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WHEN EVERY PRINCIPAL IDEAL IS FLAT

FATIMA CHENIOUR AND NAJIB MAHDOU

Abstract. This paper deals with well-known notion of PF -rings, that
is, rings in which principal ideals are flat. We give a new characterization
of PF -rings. Also, we provide a necessary and sufficient condition for
R ⊲⊳ I (resp., R/I when R is a Dedekind domain or I is a primary ideal)
to be PF -ring. The article includes a brief discussion of the scope and
precision of our results.

1. Introduction

All rings considered in this paper are assumed to be commutative with
identity elements and all modules are unitary.
We start by recalling some definitions.

A ring R is called a PF -ring if principal ideals of R are flat. Recall that
R is a PF -ring if and only if RQ is a domain for every prime (resp., maxi-
mal) ideal Q of R. For example, any domain and any semihereditary ring is
a PF -ring (since a localization of a semihereditary ring by a prime (resp.,
maximal) ideal is a Prüfer domain). Note that a PF -ring is reduced by [12,
Theorem 4.2.2 , p. 114]. See for instance [12, 13].

An R-module M is called P -flat if, for any (s, x) ∈ R × M such that
sx = 0, then x ∈ (0 : s)M . If M is flat, then M is naturally P -flat. When
R is a domain, M is P -plat if and only if it is torsion-free. When R is an
arithmetical ring, then any P-flat module is flat (by [5, p. 236]). Also, every
P -flat cyclic module is flat (by [5, Proposition 1(2)]). See for instance [5, 12].

The amalgamated duplication of a ring R along an ideal I is a ring that
is defined as the following subring with unit element (1, 1) of R×R:

R ⊲⊳ I = {(r, r + i)/r ∈ R, i ∈ I}.

This construction has been studied, in the general case, and from the dif-
ferent point of view of pullbacks, by D’Anna and Fontana [8]. Also, in [7],
they have considered the case of the amalgamated duplication of a ring, in
not necessarily Noetherian setting, along a multiplicative canonical ideal in
the sense of [14]. In [6] D’Anna has studied some properties of R ⊲⊳ I, in
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order to construct reduced Gorenstein rings associated to Cohen-Macaulay
rings and has applied this construction to curve singularities. On the other
hand, Maimani and Yassemi, in [16], have studied the diameter and girth of
the zero- divisor of the ring R ⊲⊳ I. Some references are [7, 8, 9, 10, 16].

Let A and B be rings and let ϕ : A→ B be a ring homomorphism making
B an A-module. We say that A is a module retract of B if there exists a
ring homomorphism ψ : B → A such that ψoϕ = idA. ψ is called retraction
of ϕ. See for instance [12].

Our first main result in this paper is Theorem 2.1 which gives us a new
characterization of PF -rings. Also, we provide a necessary and sufficient
condition for R ⊲⊳ I (resp., R/I when R is a Dedekind domain or I is a
primary ideal) to be PF -ring. Our results generate new and original exam-
ples which enrich the current literature with new families of PF -rings with
zero-divisors.

2. Main Results

Recall that an R-module M is called P -flat if, for any (s, x) ∈ R ×M
such that sx = 0, then x ∈ (0 : s)M . Now, we give a new characterization
for a class of PF -rings, which is the first main result of this paper.

Theorem 2.1. Let R be a commutative ring. Then the following conditions
are equivalent:
(1) Every ideal of R is P-flat.
(2) Every principal ideal of R is P-flat.
(3) R is a PF ring, that is every principal ideal of R is flat.
(4) For any elements (s, x) ∈ R2 such that sx = 0, there exists
α ∈ (0 : s) such that x = αx.

Proof. (1) =⇒ (2) Clear.
(2) =⇒ (3) Let Ra be a principal ideal of R generated by a. Our aim is to
show that Ra is flat.
Let J be an ideal of R. We must show that u : Ra⊗ J −→ Ra⊗R, where
u(a⊗ x) = ax, is injective. Let a ∈ R and x ∈ J such that ax = 0. Hence,
there exists β ∈ (0 : x) and λ ∈ R such that a = βλa (since Ra is P-flat).
Therefore, a⊗ x = βλa⊗ x = λa⊗ βx = 0, as desired.
(3) =⇒ (4) Let (s, x) be an element of R2 such that sx = 0. Our aim is to
show that there exists β ∈ (0 : s) such that x = βx. The principal ideal
generated by x is P-flat (since it is flat), so there exists α ∈ (0 : s) and r ∈ R
such that x = αrx = βx with β = αr ∈ (0 : s).
(4) =⇒ (1) Let I be an ideal of R. Let (s, x) ∈ R × I such that sx = 0.
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Hence, there exists α ∈ (0 : s) such that x = αx and so x ∈ (0 : s)I.
Therefore, I is P-flat, as desired. �

By Theorem 2.1, we obtain:

Corollary 2.2. Let R be a ring. The following conditions are equivalent:
(1) Every ideal of R is P -flat.
(2) Every ideal of RQ is P -flat for every prime ideal Q of R.
(3) Every ideal of Rm is P -flat for every maximal ideal m of R.
(4) RQ is a domain for every prime ideal Q of R.
(5) Rm is a domain for every maximal ideal m of R.

Proof. By Theorem 2.1 and [12, Theorem 4.2.2].
�

Recall that a ring R is called an arithmetical ring if the lattice formed by
its ideals is distributive. If wgldim(R) ≤ 1, then R is an arithmetical ring.
See for instance [2, 3].

Now, we add a condition with arithmetical in order to have equivalence
between arithmetical and wgldim(R) ≤ 1.

Proposition 2.3. Let R be a ring. Then the following conditions are equiv-
alent:
(1) wgldim(R) ≤ 1.
(2) R is arithmetical and a PF -ring.
(3) R is arithmetical and every principal ideal of R is flat.
(4) R is arithmetical and every principal ideal of R is P -flat.
(5) R is arithmetical and every ideal of R is P -flat.

Proof. 1) ⇒ 2) ⇒ 3) ⇒ 4) ⇒ 5). By Theorem 2.1.
5) ⇒ 1). Assume that the ring R is arithmetical and every ideal of R is P -
flat. Our aim is to show that wgldim(R) ≤ 1. Let I be a finitely generated
ideal of R. Hence, I is P -flat and so I is flat (since R is arithmetical by [5,
p. 236]) and this completes the proof. �

Now we show that the localization of a PF -ring is always a PF -ring.

Proposition 2.4. Let R be a PF -ring and let S be a multiplicative subset
of R. Then S−1(R) is a PF -ring.

Proof. Assume that R is a PF -ring and let J be a principal ideal of S−1(R).
We claim that J is flat. Indeed, since J is a principal ideal of S−1R, then

there exists an element
a

b
of J such that J = S−1(R)

a

b
. Set I = Ra. Hence,

I is flat since R is a PF -ring and so J(= S−1(I)) is a flat ideal of S−1R. It
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follows that S−1(R) is a PF -ring. �

Now, we study the transfer of PF -ring property to the direct product.

Proposition 2.5. Let (Ri)i∈I be a family of commutative rings. Then R =
∏

i∈I Ri is a PF -ring if and only if Ri is a PF -ring for all i ∈ I.

Proof. Assume that Ri is a PF -ring for each i ∈ I and set R =
∏

i∈I Ri. Let
x = (xi)i∈I and y = (yi)i∈I be two elements of R such that xy = 0. Then, for
every i ∈ I, there exists αi ∈ (0 : xi) such that yi = αiyi (since Ri is a PF -
ring). Hence, (yi)i∈I = (αi)i∈I(yi)i∈I and (αi)i∈I(xi)i∈I = (αixi)i∈I = 0.
Therefore, R is a PF -ring.

Conversely, assume that R =
∏

i∈I Ri is a PF -ring and we claim that Ri

is a PF -ring for every i ∈ I.
Indeed, let i ∈ I and let xi, yi be two elements of Ri such that xiyi = 0.

Consider x = (aj)j∈I , with

{

ai = xi,
aj = 0 for j 6= i.

and y = (bj)j∈I , with
{

bi = yi.
bj = 0 for i 6= j.

Since R is a PF -ring, then there exists α ∈ (0 : x)

such that y = αy (that is, for all j ∈ I, bj = αjbj and αjaj = 0). Hence,
yi = αiyi with αi ∈ (0 : xi). Therefore, Ri is a PF -ring for all i ∈ I and this
completes the proof. �

Next we study the transfer of PF -ring property to homomorphic image.
First, the following example shows that the homomorphic image of a PF -
ring is not always a PF -ring.

Example 2.6. Let A be a domain and let R = A[X]. Then:
(1) R is a PF -ring since it is a domain.
(2) R/(Xn) (for n ≥ 2) is not a PF -ring since Xn = 0 and X 6= 0.

The converse is not generally true as the following example shows.

Example 2.7. Let R be a non-PF -ring and let P be a prime ideal of R.
Then R/P is always a PF -ring.

Recall that if R is a Dedekind domain and I is a nonzero ideal of R, then
I = Pα1

1 ...Pαn

n for some distinct prime ideals P1, ..., Pn uniquely determined
by I and some positive integers α1, ..., αn uniquely determined by I (by [11,
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Theorem 3.14]).

Now, when R is a Dedekind domain or I is a primary ideal, we give a
characterization of R and I such that R/I is a PF -ring.

Theorem 2.8. Let R be a ring and let I be an ideal of R. Then:
(1) Assume that R is a Dedekind domain and I = Pα1

1 ...Pαn

n a nonzero ideal
of R, where P1, .., Pn are the prime ideals defined by I. Then R/I is a
PF -ring if and only if αi = 1 for all i ∈ {1, ..., n}.
(2) Assume that I is a primary ideal of R. Then R/I is a PF -ring if and
only if I is a prime ideal of R.

Proof. 1) Let R be a Dedekind domain and let I = Pα1

1 ...Pαn

n , where
P1, ..., Pn are nonzero prime ideals of R, then R/I =

∏n
i=1(R/P

αi

i ) .
Assume that αi = 1 for all 1 ≤ i ≤ n. Hence, R/Pi is a PF -ring since R/Pi

is an integral domain (as αi = 1), and so R/I =
∏n

i=1(R/P
αi

i ) is a PF -ring
by Proposition 2.5.

Conversely, assume that R/I =
∏n

i=1(R/P
αi

i ) is a PF -ring. Let i ∈
{1, ..., n}. Then R/Pαi

i is a PF -ring by Proposition 2.5 since R/I is a PF -
ring. Hence, R/Pαi

i is reduced and so the intersection of all prime ideals Q
of R/Pαi

i is zero (i.e
⋂

Q∈spect(R/P
αi

i
)Q = {0}) by [1, Proposition 1.8]. For

all prime ideals Q of R/Pαi

i , there exists a prime ideal Q′ of R such that
Pαi

i ⊂ Q′ and Q = Q′/Pαi

i . Then Pi ⊂ Q′ and so Pi/P
αi

i ⊂ Q′/Pαi

i = Q.
It follows that Pi/P

αi

i = 0 and so Pi = Pαi

i since R is a Dedekind domain.
Hence, αi = 1.

2) It’s obvious that if I is a prime ideal, then R/I is a PF -ring and I is
a primary ideal.
Conversely, assume that I is a primary ideal and R/I is a PF -ring. Our aim
is to show that I is a prime ideal of R. Let x, y ∈ R such that xy ∈ I. We
claim that x ∈ I or y ∈ I. Without loss of generality, we may assume that
x /∈ I. Since xy ∈ I, then there exists an integer n > 0 such that yn ∈ I (as
I is a primary ideal). Hence, yn = 0 and so y = 0 since R/I is a PF -ring;
that is y ∈ I. Therefore, x ∈ I or y ∈ I and so I is a prime ideal of R, as
desired. �

Now, we are able to give examples of PF -rings and non-PF -rings.

Example 2.9. (1) Z/4Z is not a PF -ring by Theorem 2.8(1).
(2) Z/30Z is a PF -ring by Theorem 2.8(1).
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Now, we study the transfer of a PF -property to amalgamated duplication
of a ring R along an ideal I.

Theorem 2.10. Let R be a ring, and I an ideal of R. Then the following
conditions are equivalent.
(1) R ⊲⊳ I is a PF -ring;
(2) R is a PF -ring and Ip ∈ {0, Rp} for every prime ideal p of R containing
I;
(3) R is a PF -ring and Im ∈ {0, Rm} for every maximal ideal m of R con-
taining I.

We need the following lemma before proving this Theorem.

Lemma 2.11. Let R and S be rings and let ϕ : R → S be a ring homo-
morphism making R a module retract of S. If S is a PF -ring, then so is
R.

Proof. Let ϕ : R → S be a ring homomorphism and let ψ : S → R be
a ring homomorphism such that ψoϕ = idR. Let (x, y) ∈ R2 such that
xy = 0. Then ϕ(x)ϕ(y) = ϕ(xy) = 0 . Hence, there exists an element
α ∈ S such that αϕ(x) = 0 and ϕ(y) = αϕ(y) (since S is a PF -ring) and
so y = ψ(ϕ(y)) = ψ(αϕ(y)) = ψ(α)y and ψ(α)x = ψ(αϕ(x)) = ψ(0) = 0, as
desired. �

Proof. of Theorem 2.10.
(1) ⇒ (2) Assume that R ⊲⊳ I is a PF -ring and we must to show that R is
a PF -ring and Ip ∈ {0, Rp} for every prime ideal p of R containing I. We
can easily show that R is a module retract of R ⊲⊳ I where the retraction
map ϕ is defined by ϕ(r, r + i) = r and so R is a PF -ring by Lemma 2.11.
We claim that Ip ∈ {0, Rp} for every prime ideal p of R containing I. Deny.
Then there exists a prime ideal p of R such that I ⊆ p and Ip /∈ {0, Rp}
and so (R ⊲⊳ I)P = Rp ⊲⊳ Ip, where P is a prime ideal of R ⊲⊳ I such that
P ∩ R = p. Since Rp is a domain (as it is a PF -ring), then Rp ⊲⊳ Ip is
reduced and O1(= {0}× Ip) and O2(= Ip×{0}) are the only minimal prime
ideals of (R ⊲⊳ I)P by [8, Proposition 2.1]; hence it is not a PF -ring by [12,
Theorem 4.2.2] (since (R ⊲⊳ I)P is local), a desired contradiction. Therefore,
Ip ∈ {0, Rp} for every prime ideal p of R containing I.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Assume that R is a PF -ring and Im ∈ {0, Rm} for every maximal
ideal m of R containing I. Our aim is to prove that R ⊲⊳ I is a PF -ring.
Using Corollary 2.2, we need to prove that (R ⊲⊳ I)M is a PF -ring when-
ever M is a maximal ideal of R ⊲⊳ I. Let M be an arbitrary maximal ideal
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of R ⊲⊳ I and set m = M ∩ R. Then, necessarily M ∈ {M1,M2}, where
M1 = {(r, r + i)/r ∈ m, i ∈ I} and M2 = {(r + i, r)/r ∈ m, r ∈ I}, by [7,
Theorem 3.5]. On the other hand, Im ∈ {0, Rm}. Then, testing all cases of
[6, Proposition 7], we have two cases:
(a) (R ⊲⊳ I)M ∼= Rm if Im = 0 or I * m.
(b) (R ⊲⊳ I)M ∼= Rm ×Rm if Im = Rm and I ⊆ m.
Since Rm is a PF -ring (by Corollary 2.2), then so is Rm×Rm by Proposition
2.5 and hence (R ⊲⊳ I)M is a PF -ring. �

Corollary 2.12. Let R be a domain and let I be a nonzero ideal of R. Then
R ⊲⊳ I is never a PF -ring.

Corollary 2.13. Let (R,m) be a local ring and let I be a nonzero ideal of
R. Then R ⊲⊳ I is never a PF -ring.

Corollary 2.14. Let R be a ring and let I be a pure ideal of R. Then R is
a PF -ring if and only if R ⊲⊳ I is a PF -ring.

Proof. The sufficient condition holds by Theorem 2.10.
The converse follows immediately from Theorem 2.10.(3) (since I is pure
and m is a maximal ideal in R, Im ∈ {0, Rm} by [12, Theorem 1.2.15]). �

Now we are able to construct a class of PF -rings.

Example 2.15. Let R be a regular von-Neumann ring and let I be an ideal
of R. Then R ⊲⊳ I is a PF -ring by Theorem 2.10.

Example 2.16. Let R be a PF -ring and let I = Re, where e is an idempo-
tent element of R. Then R ⊲⊳ I is a PF -ring.

The following example shows that a subring of PF -ring is not always a
PF -ring. For any ring R, we denote by T (R) the total ring of quotients of R.

Example 2.17. Let R be an integral domain, I a nonzero ideal and let
S = R ⊲⊳ I. Then:
(1) S(= R ⊲⊳ I) is not a PF -ring by Corollary 2.12.
(2) R ⊲⊳ I ⊆ R × R and R × R is a PF -ring by Proposition 2.5 (since R is
a PF -ring).
(3) T (S) = T (R×R) = K ×K, where K = T (R).
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We end this paper by showing that the transfer of PF -ring property to
Pullbacks is not always a PF -ring.

Example 2.18. Let R be a domain and I a proper ideal of R. Then:
(1) The ring R ⊲⊳ I can be obtained as a pullback of R and R × R over
R× (R/I).
(2) The ring R ⊲⊳ I is not a PF -ring by Corollary 2.12.
(2) The rings R and R×R are PF -rings.
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