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Abstract

In this paper we consider first order differential models of collective behaviors of groups

of agents based on the mass conservation equation. Models are formulated taking the spatial

distribution of the agents as the main unknown, expressed in terms of a probability measure

evolving in time. We develop an existence and approximation theory of the solutions to such

models and we show that some recently proposed models of crowd and swarm dynamics fit

our theoretic paradigm.

1 Introduction

This paper deals with mathematical models of collective behaviors of groups of interacting agents,
such as human crowds and swarms. The reference framework is that of first order differential
models ruled by the principle of conservation of mass and supplemented by a kinematic description
of the behavioral strategy developed by the agents. The number of individuals is assumed to be
finite, though arbitrarily large, their state being represented by their position evolving in time in
the Euclidean space R

d, d ≥ 1. Rather than looking at the agents singularly, we abstract their
spatiotemporal evolution into that of a suitable probability measure, representing the law of their
positions understood as random variables. This allows us to provide a unified theory for both
discrete and continuous models.

There are three main contributions of this paper. (i) We outline a basic set of modeling as-
sumptions, which allow us to prove the existence of probability measure solutions to a broad class
of models of collective behaviors of the kind described above. (ii) Under the very same assump-
tions, complemented with a suitable condition on the time and space discretization, we provide a
convergence result of an ad hoc numerical scheme, originally proposed in [9], for approximating
the solutions to such models. (iii) We reinterpret the rendez-vous, swarm, and crowd dynamics
models developed in [4, 5, 8, 9] in the light of our probabilistic description, showing that they
comply with the above modeling assumptions and are therefore in the scope of our existence and
approximation theory.

In more detail, the paper is organized as follows. After this Introduction, Section 1.1 briefly
introduces and explains the main notations and notions used throughout the other sections. Sec-
tion 2 proposes a probabilistic interpretation of the dynamics of systems of interacting agents,
discussing both the indefinite mass conservation equation and the related Cauchy problems. Then
it presents the modeling assumptions and offers an overview of the results proved in the subsequent
sections. Section 3 deals with the existence of solutions and Section 4 with the convergence of
the approximation scheme. These two sections may be skipped by readers not interested in the
technical details of the proofs. Section 5 addresses the above-cited crowd and swarm dynamics
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models, showing that they fit the theory in all cases interesting for the applications. Finally, Sec-
tion 6 gives an example of how ODE-based discrete models can be explicitly recovered from our
measure-theoretic framework. In addition, it shows by means of numerical tests the convergence
of the computational scheme discussed in Section 4 to the ODE solutions of such models.

1.1 Notations and background

In this section we quickly review the main notations and notions that we will extensively use in
the paper.

Functions and function spaces. We denote by C(A; B) the space of continuous functions
f : A → B. The set B is usually omitted if it is R. Coherently, we denote by C∞

c (Rd) the space
of real-valued infinitely differentiable functions with compact support in R

d.
The indicator function of a set A is 1A, namely 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x ∈ Ac.

Norms. We use |·| for the Euclidean norm in R
d and · for the corresponding inner product. The

open Euclidean ball with center x ∈ R
d and radius R ≥ 0 is denoted by BR(x). If f : Rd → R

d is
bounded, its ∞-norm is ‖f‖∞ := supx∈Rd |f(x)|.

Measures. Let B(Rd) be the Borel σ-algebra on R
d. If µ is a measure on the measurable space

(Rd, B(Rd)) and f : Rd → R
d is Borel, the integral of f w.r.t. µ over a measurable set A is denoted

by
∫

A
f dµ, or by

∫

A
f(x) dµ(x) when it is necessary to emphasize the variable of integration. The

Lebesgue measure in R
d is denoted Ld. However, for integrals with respect to Ld we will prefer

the usual symbol dx to dLd(x). If f is Borel, we denote by f#µ the push forward of µ through
f . Specifically, f#µ is the measure defined by the relation

∫

Rd

η d(f#µ) =

∫

Rd

η ◦ f dµ (1)

for all bounded (or f#µ-integrable) and Borel η : Rd → R. Taking η = 1A, A ∈ B(Rd), gives in
particular (f#µ)(A) = µ(f−1(A)).

Probability spaces. We denote by P1(R
d) the space of probability measures on (Rd, B(Rd))

whose first moment is finite, i.e.,
∫

Rd |x| dµ(x) < +∞. The space P2(R
d), that we will also

occasionally mention, is defined analogously using the second moment. Given two probability
measures µ, ν ∈ P1(R

d), their Wasserstein distance is defined to be

W1(µ, ν) = sup
ϕ∈Lip1(R

d)

∫

Rd

ϕd(ν − µ),

where Lip1(R
d) is the space of Lipschitz continuous functions ϕ : Rd → R with Lipschitz constant

Lip(ϕ) ≤ 1. It can be shown that W1 is a metric on P1(R
d) and that (P1(R

d), W1) is complete
(see e.g., [1, Proposition 7.1.5]).

Finally, to deal with curves in P1(R
d) parameterized by time, [0, T ] ∋ t 7→ µt ∈ P1(R

d), we
introduce the space C([0, T ]; P1(R

d)), which is complete with the metric

dist(µ•, ν•) := sup
t∈[0, T ]

W1(µt, νt).

2 Problem statement and main results

In this section we present our approach to the modeling of systems of interacting agents by means
of probability measures, and we give an overview of our results.
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2.1 Probabilistic description of systems of interacting agents

Crowds and swarms can be thought of, in abstract, as systems of N interacting agents in the
physical space Rd. The evolution of such systems in time is described by tracing the agent positions
at successive instants. Assume that the position of the i-th agent at time t is a random variable
X i

t from a fixed (i.e., time-independent) abstract probability space (Ω, F , P ) to the measurable
space (Rd, B(Rd)). The probability P is naturally transported by X i

t onto the new probability
µt := X i

t#P on (Rd, B(Rd)), called the law of X i
t . The fact that µt does not depend on the

agent label i means that agents are indistinguishable: the probability of finding a certain agent
somewhere in R

d at time t is the same for all agents, namely, given A ∈ B(Rd), P ({X i
t ∈ A}) =

µt(A) for all i = 1, . . . , N .
Let us now fix a measurable set A ⊆ R

d and count the average number of agents contained in
A at time t. This amounts to introducing the new random variable Yt,A : Ω → N defined as

Yt,A =
N
∑

i=1

1{Xi
t∈A}

and taking its expectation, that we can compute as follows:

E[Yt,A] =

N
∑

i=1

P ({X i
t ∈ A}) = Nµt(A).

Notice that E[Yt,•], thought of as a map on B(Rd), is a finite positive measure, say mt, over the
measurable space (Rd, B(Rd)), such that mt(R

d) = N all t. It is straightforward to identify mt

with the mass of the system at time t. From the above calculation we see that mt is proportional
to the probability measure of the distribution of the agents: mt(A) = Nµt(A), where mt(A) is
the mass of the set A ∈ B(Rd) at time t. In addition, mt(R

d) = N for all t, i.e., the total mass of
the system is constant in time.

The latter observation suggests that we can assume the principle of conservation of the mass,
stating that the mass of any measurable set Amay change in time only because of inflow or outflow
of mass from the boundary ∂A. In other words, the mass is neither created nor destroyed but
only moved across the domain. This is expressed by postulating the continuity equation (or mass
conservation equation) for the evolution of the measure mt:

∂mt

∂t
+∇ · (mtvt) = 0, (2)

where vt(x) is the velocity at time t in the point x ∈ R
d. In systems of interacting agents

the velocity is likely to be affected by the distribution of the agents themselves. Due to the
proportionality between mt and µt, this implies that vt may ultimately depend on the probability
µt. We assume in particular that vt depends on t only through µt itself, i.e., that the system is
autonomous. Finally, we write vt = v[µt] to emphasize such a structure of the velocity and notice
that Eq. (2) can be converted into an evolution equation for the probability µt:

∂µt

∂t
+∇ · (µtv[µt]) = 0 (3)

for x ∈ R
d and t ∈ (0, T ], where T > 0 is the final time. If µt solves Eq. (3), then mt formally

solves Eq. (2) with vt = v[mt/N ].

2.2 Cauchy problems

By supplementing Eq. (3) with an initial condition µ̄, the following Cauchy problem is obtained:






∂µt

∂t
+∇ · (µtv[µt]) = 0 in R

d × (0, T ]

µ0 = µ̄ in R
d,

(4)
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which models the spatiotemporal evolution of the agent distribution starting from the initial
configuration described by µ̄. Derivatives in problem (4) are meant in the sense of distributions,
which leads us to consider the following notion of weak solution:

Definition 1 (Weak solutions). Given µ̄ ∈ P1(R
d), we say that µ• ∈ C([0, T ]; P1(R

d)) is a weak
solution to problem (4) if

∫

Rd

φdµt =

∫

Rd

φdµ̄+

t
∫

0

∫

Rd

v[µτ ] · ∇φdµτ dτ, ∀φ ∈ C∞
c (Rd), ∀ t ∈ [0, T ]. (5)

As far as the probabilistic interpretation is concerned, we take the initial condition into account
by understanding µt in (4) as the law of the random variable X̂ i

t := E[X i
t |X i

0], the expectation of
X i

t conditioned to its initial value X i
0. In practice, µt is reinterpreted as the distribution of the

position of the i-th agent subject to the distribution of the corresponding initial position. From
the theory of conditional expectation, we known that X̂ i

t is a function of X i
0, i.e., there exists a

Borel mapping γt : R
d → R

d such that X̂ i
t = γt(X

i
0). This implies, in particular,

µt = γt#µ̄. (6)

In order for Eq. (6) to result in a representation formula for the solutions of problem (4), a
more precise characterization of the function γt is needed. Formally, we plug Eq. (6) into Eq. (5)
and compute

∫

Rd

[φ(γt(x)) − φ(x)] dµ̄(x) =

t
∫

0

∫

Rd

v[γτ#µ̄](γτ (x)) · ∇φ(γτ (x)) dµ̄(x) dτ

for an arbitrarily fixed test function φ. Next we notice that the integrand at the right-hand side
can be read as the derivative w.r.t. τ of the function φ(γτ (x)), provided we identify ∂

∂t
γt(x) with

v[γt#µ̄](γt(x)). Under this assumption we get

∫

Rd

[φ(γt(x)) − φ(x)] dµ̄(x) =

t
∫

0

∫

Rd

∂

∂τ
φ(γτ (x)) dµ̄(x) dτ

and further, interchanging the order of integration at the right-hand side,

=

∫

Rd

[φ(γt(x)) − φ(γ0(x))] dµ̄(x).

With the additional condition γ0(x) = x (i.e., γ0 is the identity function in R
d), this shows that

µt represented by Eq. (6) is formally a weak solution to the Cauchy problem (4).
To sum up, γt has been characterized as a function such that











∂γt(x)

∂t
= v[γt#µ̄](γt(x)), t ∈ (0, T ]

γ0(x) = x

(7)

for every x ∈ R
d. In transport theory, such a function is called a flow map. The physical interpre-

tation is that γt(A) is the configuration assumed by the set A at time t > 0 when transported by
the velocity field v. Alternatively, for x ∈ R

d the mapping t 7→ γt(x) is the trajectory of system
(7) issuing from x.

The method of representing solutions to the Cauchy problem (4) via flow maps is called method
of the characteristics. To develop our theory we will mostly prefer a different approach, more
suited to treat, by common ideas, existence and approximation of solutions to the models we are
interested in. The reader interested in the method of the characteristics is referred to [3] and
references therein for further details.
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2.3 Basic assumptions and results overview

Models based on Eq. (3) require to specify the velocity, namely its dependence on the probability
µt and on the space variable x. Rather than considering a specific model, we outline here a small
set of assumptions, which can be possibly regarded as modeling guidelines, whence the whole
theory will follow.

Assumption 1 (Properties of v). We assume that the velocity field v = v[µ](x) satisfies the
following properties.

(i) Uniform boundedness: there exists V > 0 such that

|v[µ](x)| ≤ V, ∀x ∈ R
d, ∀µ ∈ P1(R

d).

(ii) Lipschitz continuity: there exists a constant Lip(v) > 0, independent of both the space
variable and the probability, such that

|v[ν](y)− v[µ](x)| ≤ Lip(v)(|y − x|+W1(µ, ν)), ∀x, y ∈ R
d, ∀µ, ν ∈ P1(R

d).

(iii) Linearity w.r.t. the measure for convex combinations:

v[αµ+ (1 − α)ν] = αv[µ] + (1− α)v[ν], ∀µ, ν ∈ P1(R
d), ∀α ∈ [0, 1].

From this basic set of hypotheses we will be able to prove, in Section 3, existence of solutions
to the Cauchy problem (4) in the appropriate weak sense of Definition 1. More precisely, to this
end we need the further technical assumption that the initial condition have finite first and second
order moments:

Assumption 2 (Initial condition). We assume that µ̄ ∈ P1(R
d) ∩ P2(R

d).

Then, our main result in Section 3 reads:

Theorem (cf. Theorem 5). Under Assumptions 1, 2 there exists a weak solution to problem (4).

Notice that Assumption 2 is readily satisfied if, for instance, µ̄ has compact support. Indeed,
in such a case supp µ̄ is bounded, i.e., there exists a ball BR(0) of sufficiently large radius R > 0
such that, for every p ≥ 0,

∫

Rd

|x|p dµ̄(x) =

∫

supp µ̄

|x|p dµ̄(x) ≤
∫

BR(0)

|x|p dµ̄ ≤ Rp.

The compactness of the support of µ̄ makes perfectly sense from the modeling point of view, in
fact a crowd or a swarm spread on the whole space would sound quite unrealistic. Assumption 2
is therefore not restrictive for our purposes.

In Section 4 we turn our attention to the approximation of solutions to problem (4). We
introduce a sequence of grids in R

d × [0, T ] with mesh parameters hk in space and ∆tk in time.
The index k relates to the grid refinement, in such a way that hk, ∆tk → 0 when k → ∞.
Specifically, we consider the numerical scheme proposed in [9], which at each time step seeks
an approximation of µt via a probability measure absolutely continuous w.r.t. to Lebesgue and
piecewise constant in space. By introducing a linear-in-time interpolation of such approximate
solutions and passing to the limit k → ∞, we obtain the following convergence result:

Theorem (cf. Theorem 12). Under Assumptions 1, 2, suppose that hk = o(∆tk) for k → ∞. If
the sequence of approximate solutions converges to some µ• ∈ C([0, T ]; P1(R

d)) when the grid is
refined then µ• is a weak solution to problem (4).
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Note that convergence when the grid is refined is an assumption of this theorem. In this respect,
this result resembles the Lax-Wendroff’s Theorem for the numerical approximation of hyperbolic
conservation laws (see e.g., [7]). However, we anticipate that if there exists a bounded subset of
R

d, that at each time step and for all level of refinement of the grid contains the supports of all
the approximate solutions, then the sequence does converge in C([0, T ]; P1(R

d)) to some limit,
which is then a weak solution to problem (4) (cf. Corollary 13).

In Section 5 we apply the above theory to the models of swarm and crowd dynamics presented
in [5, 8]. As shown in [6], these models can be derived from the common framework provided by
Eq. (3), with a velocity field of the form

v[µt](x) = vd(x) +N

∫

Rd

f(|y − x|)r(y − x)χUx
(y) dµt(y),

where the integral expresses the interactions among the agents. Assuming some minimal regularity
of the functions vd, f , r, χUx

, we prove that this velocity complies with Assumption 1 in case of
both isotropic and anisotropic interactions, cf. Sections 5.1 and 5.2, respectively. As a consequence,
for the above-mentioned models we deduce existence of probability measure solutions, that can be
duly approximated via the numerical scheme discussed in Section 4.

Our results are exemplified in Section 6, where we show that, given a purely atomic initial
measure µ̄, i.e.,

µ̄ =
1

N

N
∑

l=1

δxl
0

(xl
0 ∈ R

d),

a solution to problem (4) can be found by solving a system of ODEs whose unknowns are the
trajectories of the agents. In addition, using a numerical solution of these ODEs as a benchmark,
we are able to visualize the convergence of the numerical scheme presented in Section 4.

3 Existence of solutions

This section is devoted to give a constructive proof of the existence of solutions to the Cauchy
problem (4). Under Assumptions 1, 2, the solution is constructed as the limit of a suitable sequence
of curves in P1(R

d) parameterized by time t.
Let (∆tk)k≥0 be a sequence of time steps such that ∆tk → 0 when k → ∞. We consider the

measures (µk
n)n≥0 generated recursively as

{

µk
n+1 = γk

n#µk
n, n = 0, 1, . . . , Nk − 1,

µk
0 = µ̄,

(8)

where Nk ∈ N is such that Nk∆tk = T and γk
n is the (one-step) flow map

γk
n(x) = x+ v[µk

n](x)∆tk. (9)

It can be shown (see e.g., [9]) that (8) is the explicit time discretization of (4) at the time instants
tkn = n∆tk. In particular, the mapping γk

n results from the explicit time discretization of problem
(7). Since µ̄ is a probability measure, by induction it is immediate to check that so are all of the
µk
n’s.
By linear interpolation in time, we define the following curves:

Mk
t =

Nk−1
∑

n=0

[(

1− t− tkn
∆tk

)

µk
n +

t− tkn
∆tk

µk
n+1

]1[tkn, t
k
n+1

](t).

Obviously, Mk
t is a probability measure for each t ∈ [0, T ] and each k ≥ 0.
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We will use the curves Mk
• to construct, in the limit k → ∞, a weak solution to problem (4).

The proof is divided in two parts, each of which proceeds through a series of technical intermediate
steps developed in the next two sections. First, we show that the measures Mk

• converge to a limit;
later, we show that such limit satisfies Eq. (5).

3.1 Convergence of the measures Mk

t

In this section we prove that, when k → ∞ and up to subsequences, Mk
• converges to a limit µ•

in C([0, T ]; P1(R
d)).

We begin by establishing the necessary regularity properties of the iterates µk
n and the curves

Mk
• .

Lemma 1. We have µk
n ∈ P1(R

d) ∩ P2(R
d) for all n = 1, . . . , Nk and all k ≥ 0. In addition:

sup
k≥0

sup
1≤n≤Nk

∫

Rd

|x|p dµk
n(x) < +∞, p = 1, 2,

i.e., first and second moments of the µk
n’s are uniformly bounded.

Proof. (i) Let us begin by considering the case p = 1. Note that
∫

Rd

|x| dµk
n+1(x) =

∫

Rd

∣

∣γk
n(x)

∣

∣ dµk
n(x)

≤
∫

Rd

|x| dµk
n(x) + ∆tk

∫

Rd

∣

∣v[µk
n](x)

∣

∣ dµk
n(x)

≤
∫

Rd

|x| dµk
n(x) + V∆tk,

then
∫

Rd

|x| dµk
n+1(x) −

∫

Rd

|x| dµk
n(x) ≤ V∆tk,

and summing telescopically over n we get
∫

Rd

|x| dµk
n(x) ≤

∫

Rd

|x| dµ̄(x) + V T. (10)

Since µ̄ ∈ P1(R
d), this implies µk

n ∈ P1(R
d) for all n = 1, . . . , Nk and all k ≥ 0. But the

right-hand side of (10) is independent of both n and k, hence this also provides the uniform
bound for p = 1.

(ii) We argue analogously for the case p = 2. We note that
∫

Rd

|x|2 dµk
n+1(x) =

∫

Rd

∣

∣γk
n(x)

∣

∣

2
dµk

n(x) =

∫

Rd

∣

∣x+ v[µk
n](x)∆tk

∣

∣

2
dµk

n(x)

and that
∣

∣x+ v[µk
n](x)∆tk

∣

∣

2
= |x|2 + 2∆tkx · v[µk

n](x) + ∆t2k
∣

∣v[µk
n](x)

∣

∣

2

≤ |x|2 + 2V∆tk |x|+ V 2∆t2k,

therefore
∫

Rd

|x|2 dµk
n+1(x) ≤

∫

Rd

|x|2 dµk
n(x) + 2V∆tk

∫

Rd

|x| dµk
n(x) + V 2∆t2k.

7



Moreover, using the bound (10) we deduce

∫

Rd

|x|2 dµk
n+1(x)−

∫

Rd

|x|2 dµk
n(x) ≤ 2V∆tk

∫

Rd

|x| dµ̄(x) + 2V 2T∆tk + V 2∆t2k

and, summing telescopically over n,
∫

Rd

|x|2 dµk
n(x) ≤

∫

Rd

|x|2 dµ̄(x) + 2V T

∫

Rd

|x| dµ̄(x) + 3V 2T 2

whence the claims of the lemma follow also for p = 2.

Lemma 2. For all k ≥ 0 we have

W1(M
k
s , M

k
t ) ≤ V |t− s| , ∀ s, t ∈ [0, T ], (11)

i.e., the curves Mk
• ∈ C([0, T ]; P1(R

d)) are Lipschitz continuous uniformly in k. Moreover,

sup
k≥0

sup
t∈[0, T ]

∫

Rd

|x|p dMk
t (x) < +∞, p = 1, 2.

Proof. (i) We claim Mk
t ∈ P1(R

d) for all t, k. To show this, we fix k ≥ 0 and t ∈ [0, T ] and
observe that there exists 0 ≤ n ≤ Nk such that t ∈ [tkn, t

k
n+1]. Hence, using Eq. (10), we

obtain
∫

Rd

|x| dMk
t (x) =

(

1− t− tkn
∆tk

)∫

Rd

|x| dµk
n(x) +

t− tkn
∆tk

∫

Rd

|x| dµk
n+1(x) ≤

∫

Rd

|x| dµ̄(x) + V T.

From the arbitrariness of t ∈ [0, T ], k ≥ 0 our claim follows, along with the uniform bound-
edness of the first moment of Mk

t in both t and k.

(ii) We prove now the estimate (11). Let s, t ∈ [0, T ] and assume, without loss of generality,
that s ≤ t. Then there exist two integers m and n, such that 0 ≤ m ≤ n ≤ Nk, with the
property that tkm ≤ s ≤ tkm+1 and tkn ≤ t ≤ tkn+1. Therefore we can write

Mk
s =

(

1− s− tkm
∆tk

)

µk
m +

s− tkm
∆tk

µk
m+1, Mk

t =

(

1− t− tkn
∆tk

)

µk
n +

t− tkn
∆tk

µk
n+1

and further, owing to the triangle inequality,

W1(M
k
s , M

k
t ) ≤ W1(M

k
s , µ

k
m+1) +

n−1
∑

j=m+1

W1(µ
k
j , µ

k
j+1) +W1(µ

k
n, M

k
t ). (12)

Notice that

W1(M
k
s , µ

k
m+1) = sup

ϕ∈Lip1(R
d)

∫

Rd

ϕd(µk
m+1 −Mk

s )

=

(

1− s− tkm
∆tk

)

sup
ϕ∈Lip1(R

d)

∫

Rd

ϕd(µk
m+1 − µk

m)

=
tkm+1 − s

∆tk
W1(µ

k
m, µk

m+1)

and analogously W1(µ
k
n, M

k
t ) = (t − tkn)W1(µ

k
n, µ

k
n+1)/∆tk, thus, according to Eq. (12),

estimating W1(M
k
s , M

k
t ) amounts to estimating W1(µ

k
i , µ

k
i+1) for arbitrary 0 ≤ i ≤ Nk − 1.
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For any ϕ ∈ Lip1(R
d), using µk

i+1 = γk
i #µk

i yields
∫

Rd

ϕ(x) d(µk
i+1 − µk

i )(x) =

∫

Rd

(ϕ(γk
i (x))− ϕ(x)) dµk

i (x)

≤
∫

Rd

∣

∣γk
i (x) − x

∣

∣ dµk
i (x) = ∆tk

∫

Rd

∣

∣v[µk
i ](x)

∣

∣ dµi(x) ≤ V∆tk,

consequently W1(µ
k
i , µ

k
i+1) ≤ V∆tk all i. From Eq. (12) we deduce

W1(M
k
s , M

k
t ) ≤ V [(tkm+1 − s) + (n−m− 1)∆tk + (t− tkn)]

= V (t− s+ tkm+1 − tkm −∆tk) = V (t− s),

which proves our claim.

(iii) Finally, we claim Mk
t ∈ P2(R

d) for all t, k. Arguing like in (i) we have
∫

Rd

|x|2 dMk
t (x) =

(

1− t− tkn
∆tk

)∫

Rd

|x|2 dµk
n(x) +

t− tkn
∆tk

∫

Rd

|x|2 dµk
n+1(x)

≤
∫

Rd

|x|2 dµ̄(x) + 2V T

∫

Rd

|x| dµ̄(x) + 3V 2T 2,

where Lemma 1 has been used. This proves the claim and also the uniform boundedness of
the second moment of Mk

t in both t and k.

We are now ready to prove the main convergence result of this section.

Proposition 3. There exists µ• ∈ C([0, T ]; P1(R
d)) and there exists a subsequence (M

kj

• )j≥0

such that
lim
j→∞

sup
t∈[0, T ]

W1(M
kj

t , µt) = 0.

Proof. It suffices to prove that {Mk
• }k≥0 is a relatively compact subset ofC([0, T ]; P1(R

d)). Owing
to Ascoli-Arzelà’s Theorem, this happens if {Mk

• }k≥0 is equicontinuous and {Mk
t }k≥0 is relatively

compact in P1(R
d) for all t ∈ [0, T ].

(i) Equicontinuity follows from the estimate (11). Indeed, let ε > 0 then for δ = ε/(2V ), which
does not depend on k, we have |t− s| < δ ⇒ W1(M

k
s , M

k
t ) ≤ ε/2 < ε.

(ii) According to [1, Proposition 7.1.5], the relative compactness of {Mk
t }k≥0 in P1(R

d) is equiv-
alent to the fact that {Mk

t }k≥0 be tight and have uniformly integrable first moments.

(ii-a) Using [1, Remark 5.1.5], a sufficient condition for tightness is that there exists a function
ϕ : Rd → [0, +∞], whose sublevel sets {x ∈ R

d : ϕ(x) ≤ c} are compact in R
d, such

that

sup
k≥0

∫

Rd

ϕdMk
t < +∞.

Taking ϕ(x) = |x| and invoking Lemma 2 we see that this condition is fulfilled, hence
{Mk

t }k≥0 is tight.

(ii-b) Using [1, Eq. (5.1.20)], a sufficient condition for the uniform integrability of the first
moments of {Mk

t }k≥0 is that there exists p > 1 such that

sup
k≥0

∫

Rd

|x|p dMk
t (x) < +∞.

From Lemma 2 we know that this actually holds for p = 2.

Since {Mk
• }k≥0 is relatively compact in C([0, T ]; P1(R

d)), up to subsequences we obtain that the
sequence (Mk

• )k≥0 converges in C([0, T ]; P1(R
d)) and we are done.
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3.2 The limit µ• solves problem (4)

In the previous section we have constructed a map µ• as the limit of the sequence (Mk
• )k≥0. In

this section we prove that such a µ• is a weak solution to problem (4). To this end, we first derive
an equation solved by the Mk

t ’s, then we pass to the limit k → ∞ thanks to Proposition 3.
In the following, φ ∈ C∞

c (Rd) is a fixed test function. Using the definition of Mk
t , let us

compute

∫

Rd

φdMk
t =

Nk−1
∑

n=0







(

1− t− tkn
∆tk

)∫

Rd

φdµk
n +

t− tkn
∆tk

∫

Rd

φdµk
n+1







1[tkn, t
k
n+1

](t)

=

Nk−1
∑

n=0







∫

Rd

φdµk
n +

t− tkn
∆tk

∫

Rd

(φ ◦ γk
n − φ) dµk

n







1[tkn, t
k
n+1

](t). (13)

A Taylor expansion of φ ◦ γk
n with Lagrange’s reminder gives

φ(γk
n(x)) = φ(x + v[µk

n](x)∆tk)

= φ(x) +∇φ(x) · v[µk
n](x)∆tk +

1

2
(D2φ(x̄)v[µk

n](x)) · v[µk
n](x)∆t2k,

where D2φ is the Hessian of φ and x̄ is a point of the segment connecting x and x+ v[µk
n](x)∆tk.

Hence the previous computation specializes as

∫

Rd

φdMk
t =

Nk−1
∑

n=0







∫

Rd

φdµk
n + (t− tkn)

∫

Rd

v[µk
n] · ∇φdµk

n

+
1

2
∆tk(t− tkn)

∫

Rd

(D2φ(x̄)v[µk
n]) · v[µk

n] dµ
k
n







1[tkn, t
k
n+1

](t).

We claim now that the mapping t 7→
∫

Rd φdMk
t is Lipschitz continuous, hence a.e. differentiable

by Rademacher’s Theorem. To see this, observe that x 7→ φ(x)/Lip(φ) is Lipschitz continuous
with Lipschitz constant at most 1, so that

∣

∣

∣

∣

∣

∣

∫

Rd

φdMk
t −

∫

Rd

φdMk
s

∣

∣

∣

∣

∣

∣

= Lip(φ)

∣

∣

∣

∣

∣

∣

∫

Rd

φ

Lip(φ)
d(Mk

t −Mk
s )

∣

∣

∣

∣

∣

∣

≤ Lip(φ)W1(M
k
s , M

k
t ) ≤ Lip(φ)V |t− s| .

Thus, using Eq. (13), we compute the derivative

d

dt

∫

Rd

φdMk
t =

Nk−1
∑

n=0







∫

Rd

v[µk
n] · ∇φdµk

n +
1

2
∆tk

∫

Rd

(D2φ(x̄)v[µk
n]) · v[µk

n] dµ
k
n







1[tkn, t
k
n+1

](t). (14)

Let us consider now:

∫

Rd

v[Mk
t ] · ∇φdMk

t =

Nk−1
∑

n=0







(

1− t− tkn
∆tk

)∫

Rd

v[Mk
t ] · ∇φdµk

n

+
t− tkn
∆tk

∫

Rd

v[Mk
t ] · ∇φdµk

n+1







1[tkn, t
k
n+1

](t)
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and invoke Assumption 1-(iii) to get

=

Nk−1
∑

n=0

∫

Rd

v[µk
n] · ∇φdµk

n1[tkn, t
k
n+1

](t)

+

Nk−1
∑

n=0







t− tkn
∆tk

∫

Rd

v[µk
n] · ∇φd(µk

n+1 − µk
n)

−
(

t− tkn
∆tk

)2 ∫

Rd

(v[µk
n+1]− v[µk

n]) · ∇φdµk
n

+

(

t− tkn
∆tk

)2 ∫

Rd

(v[µk
n+1]− v[µk

n]) · ∇φdµk
n+1







1[tkn, t
k
n+1

](t).

Using this in (14) gives

d

dt

∫

Rd

φdMk
t −

∫

Rd

v[Mk
t ] · ∇φdMk

t =

Nk−1
∑

n=0







1

2
∆tk

∫

Rd

(D2φ(x̄)v[µk
n]) · v[µk

n] dµ
k
n

− t− tkn
∆tk

∫

Rd

v[µk
n] · ∇φd(µk

n+1 − µk
n)

+

(

t− tkn
∆tk

)2 ∫

Rd

(v[µk
n+1]− v[µk

n]) · ∇φdµk
n

−
(

t− tkn
∆tk

)2 ∫

Rd

(v[µk
n+1]− v[µk

n]) · ∇φdµk
n+1







1[tkn, t
k
n+1

](t).

(15)

Formally we can regard this expression as an equation satisfied by Mk
t . The remaining of this

section is devoted to relate this equation to Eq. (5).

Set H := ‖D2φ‖∞ = Lip(∇φ) and notice that, owing to Assumption 1-(i), (ii), the function
x 7→ v[µk

n](x) · ∇φ(x) is Lipschitz continuous with

Lip(v · ∇φ) ≤ HV + Lip(v)‖∇φ‖∞ =: L. (16)

Consequently:

∣

∣

∣

∣

∣

∣

d

dt

∫

Rd

φdMk
t −

∫

Rd

v[Mk
t ] · ∇φdMk

t

∣

∣

∣

∣

∣

∣

≤
Nk−1
∑

n=0

{

1

2
HV 2∆tk +

t− tkn
∆tk

L

∣

∣

∣

∣

∣

∣

∫

Rd

v[µk
n] · ∇φ

L
d(µk

n+1 − µk
n)

∣

∣

∣

∣

∣

∣

+ 2

(

t− tkn
∆tk

)2

‖∇φ‖∞W1(µ
k
n, µ

k
n+1)

}1[tkn, t
k
n+1

](t)

≤ C

Nk−1
∑

n=0

{

∆tk +
t− tkn
∆tk

W1(µ
k
n, µ

k
n+1)

+

(

t− tkn
∆tk

)2

W1(µ
k
n, µ

k
n+1)

}1[tkn, t
k
n+1

](t)
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where C := max{ 1
2HV 2, L, 2‖∇φ‖∞}. But W1(µ

k
n, µ

k
n+1) ≤ V∆tk, therefore

≤ C

Nk−1
∑

n=0

{

∆tk + V (t− tkn) + V
(t− tkn)

2

∆tk

}1[tkn, t
k
n+1

](t).

Now, for t ∈ [tkn, t
k
n+1] it results t− tkn ≤ ∆tk. In addition,

∑Nk−1
n=0 1[tkn, t

k
n+1

](t) = 1[0, T ](t), hence

finally

≤ C(1 + 2V )∆tk1[0, T ](t).

Integrating Eq. (15) between 0 and t ≤ T and using the last inequality yields

∣

∣

∣

∣

∣

∣

t
∫

0





d

dτ

∫

Rd

φdMk
τ −

∫

Rd

v[Mk
τ ] · ∇φdMk

τ



 dτ

∣

∣

∣

∣

∣

∣

≤
t

∫

0

∣

∣

∣

∣

∣

∣

d

dτ

∫

Rd

φdMk
τ −

∫

Rd

v[Mk
τ ] · ∇φdMk

τ

∣

∣

∣

∣

∣

∣

dτ

≤ C(1 + 2V )T∆tk

so that, by further manipulating the left-hand side and taking the limit for k → ∞, we obtain

lim
k→∞

∣

∣

∣

∣

∣

∣

∫

Rd

φdMk
t −

∫

Rd

φdµ̄−
t

∫

0

∫

Rd

v[Mk
τ ] · ∇φdMk

τ dτ

∣

∣

∣

∣

∣

∣

= 0. (17)

To infer from (17) that µt solves (5), we need the following convergence result.

Lemma 4. When k → ∞ we have, up to subsequences,

∫

Rd

φdMk
t →

∫

Rd

φdµt and

t
∫

0

∫

Rd

v[Mk
τ ] · ∇φdMk

τ dτ →
t

∫

0

∫

Rd

v[µτ ] · ∇φdµτ dτ

for all t ∈ [0, T ].

Proof. (i) For the first limit we write

∣

∣

∣

∣

∣

∣

∫

Rd

φdµt −
∫

Rd

φdMk
t

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

Rd

φd(µt −Mk
t )

∣

∣

∣

∣

∣

∣

= Lip(φ)

∣

∣

∣

∣

∣

∣

∫

Rd

φ

Lip(φ)
d(µt −Mk

t )

∣

∣

∣

∣

∣

∣

≤ Lip(φ)W1(M
k
t , µt),

and, up to passing to a suitable subsequence of (Mk
• )k≥0, we conclude by applying Proposi-

tion 3.

(ii) For the second limit we preliminarily observe that |
∫

Rd v[M
k
τ ] · ∇φdMk

τ | ≤ V ‖∇φ‖∞, thus,
by dominated convergence,

lim
k→∞

t
∫

0

∫

Rd

v[Mk
τ ] · ∇φdMk

τ dτ =

t
∫

0



 lim
k→∞

∫

Rd

v[Mk
τ ] · ∇φdMk

τ



 dτ. (18)

12



Now
∣

∣

∣

∣

∣

∣

∫

Rd

v[µτ ] · ∇φdµτ −
∫

Rd

v[Mk
τ ] · ∇φdMk

τ

∣

∣

∣

∣

∣

∣

≤
∫

Rd

∣

∣v[µτ ]− v[Mk
τ ]
∣

∣ · |∇φ| dµτ

+

∣

∣

∣

∣

∣

∣

∫

Rd

v[Mk
τ ] · ∇φd(µτ −Mk

τ )

∣

∣

∣

∣

∣

∣

≤ (‖∇φ‖∞ Lip(v) + L)W1(M
k
τ , µτ ),

L being the constant defined in Eq. (16). Proposition 3 implies then
∫

Rd v[M
k
τ ] · ∇φdMk

τ →
∫

Rd v[µτ ] · ∇φdµτ for all τ ∈ [0, T ], and the thesis follows from Eq. (18).

Combining Eq. (17) and Lemma 4, and thanks to the arbitrariness of φ, we obtain that µ•

solves problem (4) in the sense of Definition 1. In conclusion, we have proved:

Theorem 5 (Existence). Let Assumptions 1, 2 hold. Then there exists a weak solution µ• ∈
C([0, T ]; P1(R

d)) to the Cauchy problem (4).

4 Approximation of the solutions

This section is devoted to a convergence analysis of the numerical scheme proposed in [9] for
the approximation of the solutions to problem (4). We begin by sketching the main ideas which
underlie the construction of the scheme, referring the reader to the above-cited paper for a detailed
derivation. The scheme is obtained from a twofold approximation of problem (4), in time and in
space. To this goal, we introduce a discretization of the time interval [0, T ] by means of discrete
instants tkn = n∆tk, where the index n ranges from 0 to a value Nk such that Nk∆tk = T and the
time step ∆tk > 0 tends to 0 when k → ∞. By this discretization, we obtain the discrete-time
dynamical system (8). Then, we introduce a space discretization in the following way. We define a
pairwise disjoint partition of Rd made of measurable elements Ek

i ∈ B(Rd), i = (i1, . . . , id) ∈ Z
d,

k ≥ 0, such that
⋃

i∈Zd

Ek
i = R

d, Ek
i ∩Ek

j = ∅ ∀ i 6= j

for all k ≥ 0. For the sake of simplicity, we assume that the Ek
i ’s are hypercubes of edge length

hk > 0, with hk → 0 when k → ∞. Specifically,

Ek
i =

d×
l=1

[

il −
1

2
, il +

1

2

)

hk.

Note that the index k identifies the level of refinement of the numerical grid. Using this space
discretization, we approximate both the initial condition µ̄ and the measures µk

n by means of
piecewise constant measures λk

n ≪ Ld, n = 0, . . . , Nk, k ≥ 0. More precisely, dλk
n = ρkn dx with

ρkn(x) =
∑

i∈Zd

ρni 1Ek
i
(x).

The space discretization makes it necessary to approximate also the flow map γk
n defined in Eq. (9).

This is accomplished by the mapping

γ̃k
n(x) = x+ ṽkn(x)∆tk, ṽkn(x) =

∑

i∈Zd

v[λk
n](x

k
i )1Ek

i
(x),

xk
i being a point of the grid cell Ek

i (e.g., its center xk
i = ihk). In practice, the velocity v[µk

n](x)
is approximated by the piecewise constant field ṽkn(x) taking in Ek

i the value that v, computed
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w.r.t. the measure λk
n, takes in xk

i . Notice that
∣

∣ṽkn(x)
∣

∣ ≤ V for all x ∈ R
d, all n = 0, . . . , Nk, and

all k ≥ 0 because of Assumption 1-(i).
By imposing λk

n+1(E
k
i ) = (γ̃k

n#λk
n)(E

k
i ) for each i ∈ Z

d, we deduce the following explicit-in-
time scheme relating recursively the coefficients {ρni } at two successive time steps:

ρn+1
i =

1

hd
k

∑

j∈Zd

ρnj Ld(Ek
j ∩ (γ̃k

n)
−1(Ek

i )), (19)

where hd
k is Ld(Ek

i ). To start up the scheme one has to provide the coefficients ρ0i , that we obtain
as

ρ0i =
1

hd
k

µ̄(Ek
i ), i ∈ Z

d. (20)

We are now ready to start the analysis of the proposed scheme. To this end, we begin with a
simple property of the approximation measures.

Lemma 6. For every n = 0, . . . , Nk, k ≥ 0, the λk
n’s are probability measures.

Proof. (i) The claim is certainly true for λk
0 , since Eq. (20) shows that ρ0i ≥ 0 all i and further-

more

λk
0(R

d) =

∫

Rd

ρk0(x) dx = hd
k

∑

i∈Zd

ρ0i =
∑

i∈Zd

µ̄(Ek
i ) = µ̄(Rd) = 1,

where we have used the σ-additivity of µ̄.

(ii) If we assume now that λk
n is a probability measure for a certain n, using Eq. (19) we get

ρn+1
i ≥ 0 all i and moreover

λk
n+1(R

d) = hd
k

∑

i∈Zd

ρn+1
i =

∑

i∈Zd

∑

j∈Zd

ρnj Ld(Ek
j ∩ (γ̃k

n)
−1(Ek

i ))

=
∑

j∈Zd

ρnj
∑

i∈Zd

Ld(Ek
j ∩ (γ̃k

n)
−1(Ek

i )) =
∑

j∈Zd

ρnj Ld(Ek
j ∩ (γ̃k

n)
−1(Rd))

= hd
k

∑

j∈Zd

ρnj = λk
n(R

d) = 1,

where we have used the fact that (γ̃k
n)

−1(Ek
i ) are pairwise disjoint and that set operations,

e.g., union, commute with the inverse image of a function. By induction on n, and by the
arbitrariness of k ≥ 0, the claim follows.

The next result shows that the link between two successive measures λk
n, λ

k
n+1 is a push forward

as defined by Eq. (1), provided we restrict test functions to simple functions adapted to the spatial
grid {Ek

i }i∈Zd , i.e., piecewise constant functions s : Rd → R of the form

s(x) =
∑

i∈Zd

αi1Ek
i
(x) (αi ∈ R).

Lemma 7. Let s : Rd → R be simple over the grid {Ek
i }i∈Zd. Then

∫

Rd

s dλk
n+1 =

∫

Rd

s ◦ γ̃k
n dλ

k
n.

Proof. We have
∫

Rd

s dλk
n+1 = hd

k

∑

i∈Zd

αiρ
n+1
i =

∑

i∈Zd

αi

∑

j∈Zd

ρnj Ld(Ek
j ∩ (γ̃k

n)
−1(Ek

i ))

=
∑

j∈Zd

ρnj
∑

i∈Zd

αiLd(Ek
j ∩ (γ̃k

n)
−1(Ek

i )).
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Notice that s(γ̃k
n(x)) =

∑

i∈Zd αi1(γ̃k
n)

−1(Ek
i
)(x), i.e., s ◦ γ̃k

n is piecewise constant over the sets

(γ̃k
n)

−1(Ek
i ), which form a pairwise disjoint partition of Rd. Therefore, for any given A ∈ B(Rd),

∫

A

s(γ̃k
n(x)) dx =

∑

i∈Zd

∫

A∩(γ̃k
n)

−1(Ek
i
)

s(γ̃k
n(x)) dx =

∑

i∈Zd

αiLd(A ∩ (γ̃k
n)

−1(Ek
i )).

For A = Ek
j this enables us to continue the previous computation as

∫

Rd

s dλk
n+1 =

∑

j∈Zd

ρnj

∫

Ek
j

s(γ̃k
n(x)) dx =

∫

Rd

s ◦ γ̃k
n dλ

k
n

and to obtain the thesis.

An immediate consequence of this lemma is the following result, that will be fundamental for
the sequel.

Lemma 8. For all Lipschitz continuous ϕ : Rd → R we have

∣

∣

∣

∣

∣

∣

∫

Rd

ϕdλk
n+1 −

∫

Rd

ϕ ◦ γ̃k
n dλ

k
n

∣

∣

∣

∣

∣

∣

≤ 2 Lip(ϕ)
√
dhk, ∀n = 0, . . . , Nk.

Proof. We consider the simple function

s(x) =
∑

i∈Zd

ϕ(xk
i )1Ek

i
(x)

and, using Lemma 7, we compute:

∫

Rd

ϕ(x) dλk
n+1(x) =

∫

Rd

(ϕ(x) − s(x)) dλk
n+1 +

∫

Rd

s(x) dλk
n+1(x)

=

∫

Rd

(ϕ(x) − s(x)) dλk
n+1(x) +

∫

Rd

[s(γ̃k
n(x)) − ϕ(γ̃k

n(x))] dλ
k
n(x)

+

∫

Rd

ϕ(γ̃k
n(x)) dλ

k
n(x)

=
∑

i∈Zd











∫

Ek
i

(ϕ(x) − ϕ(xk
i )) dλ

k
n+1(x) +

∫

Ek
i

(ϕ(xk
i )− ϕ(x)) d(γ̃k

n#λk
n)(x)











+

∫

Rd

ϕ(γ̃k
n(x)) dλ

k
n(x).

Notice that γ̃k
n#λk

n is a probability measure. The Lipschitz continuity of ϕ entails

∣

∣

∣

∣

∣

∣

∫

Rd

ϕ(x) dλk
n+1(x) −

∫

Rd

ϕ(γ̃k
n(x)) dλ

k
n(x)

∣

∣

∣

∣

∣

∣

≤ Lip(ϕ)
∑

i∈Zd











∫

Ek
i

∣

∣x− xk
i

∣

∣ dλk
n+1(x) +

∫

Ek
i

∣

∣xk
i − x

∣

∣ d(γ̃k
n#λk

n)(x)










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whence, since
∣

∣x− xk
i

∣

∣ ≤ diamEk
i =

√
dhk for all x ∈ Ek

i ,

≤ Lip(ϕ)
√
dhk

∑

i∈Zd

{

λk
n+1(E

k
i ) + (γ̃k

n#λk
n)(E

k
i )
}

= 2Lip(ϕ)
√
dhk

and, due to the arbitrariness of ϕ and n, the thesis follows.

To address the convergence of the measures λk
n, it is convenient to introduce the following

linear-in-time interpolation:

Λk
t =

Nk−1
∑

n=0

[(

1− t− tkn
∆tk

)

λk
n +

t− tkn
∆tk

λk
n+1

]1[tkn, t
k
n+1

](t), (21)

with Λk
t a probability measure for all t ∈ [0, T ] and all k ≥ 0. This definition is reminiscent of the

definition of Mk
t (cf. Section 3).

In order to prove a convergence result about Λk
t , from now on we make the following assumption:

Assumption 3. The mesh parameters hk, ∆tk satisfy

hk = o(∆tk) for k → ∞.

As a consequence, there exists a sequence (βk)k≥0 ⊂ R, with βk > 0 all k and limk→∞ βk = 0,
such that hk = βk∆tk. By convergence, it further results supk≥0 hk, supk≥0 ∆tk, supk≥0 βk < +∞.

4.1 Regularity of Λk

•

This section is devoted to establish some regularity properties of the curves Λk
• .

Lemma 9. We have λk
n ∈ P1(R

d) for all n = 0, . . . , Nk and all k ≥ 0. In particular,

sup
k≥0

sup
0≤n≤Nk

∫

Rd

|x| dλk
n(x) < +∞,

i.e., first order moments of the λk
n’s are uniformly bounded.

Proof. (i) We begin by proving an inequality for n = 0. Recalling Eq. (20), we have

∫

Rd

|x| dλk
0(x) =

∑

i∈Zd

ρ0i

∫

Ek
i

|x| dx =
∑

i∈Zd

1

hd
k

∫

Ek
i

|x| dx µ̄(Ek
i ) =

∫

Rd

s(x) dµ̄(x),

where s is the simple function s =
∑

i∈Zd αi1Ek
i
with αi =

1
hd
k

∫

Ek
i

|x| dx. Thus
∣

∣

∣

∣

∣

∣

∫

Rd

|x| dλk
0(x) −

∫

Rd

|x| dµ̄(x)

∣

∣

∣

∣

∣

∣

≤
∫

Rd

|s(x) − |x|| dµ̄(x)

=
∑

i∈Zd

∫

Ek
i

|αi − |x|| dµ̄(x).

Considering that |αi − |x|| =
∣

∣

∣

1
hd
k

∫

Ek
i

(|y| − |x|) dy
∣

∣

∣ ≤ 1
hd
k

∫

Ek
i

|x− y| dy, we further deduce

≤
∑

i∈Zd

1

hd
k

∫

Ek
i

∫

Ek
i

|x− y| dy dµ̄(x) ≤
√
dhk,
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where we have used that, in the double integral, both x and y are points of the same grid
cell Ek

i , hence |x− y| ≤ diamEk
i =

√
dhk. It follows

∫

Rd

|x| dλk
0(x) ≤

∫

Rd

|x| dµ̄(x) +
√
dhk,

whence the thesis for n = 0.

(ii) We obtain the general case 0 < n ≤ Nk by induction from this and Lemma 8. Choosing
ϕ(x) = |x| in the latter yields

∫

Rd

|x| dλk
n+1(x) ≤

∫

Rd

∣

∣γ̃k
n(x)

∣

∣ dλk
n(x) + 2

√
dhk

≤
∫

Rd

|x| dλk
n(x) + ∆tk

∫

Rd

∣

∣ṽkn(x)
∣

∣ dλk
n(x) + 2

√
dhk

≤
∫

Rd

|x| dλk
n(x) + V∆tk + 2

√
dhk

whence, summing telescopically and using hk = βk∆tk,

∫

Rd

|x| dλk
n(x) ≤

∫

Rd

|x| dλk
0(x) + n(V∆tk + 2

√
dhk)

≤
∫

Rd

|x| dµ̄(x) + (V + 2
√
dβk)t

k
n +

√
dhk.

The thesis now follows taking the supremum of both sides in n and k while considering that
tkn ≤ T .

Lemma 10. For all k ≥ 0,

W1(Λ
k
s , Λ

k
t ) ≤ (V + 2

√
dβ̄) |t− s| , (22)

where β̄ := supk≥0 βk, i.e., the curves Λk
• ∈ C([0, T ]; P1(R

d)) are Lipschitz continuous uniformly
in k. Moreover,

sup
k≥0

sup
t∈[0, T ]

∫

Rd

|x| dΛk
t (x) < +∞.

Proof. (i) Fix k ≥ 0 and t ∈ [0, T ]. There exists 0 ≤ n ≤ Nk such that t ∈ [tkn, t
k
n+1], hence

∫

Rd

|x| dΛk
t (x) =

(

1− t− tkn
∆tk

)∫

Rd

|x| dλk
n(x) +

t− tkn
∆tk

∫

Rd

|x| dλk
n+1(x).

Owing to Lemma 9, we can find a uniform upper bound on the first moments of the λk
n’s:

there exists a constant C > 0, independent of n and k, such that

≤
(

1− t− tkn
∆tk

)

C +
t− tkn
∆tk

C = C,

which says that Λk
t ∈ P1(R

d) for all k ≥ 0 and all t ∈ [0, T ] with uniformly bounded first
moment.
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(ii) We argue the Lipschitz continuity of the mapping t 7→ Λk
t as in Lemma 2. In particular, for

s, t ∈ [0, T ] with s ≤ t we obtain

W1(Λ
k
s , Λ

k
t ) ≤

tkm+1 − s

∆tk
W1(λ

k
m, λk

m+1) +
n−1
∑

j=m+1

W1(λ
k
j , λ

k
j+1) +

t− tkn
∆tk

W1(λ
k
n, λ

k
n+1), (23)

where 0 ≤ m ≤ n ≤ Nk are such that s ∈ [tkm, tkm+1] and t ∈ [tkn, t
k
n+1]. In order to estimate

W1(λ
k
i , λ

k
i+1) for a generic 0 ≤ i ≤ Nk we fix ϕ ∈ Lip1(R

d) and use Lemma 8:

∫

Rd

ϕd(λk
i+1 − λk

i ) ≤
∫

Rd

[ϕ(γ̃k
n(x)) − ϕ(x)] dλk

n(x) + 2
√
dhk

≤
∫

Rd

∣

∣γ̃k
n(x)− x

∣

∣ dλk
n(x) + 2

√
dhk = ∆tk

∫

Rd

∣

∣ṽkn(x)
∣

∣ dλk
n(x) + 2

√
dhk

≤ V∆tk + 2
√
dhk = (V + 2

√
dβk)∆tk.

Consequently W1(λ
k
i , λ

k
i+1) ≤ C∆tk all i, where C := V + 2

√
d supk≥0 βk. Computing as in

Lemma 2, in view of Eq. (23) this yields W1(Λ
k
s , Λ

k
t ) ≤ C(t− s) and we have the thesis.

4.2 Limit equation for Λk

•

The next step is to find, similarly to what we did in Section 3.2, an equation satisfied by Λk
• in

which to pass to the limit k → ∞. Fix a test function φ ∈ C∞
c (Rd) and notice that the mapping

t 7→
∫

Rd φdΛk
t is Lipschitz continuous because so is the mapping t 7→ Λk

t in view of Lemma 10.
Then, owing to Rademacher’s Theorem, it is a.e. differentiable. Using expression (21), we find
that its derivative is

d

dt

∫

Rd

φdΛk
t =

1

∆tk

Nk−1
∑

n=0

∫

Rd

φd(λk
n+1 − λk

n)1[tkn, t
k
n+1

](t). (24)

Let us introduce now the function gkn : Rd → R
d,

gkn(x) = x+ v[λk
n](x)∆tk,

i.e., the flow map γk
n (cf. Eq. (9)) computed w.r.t. the measure λk

n instead of µk
n. Then

d

dt

∫

Rd

φdΛk
t =

1

∆tk

Nk−1
∑

n=0







∫

Rd

φdλk
n+1 −

∫

Rd

φ ◦ gkn dλk
n







1[tkn, t
k
n+1

](t)

+
1

∆tk

Nk−1
∑

n=0

∫

Rd

(φ ◦ gkn − φ) dλk
n1[tkn, t

k
n+1

](t),

whence, expanding φ ◦ gkn in the second term at the right-hand side with Lagrange’s reminder (cf.
the analogous calculation performed in Section 3.2 for the function φ ◦ γk

n),

=
1

∆tk

Nk−1
∑

n=0







∫

Rd

φdλk
n+1 −

∫

Rd

φ ◦ gkn dλk
n







1[tkn, t
k
n+1

](t)

+

Nk−1
∑

n=0







∫

Rd

v[λk
n] · ∇φdλk

n +
1

2
∆tk

∫

Rd

(D2φ(x̄)v[λk
n]) · v[λk

n] dλ
k
n







1[tkn, t
k
n+1

](t),
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where x̄ is a point of the segment connecting x and x+ v[λk
n]∆tk.

On the other hand, computing as in Section 3.2 we find

∫

Rd

v[Λk
t ] · ∇φdΛk

t =

Nk−1
∑

n=0

∫

Rd

v[λk
n] · ∇φdλk

n1[tkn, t
k
n+1

](t)

+

Nk−1
∑

n=0







t− tkn
∆tk

∫

Rd

v[λk
n] · ∇φd(λk

n+1 − λk
n)

−
(

t− tkn
∆tk

)2 ∫

Rd

(v[λk
n+1]− v[λk

n]) · ∇φdλk
n

+

(

t− tkn
∆tk

)2 ∫

Rd

(v[λk
n+1]− v[λk

n]) · ∇φdλk
n+1







1[tkn, t
k
n+1

](t),

hence finally

d

dt

∫

Rd

φdΛk
t −

∫

Rd

v[Λk
t ] · ∇φdΛk

t =
1

∆tk

Nk−1
∑

n=0







∫

Rd

φdλk
n+1 −

∫

Rd

φ ◦ gkn dλk
n







1[tkn, t
k
n+1

](t)

+

Nk−1
∑

n=0







1

2
∆tk

∫

Rd

(D2φ(x̄)v[λk
n]) · v[λk

n] dλ
k
n

− t− tkn
∆tk

∫

Rd

v[λk
n] · ∇φd(λk

n+1 − λk
n)

+

(

t− tkn
∆tk

)2 ∫

Rd

(v[λk
n+1]− v[λk

n]) · ∇φdλk
n

−
(

t− tkn
∆tk

)2 ∫

Rd

(v[λk
n+1]− v[λk

n]) · ∇φdλk
n+1







1[tkn, t
k
n+1

](t).

This is formally an equation satisfied by Λk
•. A derivation analogous to that performed in Sec-

tion 3.2 gives
∣

∣

∣

∣

∣

∣

d

dt

∫

Rd

φdΛk
t −

∫

Rd

v[Λk
t ] · ∇φdΛk

t

∣

∣

∣

∣

∣

∣

≤ 1

∆tk

Nk−1
∑

n=0

∣

∣

∣

∣

∣

∣

∫

Rd

φdλk
n+1 −

∫

Rd

φ ◦ gkn dλk
n

∣

∣

∣

∣

∣

∣

1[tkn, t
k
n+1

](t)

+ C

Nk−1
∑

n=0

{

∆tk +W1(λ
k
n, λ

k
n+1)

}1[tkn, t
k
n+1

](t),

where C > 0 is a constant depending only on V , Lip(v), Lip(∇φ) = ‖D2φ‖∞. In addition, from
Eq. (22) we know W1(λ

k
n, λ

k
n+1) ≤ (V + 2

√
dβ̄)∆tk, thus

≤ 1

∆tk

Nk−1
∑

n=0

∣

∣

∣

∣

∣

∣

∫

Rd

φdλk
n+1 −

∫

Rd

φ ◦ gkn dλk
n

∣

∣

∣

∣

∣

∣

1[tkn, t
k
n+1

](t) + C∆tk,

C being a new constant including the previous one and V + 2
√
dβ̄.

To estimate the remaining term at the right-hand side, we need to adapt Lemma 8 to gkn.
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Lemma 11. For all Lipschitz continuous ϕ : Rd → R we have
∣

∣

∣

∣

∣

∣

∫

Rd

ϕdλk
n+1 −

∫

Rd

ϕ ◦ gkn dλk
n

∣

∣

∣

∣

∣

∣

≤ C Lip(ϕ)
√
dhk

where C := 2 + Lip(v) supk≥0 ∆tk.

Proof. It suffices to observe that
∣

∣

∣

∣

∣

∣

∫

Rd

ϕ(γ̃k
n(x)) dλ

k
n(x) −

∫

Rd

ϕ(gkn(x)) dλ
k
n(x)

∣

∣

∣

∣

∣

∣

≤ Lip(ϕ)

∫

Rd

∣

∣γ̃k
n(x) − gkn(x)

∣

∣ dλk
n(x)

= ∆tk Lip(ϕ)
∑

i∈Zd

∫

Ek
i

∣

∣v[λk
n](x

k
i )− v[λk

n](x)
∣

∣ dλk
n(x)

= ∆tk Lip(ϕ) Lip(v)
∑

i∈Zd

∫

Ek
i

∣

∣xk
i − x

∣

∣ dλk
n(x)

≤
√
dhk∆tk Lip(ϕ) Lip(v).

The thesis follows from this inequality, combining the triangle inequality and Lemma 8.

With this result, we can further manipulate the previous inequality and obtain
∣

∣

∣

∣

∣

∣

d

dt

∫

Rd

φdΛk
t −

∫

Rd

v[Λk
t ] · ∇φdΛk

t

∣

∣

∣

∣

∣

∣

≤ C(βk +∆tk)

which, integrating both sides in time from 0 to t ≤ T , implies
∣

∣

∣

∣

∣

∣

t
∫

0





d

dτ

∫

Rd

φdΛk
τ −

∫

Rd

v[Λk
τ ] · ∇φdΛk

τ



 dτ

∣

∣

∣

∣

∣

∣

≤
t

∫

0

∣

∣

∣

∣

∣

∣

d

dτ

∫

Rd

φdΛk
τ −

∫

Rd

v[Λk
τ ] · ∇φdΛk

τ

∣

∣

∣

∣

∣

∣

dτ

≤ CT (βk +∆tk)

and finally, taking the limit k → ∞,

lim
k→∞

∣

∣

∣

∣

∣

∣

∫

Rd

φdΛk
t −

∫

Rd

φdλk
0 −

t
∫

0

∫

Rd

v[Λk
τ ] · ∇φdΛk

τ dτ

∣

∣

∣

∣

∣

∣

= 0. (25)

Thanks to Eq. (25), we are in a position to prove our convergence result of the numerical
scheme.

Theorem 12. Let Assumptions 1–3 hold and assume that the sequence (Λk
•)k≥0 converges to some

µ• in C([0, T ]; P1(R
d)) when k → ∞. Then µ• is a weak solution to problem (4).

Proof. Arguing as in Lemma 4, if limk→∞ supt∈[0, T ] W1(Λ
k
t , µt) = 0 we know that, up to subse-

quences,

∫

Rd

φdΛk
t →

∫

Rd

φdµt,

t
∫

0

∫

Rd

v[Λk
τ ] · ∇φdΛk

τ dτ →
t

∫

0

∫

Rd

v[µτ ] · ∇φdµτ dτ (k → ∞).

The claim of the theorem then follows from Eq. (25) and the arbitrariness of φ, provided we have
also

∫

Rd φdλk
0 →

∫

Rd φdµ̄ when k → ∞. To show the latter fact, it is enough to prove that

W1(λ
k
0 , µ̄) → 0 when k → ∞.
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Recall that dλk
0 = ρk0 dx, with ρk0 given by Eq. (20). Fixing ϕ ∈ Lip1(R

d) and reasoning like in
the proof of Lemma 9-(i), we find that

∫

Rd

ϕdλk
0 =

∫

Rd

s dµ̄,

where s(x) =
∑

i∈Zd αi1Ek
i
(x) and αi =

1
hd
k

∫

Ek
i

ϕ(x) dx. Therefore:

∫

Rd

ϕd(µ̄− λk
0) =

∫

Rd

(ϕ− s) dµ̄ =
∑

i∈Zd

∫

Ek
i

(ϕ(x) − αi) dµ̄(x).

But |ϕ(x) − αi| ≤ 1
hd
k

∫

Ek
i

|ϕ(x) − ϕ(y)| dy ≤ 1
hd
k

∫

Ek
i

|x− y| dy, so that from the previous calcula-

tions we deduce
∫

Rd

ϕd(µ̄ − λk
0) ≤

1

hd
k

∑

i∈Zd

∫

Ek
i

∫

Ek
i

|x− y| dy dµ̄(x) ≤
√
dhk,

whence W1(λ
k
0 , µ̄) ≤

√
dhk → 0 for k → ∞ as desired.

We conclude this section with a simple criterion which implies the convergence property as-
sumed in Theorem 12.

Corollary 13. Assume there exists a bounded set K ⊂ R
d such that suppλk

n ⊆ K for all 0 ≤ n ≤
Nk and all k ≥ 0. Then (Λk

•)k≥0 converges in C([0, T ]; P1(R
d)) to a weak solution of problem (4)

when k → ∞.

Proof. Fix k ≥ 0, t ∈ [0, T ] and let n be such that tkn ≤ t ≤ tkn+1. Let moreover A ∈ B(Rd) be
contained in Kc, then λk

i (A) = 0 for all i, k and therefore

Λk
t (A) =

(

1− t− tkn
∆tk

)

λk
n(A) +

t− tkn
∆tk

λk
n+1(A) = 0.

From the arbitrariness of k, t it follows suppΛk
t ⊆ K for all k ≥ 0 and all t ∈ [0, T ]. Since K is

bounded, we can find a ball BR(0) with radius R > 0 so large that K ⊆ BR(0). Consequently
∫

Rd

|x|p dΛk
t (x) =

∫

K

|x|p dΛk
t (x) ≤ Rp < +∞,

i.e., the Λk
t ’s have uniformly bounded moments of any order p ≥ 0. This implies that {Λk

t }k≥0 is
relatively compact in P1(R

d) for all t ∈ [0, T ], which, together with the equicontinuity of the family
{Λk

•}k≥0 entailed by the estimate (22), allows us to apply Ascoli-Arzelà’s Theorem and conclude
that the sequence (Λk

•)k≥0 is relatively compact in C([0, T ]; P1(R
d)). Thus, up to subsequences,

it converges to some µ• ∈ C([0, T ]; P1(R
d)), which is a weak solution to problem (4) because of

Theorem 12.

Remark (CFL condition). Let us define αk := V/βk for all k ≥ 0. Then the condition expressed
by Assumption 3 is equivalent to

V∆tk = αkhk, (26)

which implies
∣

∣γ̃k
n(x)− x

∣

∣ ≤ αkhk all x ∈ R
d, i.e., the displacements produced by the mapping

γ̃k
n are bounded by the quantity αkhk. As a consequence, the number of nonempty intersections

γ̃k
n(E

k
j ) ∩ Ek

i , j ∈ Z
d, is finite and bounded from above uniformly in i, which in particular makes

the series in Eq. (19) actually a finite sum for all i.
We observe that Eq. (26) is a generalization of the Courant-Friedrichs-Lewy (CFL) condition,

allowing αk → +∞ when k → ∞ to ensure convergence to continuous-in-time-and-space solutions
as stated by Theorem 12. With the time step ∆t frozen, Eq. (26) is used in [9] to prove the stability
of the numerical scheme (19) in approximating the solutions to the discrete-in-time model (8).
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5 Models of crowd and swarm dynamics

In [5, 8] a class of models describing the collective dynamics of swarms and crowds has been
introduced. These models are based on the idea that each individual of the group is an intelligent
(or active) agent, able to develop a behavioral strategy for pursuing specific goals. Since agents
are not passively dragged by external forces, the Newtonian approach is abandoned in favor of a
kinematic one, in which the velocity of the agents stems from few basic behavioral rules. These
concepts are formalized in [6], where it is shown that the above-cited models can be given a
common formulation within the framework of Eq. (3). In particular, the corresponding velocity of
the agents is

v[µt](x) = vd(x) +N

∫

Rd

f(|y − x|)r(y − x)χUx
(y) dµt(y). (27)

Adopting the terminology of the kinetic theory for active particles, see [2], we call test agent an
agent potentially concerned with interactions, whose position is described in the above formula by
the variable x, and field agents the agents distributed in space (variable y), which the test agent
may interact with. In more detail:

(i) vd : Rd → R
d is the test agent’s desired velocity, i.e., the velocity of an isolated test agent in

the absence of interactions;

(ii) Ux is the interaction neighborhood of the test agent. It conveys the idea that the test agent
experiences nonlocal interactions with some selected field agents, namely those inside Ux.

(iii) χA : Rd → R is a cut-off function for the set A ⊆ R
d, such that

χA(x) = 0 ∀x ∈ Ac, 0 ≤ χA(x) ≤ 1 ∀x ∈ R
d.

In particular, the effect of the term χUx
in Eq. (27) is to rule out interactions of the test

agent with field agents outside Ux;

(iv) r : Rd → R
d is the direction of the interaction, depending on the relative position of the

interacting agents and oriented in such a way that r(y − x) · (y − x) ≥ 0, with in addition
|r| ≤ 1;

(v) f : [0, +∞) → R is the interaction strength, which depends on the distance between the
interacting agents. If f < 0 the interaction is repulsive, i.e., the test agent tries to avoid
local aggregation with the field agents (as it is common in crowds under normal – i.e., non-
panic – conditions). If f > 0 the interaction is attractive, i.e., the test agent aims at staying
close to the surrounding field agents (as in swarms, where group cohesion is advantageous
e.g., for food search or predator avoidance).

The shape of Ux depends partly on the criteria used for selecting the field agents to interact
with. In general, when Ux is symmetric w.r.t. x, interactions are said to be isotropic, as opposed
to anisotropic when Ux is not symmetric. Notice also that the interaction integral in Eq. (27) is
actually computed w.r.t. the mass measure Nµt, because interactions depend on the number of
field agents in Ux.

Prototypes of the above objects are, among others: Ux = BR(x) for isotropic interactions,
Ux = Sα

R(x) for anisotropic interactions (Sα
R(x) being the sector of BR(x) with angular width

α ∈ (0, 2π]), χUx
= 1Ux

, f(|y − x|) = −1/ |y − x| for repulsive interactions, f(|y − x|) = |y − x|
for attractive interactions, r(y−x) = (y−x)/ |y − x| (i.e., the unit vector in the direction of y−x).
Although meaningful from the modeling point of view, some of these choices need to be adapted
in order for the velocity field (27) to comply with Assumption 1.

Concerning this, let us introduce the vector-valued function F : Rd → R
d,

F (x) := f(|x|)r(x),
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so that (27) becomes

v[µt](x) = vd(x) +N

∫

Rd

F (y − x)χUx
(y) dµt(y). (28)

Such a form encompasses a broader class of models of coordinated behavior based on Eq. (3), for
instance those in [4]. From now on, we will take (28) as our velocity model.

Assumption 4 (Properties of v as in Eq. (28)). We assume that the velocity field in Eq. (28)
satisfies the following properties.

(i) vd is Lipschitz continuous and bounded in R
d.

(ii) There exists R > 0 such that, for each x ∈ R
d, the set Ux ⊆ BR(x) is measurable and

isometric to a reference set U0 ⊆ BR(0).

(iii) F is Lipschitz continuous in BR(0).

(iv) χA is Lipschitz continuous in R
d for each measurable A ⊆ R

d.

Remark. Some comments on Assumption 4 are in order.

(i) In the sequel we denote
Vd := sup

x∈Rd

|vd(x)| < +∞.

(ii) Saying that Ux is isometric to U0 means that there is a rigid transformation ξx : Rd → R
d

mapping U0 onto Ux: ξx(U0) = Ux. Specifically, ξx has the form

ξx(z) = Rxz + x, (29)

where Rx ∈ R
d×d is a rotation matrix possibly depending on the point x.

(iii) Lipschitz continuity of F is required only in the ball BR(0), not in the whole space, i.e.,
the condition |F (z2)− F (z1)| ≤ Lip(F ) |z2 − z1| must hold only for |z1| , |z2| ≤ R. This
implies that F is bounded in BR(0), that is, |F (z)| ≤ CF for |z| ≤ R, with CF :=
max{|F (0)| , Lip(F )}(1 +R).

(iv) The function χA can be thought of as a mollification of 1A. In particular, by continuity
χA = 0 on ∂A. Because of the isometry between U0 and Ux, one can check that the
following relation holds:

χUx
(y) = χU0

(ξ−1
x (y)), ∀ y ∈ R

d. (30)

In the next two sections we show that, with both isotropic and anisotropic interactions, As-
sumption 4 is sufficient to apply our existence and approximation results to the above-mentioned
crowd and swarm models. First, we consider the case of a spherical neighborhood, which is the
most important prototype for isotropic interactions. Later, we extend the analysis to any bounded
neighborhood, including the significant cases of anisotropic interactions.

5.1 Spherical interaction neighborhood

In case of isotropic interactions we set Ux = BR(x), and consequently U0 = BR(0). Since BR(x)
is invariant under rotations, the mapping ξx is simply ξx(z) = z + x.

By the change of variables z = ξ−1
x (y) in Eq. (28), and recalling furthermore Eq. (30), we can

rewrite the velocity as

v[µt](x) = vd(x) +N

∫

Rd

F (z)χBR(0)(z) d(ξ
−1
x #µt)(z),

where ξ−1
x #µt is in P1(R

d) for all µt ∈ P1(R
d) and all fixed x.

We state a preliminary result, which is useful to verify that such a velocity field complies with
Assumption 1.
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Lemma 14. The function z 7→ F (z)χBR(0)(z) is Lipschitz continuous in R
d.

Proof. To study the expression

e(z1, z2) :=
∣

∣F (z2)χBR(0)(z2)− F (z1)χBR(0)(z1)
∣

∣ , z1, z2 ∈ R
d

it is convenient to distinguish three cases.

(i) If z1, z2 ∈ BR(0) we have

e(z1, z2) ≤
∣

∣F (z2)χBR(0)(z2)− F (z2)χBR(0)(z1)
∣

∣+
∣

∣F (z2)χBR(0)(z1)− F (z1)χBR(0)(z1)
∣

∣

≤ (CF Lip(χBR(0)) + Lip(F )) |z2 − z1| .

(ii) If z1 6∈ BR(0) and z2 ∈ BR(0) (or vice versa) then e(z1, z2) =
∣

∣F (z2)χBR(0)(z2)
∣

∣. Let
zθ := θz1 + (1 − θ)z2, θ ∈ [0, 1], be a point of the segment connecting z1 to z2 and pick θ̄
such that zθ̄ ∈ ∂BR(0). Since χBR(0)(zθ̄) = 0, we have

e(z1, z2) =
∣

∣F (z2)χBR(0)(z2)− F (zθ̄)χBR(0)(zθ̄)
∣

∣ ≤ (CF Lip(χBR(0)) + Lip(F )) |z2 − zθ̄| .

On the other hand, |z2 − zθ̄| = θ̄ |z2 − z1| ≤ |z2 − z1|.

(iii) If z1, z2 6∈ BR(0) then e(z1, z2) = 0 ≤ |z2 − z1|.

Proposition 15 (Velocity with isotropic interactions). Let Assumption 4 hold with U0 = BR(0).
Then the velocity field (28) complies with Assumption 1.

Proof. In the sequel, x ∈ R
d and µ ∈ P1(R

d) are fixed but arbitrary. We verify the items of
Assumption 1 in order.

(i) The field v is uniformly bounded thanks to

|v[µ](x)| ≤ Vd +N

∫

Rd

∣

∣F (z)χBR(0)(z)
∣

∣ d(ξ−1
x #µ)(z) ≤ Vd +NCFµ(ξx(R

d)) = Vd +NCF .

(ii) As for Lipschitz continuity, we check it separately w.r.t. to x and to µ.

(ii-a) Let x1, x2 ∈ R
d, then, recalling Lemma 14,

|v[µ](x2)− v[µ](x1)| ≤ |vd(x2)− vd(x1)|+N

∣

∣

∣

∣

∣

∣

∫

Rd

F (z)χBR(0)(z) d(ξ
−1
x2

#µ− ξ−1
x1

#µ)(z)

∣

∣

∣

∣

∣

∣

≤ Lip(vd) |x2 − x1|+N Lip(FχBR(0))W1(ξ
−1
x1

#µ, ξ−1
x2

#µ).

In addition,

W1(ξ
−1
x1

#µ, ξ−1
x2

#µ) = sup
ϕ∈Lip1(R

d)

∫

Rd

(ϕ ◦ ξ−1
x2

− ϕ ◦ ξ−1
x1

) dµ

≤
∫

Rd

∣

∣ξ−1
x2

(y)− ξ−1
x1

(y)
∣

∣ dµ(y) = |x2 − x1| ,

whence the Lipschitz continuity of x 7→ v[µ](x).
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(ii-b) Let now µ, ν ∈ P1(R
d), then, invoking again Lemma 14,

|v[ν](x) − v[µ](x)| = N

∣

∣

∣

∣

∣

∣

∫

Rd

F (z)χBR(0)(z) d(ξ
−1
x #ν − ξ−1

x #µ)(z)

∣

∣

∣

∣

∣

∣

≤ N Lip(FχBR(0))W1(ξ
−1
x #µ, ξ−1

x #ν)

= N Lip(FχBR(0)) sup
ϕ∈Lip1(R

d)

∫

Rd

ϕ ◦ ξ−1
x d(ν − µ)

= N Lip(FχBR(0))W1(µ, ν),

since ξ−1
x ∈ Lip1(R

d) implies that ϕ◦ξ−1
x spans the whole space Lip1(R

d) when ϕ varies
in Lip1(R

d). Hence also µ 7→ v[µ](x) is Lipschitz continuous.

(iii) Finally we examine the linearity w.r.t. to the probability for convex combinations. Let
µ, ν ∈ P1(R

d) and α ∈ [0, 1], then

v[αµ+ (1 − α)ν](x) = vd(x) + αN

∫

Rd

F (z)χBR(0)(z) d(ξ
−1
x #µ)(z)

+ (1− α)N

∫

Rd

F (z)χBR(0)(z) d(ξ
−1
x #ν)(z).

Writing vd(x) = αvd(x) + (1− α)vd(x) and collecting the coefficients α and 1− α gives the
result.

Owing to Proposition 15, we can state that models based on Eq. (3), with a velocity field
featuring isotropic interactions as in Eq. (28), see e.g., [8], admit probability measure solutions for
any initial distribution of the agents with finite first and second order moments (e.g., an initial
distribution with compact support). Moreover, such solutions can be duly approximated using
the numerical scheme (19).

Remark (Unbounded interaction neighborhood). As a modification to Assumption 4, we can allow
U0 = Ux = R

d along with the boundedness assumption F (x) ≤ CF for all x ∈ R
d. The above

arguments can be promptly adapted to show that also in this case the velocity field (28) complies
with Assumption 1. However, it should be noted that, for the applications we have in mind, the
physically relevant cases are those in which the interaction neighborhood is bounded.

5.2 Bounded interaction neighborhood

In this section we drop the specific hypothesis that Ux be a ball. We allow it to have a generic
shape, with the only requirement of being bounded, i.e., contained in a ball. This encompasses
the important case of anisotropic interactions. In such cases, the neighborhood Ux may not be
invariant under rotations, therefore we have to consider the full form (29) of the transformation
ξx. Performing again the change of variables z = ξ−1

x (y) in the integral (28), the velocity takes
now the form

v[µt](x) = vd(x) +N

∫

Rd

F (Rxz)χU0
(z) d(ξ−1

x #µt)(z)

with the rotation matrix explicitly appearing in the argument of the function F . To deal with
it, for the sake of simplicity we confine ourselves to the two-dimensional case (d = 2), for then a
simple representation of Rx is available:

Rx =

(

cosϑx − sinϑx

sinϑx cosϑx

)

,
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ϑx ∈ [0, 2π) being the angle of rotation which determines the local orientation in the point x of
the neighborhood of interaction.

The choice of ϑx has to do with the way in which the anisotropy of the interactions is modeled.
In the models of crowd and swarm dynamics we are considering, ϑx is the angle formed by the
desired velocity vd(x) w.r.t. a fixed reference direction, for instance the horizontal one identified
by the unit vector i. Assuming for simplicity that vd has constant unit modulus, this implies

cosϑx = vd(x) · i, sinϑx = (vd(x) × i) · k. (31)

In the second formula, vd(x) and i are thought of as embedded into R
3, with × denoting vector

product and k the unit vector orthogonal to the plane of vd(x) and i.

Remark. More in general, Eq. (31) holds with vd(x) replaced by vd(x)/ |vd(x)|, which is a Lipschitz
continuous field provided |vd| is uniformly bounded away from zero.

The formalism introduced above allows us to prove the following technical fact.

Lemma 16. For all x1, x2, z ∈ R
2 it results

|(Rx2
−Rx1

)z| ≤
√
2 Lip(vd) |x2 − x1| |z| .

The same holds with Rx1
, Rx2

replaced by R−1
x1

, R−1
x2

.

Proof. A straightforward computation shows that

|(Rx2
−Rx1

)z| =
√

(cosϑx2
− cosϑx1

)2 + (sinϑx2
− sinϑx1

)2 |z| ,
and the same is true also using inverse matrices. In addition,

|cosϑx2
− cosϑx1

| = |(vd(x2)− vd(x1)) · i| ≤ |vd(x2)− vd(x1)| ,
|sinϑx2

− sinϑx1
| = |[(vd(x2)− vd(x1))× i] · k| ≤ |vd(x2)− vd(x1)| ,

hence the thesis follows from the Lipschitz continuity of vd.

With Lemma 16 we are in a position to prove that the velocity (28) complies with Assumption 1
also in case of anisotropic interactions.

Proposition 17 (Velocity with anisotropic interactions). Let Assumption 4 hold and assume
d = 2. Then the velocity field (28) complies with Assumption 1.

Proof. (i) Uniform boundedness, Lipschitz continuity w.r.t. the probability, and linearity w.r.t.
to the probability for convex combinations follow straightforwardly from calculations entirely
analogous to those performed in the proof of Proposition 15. In fact, it is sufficient to observe
that, Rx being an isometry, the function F (Rx·) is Lipschitz continuous and bounded in
BR(0) with Lip(F (Rx·)) = Lip(F ) for all x ∈ R

d. Moreover, by the same argument as in
the proof of Lemma 14, the function F (Rx·)χU0

(·) is Lipschitz continuous in R
d with the

same Lipschitz constant as FχU0
, thus in particular independent of x.

(ii) Lipschitz continuity w.r.t. to x is instead more delicate, because it involves directly the
rotation matrix Rx. Let x1, x2 ∈ R

2 and fix µ ∈ P1(R
2), then

|v[µ](x2)− v[µ](x1)| ≤ |vd(x2)− vd(x1)|

+N

∣

∣

∣

∣

∣

∣

∫

Rd

F (Rx2
z)χU0

(z) d(ξ−1
x2

#µ)(z)−
∫

Rd

F (Rx1
z)χU0

(z) d(ξ−1
x1

#µ)(z)

∣

∣

∣

∣

∣

∣

≤ Lip(vd) |x2 − x1|+N

∫

Rd

|F (Rx2
z)− F (Rx1

z)|χU0
(z) d(ξ−1

x2
#µ)(z)

+N

∣

∣

∣

∣

∣

∣

∫

Rd

F (Rx1
z)χU0

(z) d(ξ−1
x2

#µ− ξ−1
x1

#µ)(z)

∣

∣

∣

∣

∣

∣

. (32)
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In the first integral at the right-hand side of (32) we can assume z ∈ U0, for otherwise
χU0

(z) = 0. Hence |z| ≤ R and moreover Rxz ∈ BR(0) for all x ∈ R
2. Lipschitz continuity

of F in that ball, along with Lemma 16, implies

|F (Rx2
z)− F (Rx1

z)| ≤ Lip(F ) |(Rx1
−Rx2

)z| ≤
√
2Lip(F ) Lip(vd)R |x2 − x1| ,

so that finally

N

∫

Rd

|F (Rx2
z)− F (Rx1

z)|χU0
(z) d(ξ−1

x2
#µ)(z) ≤ N

∫

U0

|F (Rx2
z)− F (Rx1

z)| d(ξ−1
x2

#µ)(z)

≤ N
√
2Lip(F ) Lip(vd)R |x2 − x1| , (33)

having observed that (ξ−1
x2

#µ)(U0) = µ(Ux2
) ≤ 1.

As far as the second integral at the right-hand side of (32) is concerned, we have

N

∣

∣

∣

∣

∣

∣

∫

Rd

F (Rx1
z)χU0

(z) d(ξ−1
x2

#µ− ξ−1
x1

#µ)(z)

∣

∣

∣

∣

∣

∣

≤ N

∫

Rd

∣

∣F (Rx1
ξ−1
x2

(y))χU0
(ξ−1

x2
(y))− F (Rx1

ξ−1
x1

(y))χU0
(ξ−1

x1
(y))

∣

∣ dµ(y)

= N

∫

Ux1
∪Ux2

∣

∣F (Rx1
ξ−1
x2

(y))χU0
(ξ−1

x2
(y))− F (Rx1

ξ−1
x1

(y))χU0
(ξ−1

x1
(y))

∣

∣ dµ(y). (34)

Notice that we can confine ourselves to y ∈ Ux1
∪Ux2

, for otherwise χU0
(ξ−1

xj
(y)) = χUxj

(y) =

0 for both j = 1, 2. We distinguish two cases.

(ii-a) |x2 − x1| > 2R.
In this case Ux1

∩ Ux2
= ∅ because the balls BR(x1), BR(x2) are disjoint. Thus:

(34) = N

∫

Ux1

∣

∣F (Rx1
ξ−1
x1

(y))
∣

∣χUx1
(y) dµ(y) +N

∫

Ux2

∣

∣F (Rx1
ξ−1
x2

(y))
∣

∣χUx2
(y) dµ(y).

For all y ∈ Uxj
, j = 1, 2, it results ξ−1

xj
(y) ∈ U0 ⊂ BR(0), hence Rx1

ξ−1
xj

(y) ∈ BR(0)
and we can use the boundedness of F in that ball to get

≤ NCF







∫

Ux1

χUx1
(y) dµ(y) +

∫

Ux2

χUx2
(y) dµ(y)






≤ NCFµ(Ux1

∪ Ux2
) ≤ NCF .

But 1 < |x2−x1|
2R , therefore we conclude

(34) ≤ NCF

2R
|x2 − x1| . (35)

(ii-b) |x2 − x1| ≤ 2R.
In this case the neighborhoods Ux1

, Ux2
need not be disjoint, however we can resort to

the Lipschitz continuity of the function F (Rx·)χU0
(·):

(34) ≤ Lip(FχU0
)N

∫

Ux1
∪Ux2

∣

∣ξ−1
x2

(y)− ξ−1
x1

(y)
∣

∣ dµ(y)

= Lip(FχU0
)N

∫

Ux1
∪Ux2

∣

∣R−1
x2

(y − x2)−R−1
x1

(y − x1)
∣

∣ dµ(y)

= Lip(FχU0
)N

∫

Ux1
∪Ux2

∣

∣(R−1
x2

−R−1
x1

)(y − x1) +R−1
x2

(x2 − x1)
∣

∣ dµ(y)
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and further, thanks to Lemma 16 and to the fact that R−1
x2

is an isometry,

≤ Lip(FχU0
)N







√
2Lip(vd)

∫

Ux1
∪Ux2

|y − x1| dµ(y) + µ(Ux1
∪ Ux2

)






|x2 − x1| .

Let us examine the term with the integral. If y ∈ Ux1
then |y − x1| ≤ R whereas

if y ∈ Ux2
then |y − x1| ≤ |y − x2| + |x2 − x1| ≤ 3R. Finally, |y − x1| ≤ 3R for all

y ∈ Ux1
∪ Ux2

, which says

(34) ≤ Lip(FχU0
)N(3

√
2Lip(vd)R+ 1) |x2 − x1| . (36)

In conclusion, from (35) and (36) we deduce that there exists a constant C > 0 such that
(34) ≤ C |x2 − x1| for all x1, x2 ∈ R

2. This, together with the estimate (33), completes the
proof of Lipschitz continuity of the mapping x 7→ v[µ](x).

In view of Proposition 17 we conclude that two-dimensional models based on the velocity
(28) with anisotropic interactions have probability measure solutions, which can be approximated
arbitrarily well using the scheme (19) on finer and finer numerical grids. Notice that, as far as
e.g., crowd dynamics is concerned, two-dimensional problems are enough for applications.

Remark (Higher dimension). For d > 2 additional technicalities arise, due to a more complex
structure of the rotation matrix. Nevertheless, in the special case that the desired velocity is
constant in x, it is straightforward to extend the results to any spatial dimension. In fact, the
rotation matrix being independent of x, Proposition 17 can be proved without using Lemma 16,
which is the only point where we use the explicit representation of the matrix. Models with
constant desired velocity have been recently proposed for swarm dynamics problems [5] and for
rendez-vous algorithms [4].

Remark (Zero desired velocity). When interactions are anisotropic and the desired velocity is zero
[5], the orientation of the neighborhood of interaction cannot be defined by Eq. (31). However,
this issue can be solved by replacing vd in (31) with any other Lipschitz continuous unit vector
field, e.g., a nonzero constant one, with the only purpose of defining a rotation angle. Clearly, this
problem does not arise if the desired velocity is zero but interactions are isotropic, as in [4].

6 Case study: discrete models

In this last section we put the theory into operation by giving an example of explicit solution
to the Cauchy problem (4). Furthermore, we visualize the convergence to such solution of the
approximations produced by the numerical scheme discussed in Section 4.

For illustrative purposes, we consider the simple case of a system of agents featuring isotropic
interactions with zero desired velocity:

v[µt](x) = N

∫

Rd

F (y − x)χBR(x)(y) dµt(y). (37)

Moreover, we prescribe as initial condition the discrete probability measure

µ̄ =
1

N

N
∑

l=1

δxl
0
, (38)

where δxl
0
is the Dirac mass concentrated in xl

0 (i.e., for any A ∈ B(Rd) it results δxl
0
(A) = 1 if

xl
0 ∈ A, δxl

0
(A) = 0 otherwise) and x1

0, . . . , x
N
0 are N selected points in R

d.

We recall that µ̄ is the common law of the random variables X i
0, i = 1, . . . , N , expressing

the initial positions of the agents. The structure (38) of µ̄ implies that each X i
0 is a random
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variable taking almost surely the values x1
0, . . . , x

N
0 , each with probability 1/N . Therefore we

are considering a discrete model of a group of indistinguishable agents initially concentrated in
x1
0, . . . , x

N
0 . The indistinguishability is reflected by the fact that any of the points xl

0 can be, with
equal probability, the initial position of the generic i-th agent.

We find a solution to the Cauchy problem (4) with initial condition (38) by the method of the
characteristics (cf. Section 2.2). In particular, we know from Eq. (6) that µt = γt#µ̄, where γt is

the flow map. From the linearity of the push forward we first deduce µt =
1
N

∑N
l=1 γt#δxl

0
, then

we observe that for any measurable set A it results

(γt#δxl
0
)(A) = δxl

0
(γ−1

t (A)) =

{

1 if xl
0 ∈ γ−1

t (A) ⇔ γt(x
l
0) ∈ A

0 otherwise.

Hence γt#δxl
0
= δγt(xl

0
) and we can write the solution as

µt =
1

N

N
∑

l=1

δγt(xl
0
). (39)

Recalling that µt is the law of the random variables X̂ i
t = E[X i

t |X i
0], i = 1, . . . , N , from Eq. (39)

we infer that each X̂ i
t takes almost surely the values γt(x

1
0), . . . , γt(x

N
0 ), each with probability 1/N .

Therefore, at every time t > 0 the distribution of the group of agents is concentrated on the discrete
set of points γt(x

1
0), . . . , γt(x

N
0 ). Notice that again we cannot associate deterministically a given

agent with its position because of the indistinguishability of the agents. However, we can describe
the trajectories of the agents by means of the mappings t 7→ γt(x

l
0), l = 1, . . . , N .

The flow map is defined by Eq. (7), which with the velocity (37) and the initial condition (38)
yields















∂γt(x)

∂t
=

N
∑

j=1

F (γt(x
j
0)− γt(x))χBR(γt(x))(γt(x

j
0))

γ0(x) = x

(40)

for all x ∈ R
d. The discrete structure (39) of µt makes it actually sufficient to solve problem (40)

for x = xl
0. Setting xl(t) := γt(x

l
0) and computing Eq. (40) for x = xl

0 we find the initial-value
problem















ẋl =

N
∑

j=1

F (xj − xl)χBR(xl)(xj)

xl(0) = xl
0

(l = 1, . . . , N), (41)

thus we conclude that constructing the measure (39) amounts to solving the system of ODEs (41),
whose solutions are the positions of the agents at t > 0.

From the numerical point of view, we can either approximate the measure (39) by using the
scheme (19) or integrate problem (41) via a standard numerical method for ODEs. The remaining
part of this section is devoted to show the convergence of the approximations obtained from (19)
to the numerical solutions of (41) in a toy model. Let us consider a one-dimensional problem
(d = 1) with N = 10 agents, whose initial positions are sampled from a uniform distribution on
the interval [0, 1]. Agents repel each other according to the following repulsion function:

F (z) = − az

max2{|z| , ε} (a, ε > 0)

which is from the product of

f(z) = − a

max{|z| , ε} , r(z) =
z

max{|z| , ε} .

The repulsion strength f is inversely proportional to the distance between the interacting agents
(up to a minimal threshold ε) and the direction of the interaction r is a Lipschitz mollification of

29



Figure 1: Numerical solution to Eq. (3) with discrete initial datum (38) at two successive times.
Bullets are the solution of the ODE system (41) computed by the explicit Euler scheme. The
continuous curve is the solution computed by the numerical scheme (19) on meshes with different
level of refinement.

the unit vector z/ |z|. The reference interaction neighborhood is BR(0) = (−R, R) with cut-off
function

χBR(0)(z) = e
−

b|z|2

R2−|z|2 1BR(0)(z) (b > 0),

which is a C∞ mollification of the indicator function of BR(0). Parameters are set to R = 0.1,
a = 0.01, b = 0.02, ε = R/4. The computational time is T = 0.1.

Simulations of the ODE system (41) and of problem (4) with initial condition (38) were run
independently and their results visualized on the same graphs of Fig. 1 for duly comparison. In
particular, the ODE system was numerically integrated using an explicit-in-time Euler scheme,
whereas the conservation law for the probability µt was solved through the scheme (19) on different
meshes, choosing

∆tk =

(

hk

V

)δ

(0 < δ < 1).

Note that this entails βk ∼ h1−δ
k in Assumption 3 and αk ∼ hδ−1

k in Eq. (26). Figure 1 displays the
numerical solution computed with δ = 0.9 and hk = 1/k in the three cases k = 102, 103, 104, at
two different time instants. Convergence toward the exact solution (39) as the mesh refines can be
visually appreciated, although approximating singular measures with densities is a difficult task,
which requires very fine and computationally expensive meshes to get accurate results. Therefore,
when such a structure of the solution is numerically sought, it is more efficient to exploit the stated
equivalence of the original problem with the discrete system of ODEs.

30



Acknowledgments

A. Tosin was funded by a post-doctoral research scholarship “Compagnia di San Paolo” awarded
by the National Institute for Advanced Mathematics “F. Severi” (INdAM, Italy).

References
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