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Abstract

A proof of the Jordan canonical form, suitable for a first course in linear

algebra, is given. The proof includes the uniqueness of the number and sizes of

the Jordan blocks. The value of the customary procedure for finding the block

generators is also questioned.

2000 MSC: 15A21.

The Jordan form of linear transformations is an exceeding useful result in all theo-

retical considerations regarding conjugacy classes of matrices, nilpotent orbits and the

Jacobson-Morozov theorem. A classical reference for this topic is Smirnov’s book [7,

p.245-254]. There is a very well known proof due to Fillipov [3], which is also given in

Strang’s book [8, p.422-425]. The American Mathematical Monthly has published at

least six proofs of the Jordan form over the years: [1, 2, 4, 5, 6, 9]. The justification

for approaching the subject yet another time can only be the clarity and brevity of

the presentation and a new criterion for the uniqueness of the number and sizes of the

Jordan blocks. This note gives such a proof, which has the added advantage that the

most important parts can be taught in a first course on linear algebra, as soon as basic

ideas have been introduced and the invariance of dimensions has been established. It

is thus also a contribution to the teaching of these ideas.

Although extensive work has been done in [10] regarding this circle of ideas, the

method given in this note provides a very simple algorithm whose efficiency is shown

through worked examples.
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In view of the algorithm given in this note, and the examples given below, it is not

clear to us why a precise determination of the block generators is needed, although, for

the sake of completeness, we have discussed this aspect too- at the expense of increasing

the level of exposition.

It would be very desirable to compare the computational complexity of computing

the Jordan canonical form, using the algorithm given in this paper, with other algo-

rithms, which programmes like Maple and Mathematica use to determine the Jordan

form.

As is well known, the main technical step in establishing the Jordan canonical form

is to prove its existence and uniqueness for nilpotent transformations. We will return

to the general case towards the end of this note.

Let A be a nilpotent transformation on a finite dimensional vector space V , let v

be a nonzero vector in V and n the smallest integer such that Anv = 0.

Proposition 1 The vectors {Aiv : 0 ≤ i < n} are linearly independent.

Proof. Take an expression
n−1
∑

i=0

ciA
iv = 0, (∗)

in which the number of non-zero coefficients is as small as possible. If the coefficient

cj is the non-zero coefficient of largest index j, then multiplying by An−j, we obtain

an expression like (*) of smaller length. So in (*) every ci with i < j is 0. Therefore

cjA
jv = 0 and therefore Ajv = 0, with j ≤ n − 1, which contradicts the choice of n.

This proves the claim,

Proposition 2 Let R(A) be the range space of A and N(A) be the null space of A. Let

{A(vi) : i = 1, . . . , r} be a basis of the range space. Let {nj : j = 1, . . . , s} be a basis of

the null space of A. Then {vi : i = 1, . . . , r, nj : j = 1, . . . , s} is a basis of the vector

space V .

Proof. Let v ∈ V . So A(v) =
r
∑

i=1

ciA(vi). Therefore v−
r
∑

i=1

civi belongs to the null space

of A, hence it is a linear combination of the {vi} and {nj}. To see that these vectors
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are linearly independent, suppose
r
∑

i=1

civi +
s
∑

j=1

djnj = 0. This gives
r
∑

i=1

cA(vi) = 0 and

by linear independence of the vectors A(vi), we get ci = 0, i = 1, . . . , r. The linear

independence of {nj} then shows that dj = 0, j = 1, . . . , s.

Proposition 3 V is a direct sum of cyclic subspaces.

Proof. We prove this, as in the standard proofs [7,8], by induction on dimension. The

null space of A is a non-zero subspace and therefore the range space of A is a proper

subspace of V . If this is the zero subspace, then a basis of V gives the decomposition

into cyclic subspaces. So suppose that R(A) is a nonzero subspace. It is an A invariant

subspace. By induction on dimensions, it is a direct sum of cyclic subspaces, with

generators vi, i = 1, . . . , k, and basis Ajvi, 0 ≤ j ≤ ni, and Ani+1vi = 0. Let vi = Awi.

So Ajvi = AAjwi shows, using Proposition 1, that the vectors Ajwi, 0 ≤ j ≤ ni are

linearly independent. Also Ani+1vi = Ani+2wi = 0, so Ani+1wi = Anivi belong to the

null space of A.

By Proposition 2, if we enlarge Anivi, i = 1, . . . , k, to a basis of the null space of A

by adjoining independent vectors n1, . . . , nl in the null space of A, then Ajwi,0 ≤ j ≤

ni,0 ≤ i ≤ k, Anivi,i = 1, . . . , k, n1, . . . , nl form a basis of V .

Therefore, the cyclic subspaces generated by wi, i = 1, . . . , k and the one-dimensional

subspaces generated by nr, 1 ≤ r ≤ l give a direct sum decomposition of V into cyclic

subspaces.

From this description, it is clear that in each summand only Ani+1wi = Anivi

contributes to the null space of A in that summand and therefore the number of

summands in the above given decomposition is the dimension of the null space of A.

Corollary Let di = dim (N(A|R(Ai)), i = 0, 1, . . . , n), where n is the smallest positive

integer so that An = 0. The differences d0 − d1, d1 − d2, . . . , dn−1 − dn give the number

of Jordan blocks of sizes 1, 2, . . . , n.

Proof. As shown in the proof of Proposition 3, the number of summands in the Jordan

decomposition is the dimension of the null space of A. Therefore the number of blocks

of size≥ 1 is dim(N(A)). Applying A removes all blocks, if any, of size 1, and so the
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number of blocks of size≥ 2 is dim(N(A|R(A))) = d1. Continuing, we get that di is

the number of blocks of size≥ i, i = 1, . . . , n. Therefore the difference di−1 − di gives

the number of blocks of size i, for i = 1, . . . , n.

Examples

1. Let A be any nilpotent upper triangular matrix whose entries to the right of

the main diagonal give a non-singular matrix. Then the null space of A is 1

dimensional and therefore the canonical form of A consists of only one block.

In particular, the matrices












0 2
0 1

0 −1
0 −2

0













and












0 1 2 3 4
0 7 6 5

0 8 9
0 10

0













are conjugate matrices as they are conjugate to












0 1
0 1

0 1
0 1

0













.

2. If

A =









0 1 0 1
0 0 1 0
0 0 0 1
0 0 0 0









,

then N(A)works out to be 1 dimensional, so there is only 1 Jordan block.

Also

A3 =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









,

so

N(A3) =









x
y
z
0








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and, as A4 = 0, a basis of N(A4)/N(A3) is

ν =









0
0
0
1









.

Therefore, this must be a generator of the block.

3. Let

A =









2 0 2 1
0 2 1 1
0 0 2 2
0 0 0 4









.

The eigenvalue 2 is of multiplicity 3, so the generalized eigenspace V(2) is 3−

dimensional, whose basis works out to be (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and the

matrix of A|V(2) is therefore




2 0 2
0 2 1
0 0 2



 .

We have

(A− 2I)|V(2) =





0 0 2
0 0 1
0 0 0



 .

Let Ã = (A−2I)|V(2). This gives d0 = dim(N(Ã) = 2, d1 = dim(N(Ã|R(Ã)) = 1,

d2 = dim(N(Ã|R(Ã2)) = 0.

Therefore Ã has d0 − d1 = 1 block of size 1 and d1 − d2 = 1 block of size 2.

The Jordan form of Ã is therefore




0 0 0
0 0 1
0 0 0





and of A|V(2) is




2 0 0
0 2 1
0 0 2





The eigenspace for eigenvalue 4 is one-dimensional. Therefore, the Jordan form

of A is








2 0 0 0
0 2 1 0
0 0 2 0
0 0 0 4









.
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In view of such examples, it is not clear to us why an algorithmic procedure is

needed to find the precise generators of the various blocks, because all one needs to

find the form of the Jordan blocks is to compute the invariants di. Nevertheless, for

the sake of completeness, we outline such a procedure- at the expense of increase in

level of exposition.

Step 1:

Find all eigenvalues. For an eigenvalue λ, compute the generalized eigenspace

corresponding to λ. Although, one needs to compute only all vectors annihilated

by (A − λI)dimV , it is algorithmically better to compute the vectors annihilated by

(A − λI)n = 0, where n is the multiplicity of the eigenvalue λ in the characteristic

polynomial of A. So, by working in the generalized eigenspace for λ, and replacing

(A− λI) by A, we may assume that A is a nilpotent transformation of index ≤ n.

From now on, we assume that A is a nilpotent transformation defined on a vector

space V

Step 2:

Find the number and sizes of blocks of this nilpotent transformation according to

the algorithm given below: it is a restatement of the Corollary given on p.3. This is

the most important step, which is needed to complete the next step efficiently.

Algorithm for finding the Jordan Form

For a nilpotent transformation A on a finite dimensional vector space V , let N be the

smallest integer such that AN = 0. Let di = dim (N(A|R(Ai)), i = 0, 1, . . . , N).

The differences

d0 − d1, d1 − d2, . . . , dN−1 − dN

give the number of Jordan blocks of sizes 1, 2, . . . , N .

Step 3: Algorithm for finding the block generators

Call a nonzero vector v is of height n if n is the smallest integer so that An(v) = 0.

The vector space spanned by v, Av, . . . , An−1v is n-dimensional. A block of size n is

an A-invariant subspace generated by a vector of height n.
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Let n be the size of the largest block. Choose a basis of N(An)/N(An−1). This is a

non-zero space, because there exist blocks of size n. The smallest A-invariant subspace

of the preimages gives a direct sum of blocks, each of size n. Call this space W1.

Let m be the size of the block immediately below n. Consider N(Am)/N(Am−1).

Find a basis of N(Am|W1)/N(Am−1|W1).

Let w1, . . . , wr be the preimages of these basis elements; they are all of height m.

Extend this basis of N(Am|W1)/N(Am−1|W1) to a basis of N(Am)/N(Am−1) by

adjoining independent elements with preimages v1, . . . , vs.

The smallest A-invariant subspace spanned by v1, . . . , vs - call it W2 has 0 intersec-

tion with W1.

Let W1 ⊕W2 = W3. Let l be the size of the blocks, if any, just below m. Extend

a basis of N(Al|W3)/N(Al−1|W3) to a basis of N(Al)/N(Al−1). As before, we will get

the required number of blocks of size l complementary to W1 ⊕W2 = W3. Continuing,

this will give a Jordan decomposition.

Explanation

Step 3 is based on the following observations

1. IfW is a direct sum of blocks and the size of the smallest block is n and 0 < j < n,

then the null-space of Aj in W is the range space of An−j in W .

2. If W is a direct sum of blocks of size n, generated by vectors v1, . . . , vk - all of

height n, then these vectors are linearly independent in N(An)/N(An−1).

Conversely, if vectors w1, . . . , wl are inN(An) and their images in the quotientN(An)/N(An−1)

are linearly independent, then the smallest A-invariant subspace generated by w1, . . . , wl

is a direct sum of blocks of size n, with generators w1, . . . , wl.

Example:
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Using the above algorithm, the reader can check that if

A =





















0 1 4 5 6 7 8
0 0 1 6 7 8 9
0 0 0 0 7 8 9
0 0 0 0 0 10 11
0 0 0 0 0 11 12
0 0 0 0 0 0 1
0 0 0 0 0 0 0





















then the smallest integer n so that An = 0 is 6. There are two blocks, of sizes 1 and 6

respectively, generated by





















0
19
−6
1
0
0
0





















and





















0
0
0
0
0
0
1





















.

A final remark on applications: A main application of the Jordan form in differen-

tial equations is in computation of matrix exponentials. However, it is computationally

more efficient to calculate the matrix of A relative to a basis of generalized eigenvectors-

not necessarily given by cyclic vectors -and compute its exponential relative to this ba-

sis; finally, conjugating by the change of basis matrix gives the exponential of A.
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