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The scope of refinable functions in wavelet theory is focused to localized functions. In our
paper we like to widen that scope, in particular we show that all polynomial functions
are refinable. This may yield an interesting notion of convolution of polynomials.
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1. Introduction

Refinable functions are functions that are in a sense self-similar: If you add shrinked
translates of a refinable function in a weighted way, then you obtain that refinable
function, again. For instances, see Figure 1 for how a quadratic B-spline can be
composed from four small B-splines and how the so called Daubechies-2 generator
function is composed from four small variants of itself. All B-splines with successive
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Figure 1. Refinement of a quadratic B-spline and the orthogonal Daubechies-2 generator
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integral nodes are refinable, but there are many more refinable functions that did
not have names before the rise of the theory of refinable functions. In fact given
some conditions we can derive a refinable function from the weights of the linear
combination in the refinement.

Refinable functions were introduced in order to develop a theory of real wavelet
functions that complements the discrete subband coding theory. 3 Following the
requirements of wavelet applications, existing literature on wavelets focuses on re-
finable functions, that are L2-integrable and thus are accessible to Fourier trans-
form, are localized (finite variance) or even better of bounded support. In order to
make the picture a bit more complete we will show in this paper, that polynomial
functions are refinable, too.

Our results can be summarized as follows:
• Masks that sum up to a negative power of two refine polynomials that are

uniquely defined up to constant factors. Other masks are not associated with
a polynomial. (Theorem 2.1)

• For every polynomial there are infinitely many refinement masks and these
refinement masks can be characterized in a simple form. (Theorem 2.2 and
Theorem 2.3)

• There is a simple iterative algorithm for computing a polynomial that is as-
sociated with a mask. (Theorem 2.4)

2. Main Work

We start with a precise definition of a refinable function.

Definition 2.1 (Refinable function). The vector m with m ∈ RZ and a finite
number of non-zero entries (m ∈ `0 (R)) is called a refinement mask for the function
ϕ if

ϕ(t) = 2 ·
∑
j∈Z

mj · ϕ(2 · t− j) (2.1)

holds. Vice versa the function ϕ is called refinable with respect to the mask m.

The factor 2 before the sum is chosen, such that the following law (Lemma 2.1)
about convolutions holds. Unfortunately this enforces adding or subtracting 1 here
and there in some of the other theorems. There seems to be no convention that
warrants overall simplicity.

Definition 2.2 (Convolution). For sequences h and g the convolution is defined
by

(h ∗ g)k =
∑
j∈Z

hj · gk−j

and for real functions the convolution is defined by

(ϕ ∗ ψ)(t) =

∫
R
ϕ(τ) · ψ(t− τ) d τ .
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Lemma 2.1. If ϕ is refinable with respect to h and ψ is refinable with respect to g,
then ϕ ∗ ψ is refinable with respect to h ∗ g.

For a proof see 5. For the proof of our theorems we need two further lemmas
about differentiation and integration.

Lemma 2.2. If the function ϕ is refinable with respect to mask m, then its deriva-
tive ϕ′ is refinable with respect to mask 2 ·m.

Proof.

ϕ(t) = 2 ·
∑
j∈Z

mj · ϕ(2 · t− j)

ϕ′(t) = 2 ·
∑
j∈Z

mj · 2 · ϕ′(2 · t− j)

Lemma 2.3. If the function ϕ is refinable with respect to mask m and
∑
jmj 6= 1,

then its antiderivative
(
t 7→ Φ(t) +

∑
j mj ·Φ(−j)
1−

∑
j mj

)
is refinable with respect to mask

1
2 ·m and the additive constant is the only possible one. We define the antiderivative
Φ by Φ(t) =

∫ t
0
ϕ(τ) d τ .

Proof. We start with the necessary condition, that is: Given that the law of the
anti-derivative holds, what are the possible integration constants?

Φ(t) + c = 2 ·
∑
j∈Z

1

2
·mj · (Φ(2 · t− j) + c)

Φ(t) + c · (1−
∑
j∈Z

mj) =
∑
j∈Z

mj ·
∫ 2·t−j

0

ϕ(τ) d τ

=
∑
j∈Z

mj ·
(∫ 2·t−j

−j
ϕ(τ) d τ + Φ(−j)

)

=
∑
j∈Z

mj ·
(

2 ·
∫ t

0

ϕ(2 · τ − j) d τ + Φ(−j)
)

=

∫ t

0

∑
j∈Z

2 ·mj · ϕ(2 · τ − j)

d τ +
∑
j∈Z

mj · Φ(−j)

=

∫ t

0

ϕ(τ) d τ +
∑
j∈Z

mj · Φ(−j)

c · (1−
∑
j∈Z

mj) =
∑
j∈Z

mj · Φ(−j)

Proof of the sufficient condition: By substituting c by
∑

j mj ·Φ(−j)
1−

∑
j mj

we verify that

the anti-derivative with that offset is actually refined by 1
2 ·m.
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If we generalize refinable functions to refinable distributions, then the Dirac

impulse is refined by the mask δ with δj =

{
1 : j = 0

0 : j 6= 0
and the k-th derivative

of the Dirac impulse is refined by 2k · δ. Vice versa the truncated power function(
t 7→ tk+

)
with k ∈ N and t+ =

{
t : t ≥ 0

0 : t < 0
is refined by 2−k−1 · δ. Intuitively said,

truncated power functions are antiderivatives of the Dirac impulse.
Once we are thinking about truncated power functions, we find that ordinary

power functions with natural exponents are also refinable. Then the next step is to
check, whether there are refinable polynomial functions. Indeed we find an example
like f(t) = 1 + 2 · t+ t2 that is refined by the mask 1

8 · (3,−3, 1).

2 · 1
8 · (3 · f(2t)− 3 · f(2t− 1) + 1 · f(2t− 2))

=
1

4
· (3 · (1 + 2 · 2t+ (2t)2)− 3 · (1 + 2 · (2t− 1) + (2t− 1)2)

+(1 + 2 · (2t− 2) + (2t− 2)2))

=
1

4
· (3 · (1 + 4t+ 4t2)− 3 · 4t2 + (1− 4t+ 4t2))

= 1 + 2 · t+ t2

Now that we have an example of a refinable polynomial function we like to know,
whether there are more examples, how we can characterize polynomial functions
that are refinable, and how we can find a mask, that refines a polynomial function.
Vice versa, we want to know what masks refine polynomial functions and what
polynomial a mask refines.

Before we start answering these questions we like to stress the difference between
a polynomial and a polynomial function.

Definition 2.3 (Polynomial and Polynomial function). A polynomial p of
degree n is a vector from R{0,...,n}. We need this for the actual computations and for
performing linear algebra. A polynomial function p̂ is a real function. The refinement
property is a property of real functions. The connection between polynomial and
polynomial function is

p̂(t) =

n∑
k=0

pk · tk .

Our first theorem answers the question, what polynomial function a mask can
refine.

Theorem 2.1. Given a mask m that sums up to 2−n−1 for a given natural num-
ber n, there is a polynomial p of degree n such that m refines p̂. With the additional
condition of the leading coefficient being 1, this polynomial is uniquely determined.

Proof. We show this theorem by induction over n.
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• Case n = 0

We want to show, that a mask m with sum 1
2 can only refine a constant

polynomial. Thus we assume contrarily that m refines a polynomial with a
degree d greater than zero. In the refinement relation

p̂(t) = 2 ·
∑
j∈Z

mj · p̂(2 · t− j)

we only consider the leading coefficient, that is, the coefficient of td.

pd = 2 ·
∑
j∈Z

mj · 2d · pd

= 2d · pd

From d > 0 it follows that pd = 0.
Thus the degree d must be zero and by normalization it must be p0 = 1. We
can easily check that this constant polynomial is actually refined by a mask
with sum 1

2 .
• Case n > 0: Induction step

The induction hypothesis is, that for any mask with coefficients’ sum 2−n−1

we can determine a refining polynomial, that is unique when normalized to
leading coefficient being 1. The induction claim is, that this is also true for any
mask m that sums up to 2−n−2. We observe that 2 ·m satisfies the premise of
the induction hypothesis and thus there is a polynomial q of degree n, that is
refined by 2 ·m, and that is unique when normalized. Since the coefficent sum
of 2 ·m is at most 1

2 we can apply Lemma 2.3, yielding a polynomial p that
is refined by m in the following way: Let Q be the antiderivative polynomial
of q where the absolute term is zero, then it is

∀k > 0 pk =
Qk
Qn

p0 =
2

Qn · (1− 2−n)
·
∑
j∈Z

mj · Q̂(−j) .

Now we turn to the question, why p is uniquely determined. Assume, we have
two normalized polynomial functions p̂0 and p̂1 that are both refined by mask
m. Then their derivatives p̂0

′ and p̂1
′ are refined by mask 2 ·m. Due to the

induction hypothesis the normalized polynomial functions of p̂0
′ and p̂1

′ are
equal. Lemma 2.3 implies that the antiderivatives with respect to p̂0

′ and p̂1
′

have the same integration constant, and thus p0 = p1.

Theorem 2.2. Given a polynomial p of degree n, there is a uniquely defined mask
m of support {0, . . . , n} that refines p̂.

For giving the proof of that theorem we introduce some matrices.
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Definition 2.4. We express shrinking a polynomial by factor k by the matrix Sk.

Sk ∈ R{0,...,n}×{0,...,n}

Sk = diag (1, k, . . . , kn)

We represent translation of a polynomial by 1 by the matrix T and translation of a
distance i by the power T i.

T ∈ R{0,...,n}×{0,...,n}

(T i)j,k =

{(
k
j

)
· (−i)k−j : j ≤ k

0 : j > k

The proof of Theorem 2.2 follows.

Proof. We define the matrix P that consists of translated polynomials as columns.

P = (T 0p, . . . , Tnp)

Now computing m is just a matter of solving the simultaneous linear equations

p = S2Pm .

We only have to show that P is invertible. We demonstrate that by doing a kind
of LU decomposition, that also yields an algorithm for actually computing m. Our
goal is to transform P into triangular form by successive subtractions of adjacent
columns. We define

∆p = Tp− p

what satisfies

∆(T kp) = T k∆p .

In the first step we replace all but the first columns of P by differences, yielding
the matrix U1.

U1 = (p,∆p, T∆p, . . . , Tn−1∆p)

= P · L−1
1

L−1
1 =



1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...
0 0 0 · · · 1

 L1 =


1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1
...
...
...
. . .

...
0 0 0 · · · 1


In the second step we replace all but the first two columns of U1 by differences (of
the contained differences), yielding the matrix U2.

U2 = (p,∆p,∆2p, T∆2p, . . . , Tn−2∆2p)

= U1 · L−1
2
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L−1
2 =



1 0 0 · · · 0

0 1 −1 · · · 0

0 0 1
. . . 0

...
...

...
. . .

...
0 0 0 · · · 1

 L2 =


1 0 0 · · · 0

0 1 1 · · · 1

0 0 1 · · · 1
...
...
...
. . .

...
0 0 0 · · · 1


We repeat this procedure n times, until we get

Un = (p,∆p,∆2p, . . . ,∆np)

P = Un · Ln · · · · · L2 · L1 .

Since the k-th difference of a polynomial of degree n is a polynomial of degree n−k,
the matrix Un is triangular and invertible. Thus P is invertible.

Theorem 2.3. If p is a polynomial of degree n and m is a mask that refines p̂,
then for every mask v the mask m + v ∗ (1,−1)n+1 refines p̂ as well. Only masks
of this kind refine p̂. The expression (1,−1)n+1 denotes the (n + 1)-th convolution
of the mask δ0 − δ1, that is (1,−1)0 = (1), (1,−1)1 = (1,−1), (1,−1)2 = (1,−2, 1)

and so on.

Proof. We denote the convolution of a mask m with a polynomial by the matrix
Cm.

Cm ∈ R{0,...,n}×{0,...,n}

Cm =

κ∑
i=ν

mi · T i

The refinement equation can be written

p = 2 · S2Cm · p .

Since Cm is a Laurent matrix polynomial expression with respect to T , it holds

Ch+g = Ch + Cg

Ch∗g = Ch · Cg .

2 · S2Cm+v∗(1,−1)n+1 · p
= S2(2 · Cm · p) + S2(2 · Cv∗(1,−1)n+1 · p)
= p+ S2(2 · Cv · (C(1,−1)n+1 · p))

(n+ 1)-th difference of an n-degree polynomial vanishes: C(1,−1)n+1 · p = 0

= p

We still have to show, that refining masks of p̂ always have the form m +

v ∗ (1,−1)n+1. Consider a mask h1 that refines p̂. By computing the Laurent
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polynomial division remainder we can reduce h1 to a mask h0 that has support
{0, . . . , n} and we can reduce m to a mask g with the same support.

m = g + v0 ∗ (1,−1)n+1

h1 = h0 + v1 ∗ (1,−1)n+1

From the above considerations we derive that both g and h0 refine p̂ and the unique-
ness property in Theorem 2.2 eventually gives us g = h0, thus

h1 = m+ (v1 − v0) ∗ (1,−1)n+1 .

Remark 2.1. By adding terms of the form v ∗ (1,−1)n+1 we can shift the support
of a mask, while the refined polynomials remain the same ones.

2.1. The cascade algorithm

There is also an iterative algorithm for the approximate computation of a polyno-
mial that is associated with a refinement mask. This is analogous to the cascade
algorithm known for refinable functions of bounded support. 2 The refinement re-
lation

p = 2 · S2Cm · p

is interpreted as recursively defined function sequence with

pj+1 = 2 · S2Cm · pj .

This iteration is in fact the vector iteration method for computing the eigenvector
that corresponds to the largest eigenvalue.

Theorem 2.4. Given a mask m that sums up to 2−n−1 for a given natural num-
ber n, and a starting polynomial p0 of degree n that is not orthogonal to the refined
polynomial, the recursion

pj+1 = 2 · S2Cm · pj
converges to a polynomial limj→∞ pj that is refined by m.

An appropriate choice for p0 is (0, . . . , 0, 1).

Proof. The matrix S2Cm expands to

S2Cm =

{
2j ·

(
k
j

)
·
∑κ
i=ν(−i)k−j ·mi : j ≤ k

0 : j > k

and thus is of upper triangular shape. This implies that the diagonal elements
2j ·

∑κ
i=νmi for j ∈ {0, . . . , n} are the eigenvalues. Because the mask sums up to

2−n−1 the eigenvalues of 2 · S2Cm are {1, . . . , 2−n}. That is the largest eigenvalue
is 1 and it is isolated. These are the conditions for the vector iteration method,
consequently the iteration converges to a vector that is a fixpoint of the refinement
operation.
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Remark 2.2. The eigenvectors of the eigenvalues are the respective derivatives of
the main refinable polynomial.

3. Implementation

The presented conversions from masks to polynomials and back are im-
plemented in the functional programming language Haskell as module
MathObj.RefinementMask2 of the NumericPrelude project 6. However, note that
the definition of the Haskell functions slightly differ from this paper, since the factor
2 must be part of the mask.

4. Related work

So far, refinable functions were mostly explored in the context of wavelet theory.
In this context an important problem was to design refinement masks that lead to
smooth finitely supported refinable functions. 7,8 It was shown that smoothness can
be estimated the following way: Decompose the refinement mask m into the form
(1, 1)n ∗ v, where n is chosen maximally. According to Lemma 2.1 this corresponds
to a convolution of functions. However, strictly speaking, v corresponds to a distri-
bution. The exponent n represents the order of a B-spline and is responsible for the
smoothness of the refinable function, whereas for v there is an eigenvalue problem,
where the largest eigenvalue determines how much the smoothness of the B-spline
is reduced.

The cascade algorithm 2 was developed in order to compute numerical ap-
proximations to refinable functions. A combination of the cascade algorithm and
Lemma 2.1 was used by 1 for computing scalar products and other integrals of prod-
ucts of refinable functions. This is required for solving partial differential equations
using a wavelet Gal�rkin approach.

Usually discrete wavelet functions are defined in terms of refinable functions
but were not considered refinable functions at first. However in 4 it is shown, that
wavelets are refinable with respect to infinite masks. The trick is to use polynomial
division for dividing the wavelet masks of adjacent scales: If ϕ is refinable with
respect to mask h, and ψ is a wavelet with respect to mask g and generator ϕ, then
ψ is refinable with respect to g↑2

g · h, g ↑ 2 is g upsampled by a factor of 2.

5. Future work

There are some obvious generalizations to be explored: Refinement with respect to
factors different from 2, separable multidimensional refinement and most general
multidimensional refinement with respect to arbitrary matrices.

Another interesting question is the following one: By Lemma 2.1 we know, that
convolution of functions maps to convolution of their refinement masks. We can use
this for defining a kind of convolution. In order to convolve two functions ϕ0 and ϕ1,
we compute refining masks m0 and m1, respectively, convolve the masks and then
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find a function that is refined by m0∗m1. In case of polynomial functions there is no
notion of convolution, because the involved integrals diverge. We can however define
a convolution based on refinement. Unfortunately, the mapping from a polynomial
function to a refinement mask is not unique, consequently the defined convolution
is not unique as well – not to speak of the arbitrary constant factor. If we choose
arbitrary masks from the admissible ones, then the convolution is not distributive
with addition, i.e. ψ ∗ (ϕ0 +ϕ1) = ψ ∗ϕ0 +ψ ∗ϕ1 is not generally satisfied. The open
question is, whether it is possible to choose masks for polynomials, such that the
polynomial convolution via refinement is commutative, associative and distributive.
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