By a well-known fact, see for example [29], Theorem 14.11, the dyadic maximal operators MD
t

ω

are bounded on Lp
ω, 1 < p < ∞, uniformly in all weights ω: For 1 < p < ∞ there holds

(7.8) ‖MD
t

ω f‖Lp
ω
≤ p′ ‖f‖Lp

ω

for all f ∈ Lp
ω.

We further consider the closely related sharp maximal operator M# defined by

M#f(x) := sup
B∋x

1

µ(B)

ˆ

B

|f − fB| dµ, f ∈ L1
loc(X), x ∈ X,

where the supremum is taken over all balls containing x, and we have used the notation

fE :=
1

µ(E)

ˆ

E

|f | dµ,

for the integral average of f over a bounded measurable set E, µ(E) > 0. Further define the

dyadic sharp maximal operator M#
Dtf by

M#
Dtf(x) := sup

Q∋x

1

µ(Q)

ˆ

Q

|f − fQ| dµ, f ∈ L1
loc(X), x ∈ X,

where the supremum is taken over dyadic cubes Q ∈ D t containing x.
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We will first show the equivalence between the classical operators M and M# and their dyadic
counterparts:

7.9. Proposition. Let f ∈ L1
loc(dµ). We have the pointwise estimates

MD
t

f(x) ≤ C2Mf(x) and Mf(x) ≤ C3

K
∑

t=1

MD
t

f(x);(7.10)

M#
Dtf(x) ≤ 2C2M

#f(x) and M#f(x) ≤ 2C3

K
∑

t=1

M#
Dtf(x)(7.11)

where both of the first inequalities hold for every t = 1, . . . ,K and the constants C2, C3 ≥ 1 are as
in Corollary 7.4.

Proof. Fix a dyadic system t and assume x ∈ Q ∈ D t. Let B ⊇ Q be the containing ball of Q
with µ(B) ≤ C2µ(Q). Then

1

µ(Q)

ˆ

Q

|f − fQ| dµ ≤
1

µ(Q)

ˆ

Q

|f − fB| dµ+

∣

∣

∣

∣

1

µ(Q)

ˆ

Q

(fB − f) dµ

∣

∣

∣

∣

≤
2

µ(Q)

ˆ

Q

|f − fB| dµ ≤ 2C2
1

µ(B)

ˆ

B

|f − fB| dµ

≤ 2C2M
#f(x).

The first inequality in (7.11) follows by taking a supremum over all dyadic cubes in D t containing
x. Also the first inequality in (7.10) follows by putting fB = fQ = 0 in the above and making the
obvious simplifications.

For the reverse inequalities, consider ball B ∋ x and let Q = Q(t) be the dyadic cube as in
Lemma 4.12 with B ⊂ Q and µ(Q) ≤ C3µ(B). By repeating the argumentation above with the
roles of B and Q interchanged we may conclude with

1

µ(B)

ˆ

B

|f − fB| dµ ≤ 2C3M
#
Dtf(x) ≤ 2C3

K
∑

t=1

M#
Dtf(x).

The second inequality in (7.11) follows again by taking a supremum over all balls containing x.
Also the second inequality in (7.10) follows as earlier. �

7.12. The sharp weighted norm of the Hardy–Littlewood maximal operator. As to
illustrate the use of the new adjacent dyadic systems constructed in Section 4, we will provide
an easy extension of the Buckley’s theorem [2] on the sharp dependence of ‖M‖Lp

ω
on ‖ω‖Ap

in Muckenhoupt’s theorem for Hardy–Littlewood maximal function to metric spaces X with a
doubling measure µ:

7.13. Proposition. Let 1 < p < ∞. Then

‖Mf‖Lp
w
≤ C‖w‖

1/(p−1)
Ap

‖f‖Lp
w
,

where the constant C depends only on X,µ and p.

Proof. By Proposition 7.9, it suffices to prove the analogous estimate for the dyadic maximal

operator MD
t

. We follow the Euclidean approach due to Lerner [17] with the deviation that we
will utilize the estimate (7.8) instead of the corresponding result for the centered maximal operator
which, in the Euclidean case, is a well-known consequence of the Besicovich covering theorem —
a powerful classical tool generally unavailable in abstract metric spaces. We repeat the details for
the reader’s convenience.

Denote

Ap(Q) :=
ω(Q)σ(Q)p−1

µ(Q)p
.
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Fix a dyadic system t and suppose x ∈ Q ∈ D t. We have

1

µ(Q)

ˆ

Q

|f | dµ = Ap(Q)
1

p−1

[

µ(Q)

ω(Q)

(

1

σ(Q)

ˆ

Q

|f | dµ

)p−1
]

1
p−1

≤ ‖ω‖
1

p−1

Ap

[

1

ω(Q)

ˆ

Q

(

1

σ(Q)

ˆ

Q

|fσ−1|σdµ

)p−1

dµ

]
1

p−1

≤ ‖ω‖
1

p−1

Ap

[

1

ω(Q)

ˆ

B

(

MD
t

σ (fσ−1)(x)
)p−1

dµ(x)

]
1

p−1

≤ ‖ω‖
1

p−1

Ap

[

1

ω(Q)

ˆ

Q

(

[MD
t

σ (fσ−1)]p−1ω−1
)

ωdµ

]
1

p−1

,

and hence,

MD
t

f(x) ≤ ‖ω‖
1

p−1

Ap
MD

t

ω

(

[MD
t

σ (fσ−1)]p−1ω−1
)

(x)
1

p−1 .

Therefore, since p/(p− 1) = p′ and σ = ω−1/(p−1), the estimate (7.8) implies that

‖MD
t

f‖Lp
ω
≤ ‖ω‖

1
p−1

Ap

∥

∥

∥
MD

t

ω

(

[MD
t

σ (fσ−1)]p−1ω−1
)∥

∥

∥

1
p−1

Lp′

ω

≤ ‖ω‖
1

p−1

Ap
p

1
p−1 ‖[MD

t

σ (fσ−1)]p−1ω−1‖
1

p−1

Lp′

ω

= ‖ω‖
1

p−1

Ap
p

1
p−1 ‖MD

t

σ (fσ−1)‖Lp
σ

≤ ‖ω‖
1

p−1

Ap
p

1
p−1 p′ ‖fσ−1‖Lp

σ

= ‖ω‖
1

p−1

Ap
p

1
p−1 p′ ‖f‖Lp

ω
. �

7.14. Functions of bounded meand oscillation. Recall that the classical BMO(µ) space is
the set of equivalence classes of functions f ∈ L1

loc(X,µ), modulo additive constants, such that
the L1-averages

1

µ(B)

ˆ

B

|f − fB| dµ, fB :=
1

µ(B)

ˆ

B

|f | dµ,

are bounded (uniformly in B). The non-negative real number

(7.15) ‖f‖BMO := sup
B

1

µ(B)

ˆ

B

|f − fB| dµ < ∞,

where the supremum is taken over all balls, is then called the BMO-norm of f .
For every t = 1, . . . ,K, we define a dyadic BMO(µ) space BMODt as the set of equivalence

classes of functions f ∈ L1
loc(X,µ), modulo additive constants, such that

‖f‖BMO
Dt := sup

Q∈Dt

1

µ(Q)

ˆ

Q

|f − fQ| dµ < ∞, fQ :=
1

µ(Q)

ˆ

Q

|f | dµ,

where the supremum is taken over all dyadic cubes Q ∈ D t. The quantity ‖f‖BMO
Dt is then the

dyadic BMO-norm of f .
The relationship between the two kinds of BMO spaces has been studied in the Euclidean

setting in [8] and [20].
As a second illustration of the use of the new adjacent dyadic systems, we provide a repre-

sentation of BMO(µ) as an intersection of finitely many dyadic BMO(µ) spaces. This extends
the Euclidean result, which was explicitly stated by T. Mei [20], but already implicit in some
earlier work; cf. [20], Remark 6. A related result in metric spaces was also proven by Caruso and
Fanciullo [3].
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7.16. Proposition. Suppose (X, ρ) is a quasi-metric space and µ is a positive Borel-measure on
X with the doubling property (7.2). There exist constants C4 > 0 and C5 > 0 depending only on
X and µ such that for every f ∈ L1

loc(X,µ), there holds

C4‖f‖BMO
Dt ≤ ‖f‖BMO ≤ C5

K
∑

t=1

‖f‖BMO
Dt

where the first inequation holds for every t. Thus,

BMO(µ) =

K
⋂

t=1

BMODt(µ)

with equivalent norms.

Proof. This is an immediate corollary of Proposition 7.9. �

7.17. Remark. It is a well-known fact that both the classical and dyadic BMO(µ) spaces satisfy
the John–Nirenberg inequality. The proof for the dyadic version is slightly easier. By a similar
argument made in the proof of Proposition 7.9, one may represent the space BMOp(µ) as an
intersection of finitely many dyadic spaces BMOp

Dt , p > 1. With this representation, one may
derive the John–Nirenberg inequality and the exponential integrability of BMO(µ) functions from
their dyadic counterparts, thereby avoiding some technicalities in the proof.
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