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ON THE DESCRIPTION OF THE LEIBNIZ ALGEBRAS WITH
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Abstract. In this paper we present the classification of a subclass of natu-
rally graded Leibniz algebras. These n-dimensional Leibniz algebras have the
characteristic sequence equal to (n−3, 3). For this purpose we use the software
Mathematica.
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1. Introduction

Leibniz algebras are one of the new algebras introduced by Loday [11], [12] in
connection with the study of periodicity phenomena in algebraic K-theory. Leibniz
algebras have been introduced as a ”non-antisymmetric” analogue of Lie algebras.
A Leibniz algebra L is a vector space equipped with a bracket [-,-] satisfying the
identity

[x, [y, z]] = [[x, y], z]− [[x, z], y].

If the antisymmetric relation is assumed, this identity is equivalent to the Jacobi
identity. Hence, a Lie algebra is a Leibniz algebra. It is well known that the natural
gradation of nilpotent Lie and Leibniz algebras is very helpful in investigating their
structural properties. A remarkable fact of the naturally graded algebras is the
relative simplicity of the study of the cohomological properties, (see for example
[6]- [10] and [13]).

Recently, some papers are focused to the study of some interesting families of
Leibniz algebras, such as p-filiform and quasi-filiform Leibniz algebras. These al-
gebras have their characteristic sequences equal to (n− p, 1, 1, ..., 1) and (n− 2, 2)
with dim(L) = n, [4]–[5].

Naturally graded p-filiform Leibniz algebras are already classified in [2] and
[4]. The classification of naturally graded nul-filiform and filiform Leibniz alge-
bras reader can find in [1]. The quasi-filiform n-dimensional Leibniz algebras have
characteristic sequence (n− 2, 1, 1) (the case of 2-filiform) or (n− 2, 2) [3] and [5].

For a given Leibniz algebra L we define the descending central series as follows:

L1 = L, Lk+1 = [Lk, L], k ≥ 1.

If there exists a natural number s such that Ls = 0, then the Leibniz algebra L is
said to be nilpotent and minimal such number is called the nilindex of the algebra
L.

Bellow we present a gradation closely related to the descending central series.
Let L be a nilpotent Leibniz algebra with nilindex s. We put Li = Li/Li+1 for

1 ≤ i ≤ s − 1, and grL = L1 ⊕ L2 ⊕ · · · ⊕ Ls−1. It is easy to check embedding
1

http://arxiv.org/abs/1012.2389v1


2 J.M. CABEZAS, L.M. CAMACHO, J.R. GÓMEZ, B.A. OMIROV

[Li, Lj] ⊆ Li+j and therefore, the algebra grL is graded algebra, which is called the
naturally graded Leibniz algebra.

Let x be a nilpotent element of the set L\L2. For the nilpotent operator of right
multiplication Rx we define a decreasing sequence C(x) = (n1, n2, . . . , nk), which
consists of the dimensions of Jordan blocks of the operator Rx. On the set of such
sequences we consider the lexicographic order, that is, C(x) = (n1, n2, . . . , nk) ≤
C(y) = (m1,m2, . . . ,ms) ⇐⇒ there exists i ∈ N such that nj = mj for any j < i
and ni < mi.

The sequence C(L) = max C(x)x∈L\L2 is called characteristic sequence of the
algebra L. If C(L) = (1, 1, . . . , 1) then evidently, the algebra L is abelian.

The setR(L) = {x ∈ L | [y, x] = 0 for any y ∈ L} is said to be a right annihilator
of the algebra L.

In this work we classify a subclass of naturally graded Leibniz algebras with
nilindex n − 3. In case of Leibniz algebras with nilindex equal to n − 3, for the
characteristic sequence we have the following tree possibilities:

(n− 3, 1, 1, 1), (n− 3, 2, 1) and (n− 3, 3).

The first one is 3-filiform case. We will focus our attention on the study of those
with characteristic sequence (n − 3, 3). Throughout all the work, we use the
software Mathematica. Since in the case of non-Lie Leibniz algebras the skew-
symmetric identity is not valid, this classification is very complex and we should
overcome the difficulties, which need a lot of computations. Using computer pro-
grams is very helpful for computing the Leibniz identity in low dimension and
formulate the generalizations of the calculations, which are proved for arbitrary
finite dimension. The used program can be find in [5]. Some examples of the pro-
grams for various types of Leibniz algebras classes are in the following Web site:
http://personal.us.es/jrgomez.

2. Naturally graded Leibniz algebras with characteristic sequence

(n− 3, 3).

Let L be a naturally graded n-dimensional Leibniz algebra which characteristic
sequence equal to (n − 3, 3). From the definition of the characteristic sequence, it
follows the existence of a basis {e1, e2, . . . , en} such that element e1 ∈ L\L2 and
the operator of right multiplication Re1 has one of the following forms:

(

Jn−3 0
0 J3

)

,

(

J3 0
0 Jn−3

)

Definition 2.1. A naturally graded Leibniz algebra L which characteristic sequence
is equal to (n−3, 3), is called algebra of the second type if there exists a basic element
e1 ∈ L\L2 such that the operator Re1 has the form:

(

Jn−3 0
0 J3

)

;

if Re1 has the other form, then it is called algebra of the second type.

Since the classification of Leibniz algebras of the second type is more complicated
and it needs to use more original technics, first we present the description of the
second type.

http://personal.us.es/jrgomez
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Theorem 2.1. Let L be an n-dimensional naturally graded Leibniz algebra of the
second type (n ≥ 9). Then it is isomorphic to one of the following pairwise non-
isomorphic algebras:

λ µ dim(L)

L0,1
(0,0,0,0,0) odd or even

L0,2
(0,0,0,λ,−1) λ ∈ {0, 1} odd or even

L0,3
(1,0,0,λ,−1) λ ∈ C odd or even

L0,4
(1,0,1/4,λ,−1)

λ ∈ C odd or even

L0,5
(0,0,1,λ,−1)

λ ∈ C odd or even

L0,6
(0,1,0,λ,−1) λ ∈ {0, 1} odd or even

L0,6
(µ,1,0,λ,−1) λ ∈ C µ ∈ {1, 2} odd or even

L0,7
(0,1,µ,λ,−1) λ ∈ C µ ∈ C \ {0} odd or even

L0,8
(−2λ,1,−λ,2,−1) λ ∈ {−2,−4/3} odd or even

L0,9
(2λ,1,λ,0,−1) λ ∈ C \ {0, 1} odd or even

L0,10
(1,1,1/4,1/4,−1) odd or even

L0,10
(1,1,1/4,1/2,−1)

odd or even

L0,10
(2,1,1,1,−1)

odd or even

L0,10
(2,1,1,0,−1) odd or even

L0,11
(1,λ,1/4,0,−1) λ ∈ C \ {0, 1/2} odd or even

L1,2
(0,0,0,λ,−1) λ ∈ {0, 1} even

L1,3
(1,0,0,λ,−1) λ ∈ C even

L1,4
(1,0,1/4,λ,−1) λ ∈ C even

L1,6
(µ,1,0,λ,−1)

λ ∈ C µ ∈ C even

L1,7
(0,γ,µ,λ,−1)

λ ∈ C γ, µ ∈ C \ {0} even

L1,9
(−2λ,1,λ,µ,−1) λ ∈ C \ {0, 1} µ ∈ C even

L1,11

(λ,1,λ2/4,µ,−1)
λ ∈ C \ {−2, 0} µ ∈ C even

L1,12
(−1,0,0,λ,−1) λ ∈ {0, 1} even

L1,13
(−2,0,1,λ,−1) λ ∈ C even

L1,14
(−4,0,2,λ,−1) λ ∈ C even

L1,15
(0,0,−1,λ,−1) λ ∈ C even

L1,16
(−2,0,−1,λ,−1)

λ ∈ C even

L1,17
(0,−1,0,λ,−1) λ ∈ {0, 1} even

L1,18
(−1,−1,0,λ,−1) λ ∈ C even

L1,19
(−2,−1,0,1,−1) even

L1,20
(1,−1,0,λ,−1) λ ∈ C \ {−1/2} even

L1,21
(1,1/3,0,λ,−1) λ ∈ C even

L1,22
(−2,−1,1,λ,−1) λ ∈ {0, 1} even

L1,23
(1,1/2,1/4,λ,−1)

λ ∈ C even
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λ γ, µ dim(L)

L1,24
(−4,−1,2,λ,−1) λ ∈ C even

L1,25
(−3,−4/3,2,λ,−1) λ ∈ C even

L1,26
(2/5,2,2/5,λ,−1) λ ∈ C even

L1,27
(2/λ,λ,1,µ,−1)

λ ∈ C \ {−1, 0, 1} µ ∈ C even

L1,28
(8/5,1/2,−4/5,λ,−1) λ ∈ C even

L1,29

(λ,−1,λ2/4,0,−1)
λ ∈ C \ {−2, 0} even

L1,30
(1,−1,1/4,λ,−1) λ ∈ {−1/2, 1/4} even

L1,31
(−8,2,16,λ,−1) λ ∈ C even

L1,32
(−2,λ,1,0,−1) λ ∈ C \ {−1, 0} even

L1,33
(−2,1,1,λ,−1) λ ∈ {−1, 1} even

where the algebra

Lǫ,j
(α1,α2,α3,α4,β) : ǫ ∈ {0, 1}, 1 ≤ j ≤ 33, β ∈ {−1, 0}

has the following multiplication:






















































[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= 3
[e1, e4] = α1e2 + βe5,
[e2, e4] = α2e3,
[e4, e4] = α3e2,
[e5, e4] = α4e3,
[e1, e5] = (α1 − α2)e3 − e6,
[e4, e5] = (α3 − α4)e3,
[e1, ei] = βei+1, 6 ≤ i ≤ n− 1,
[ei, en+3−i] = ǫ(−1)ien, 4 ≤ i ≤ n− 1.

Proof. From the condition of the theorem we have the following multiplication of
the basic element e1 on the right side:

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= 3, [e3, e1] = [en, e1] = 0.

From these products we conclude that

L1 =< e1, e4 >, L2 =< e2, e5 >, L3 =< e3, e6 >, Li =< ei+3 >, 4 ≤ i ≤ n− 3

and e2, e3 ∈ R(L).
Let us introduce denotations

[e1, e4] = α1e2 + β1e5, [e2, e4] = α2e3 + β2e6, [e3, e4] = β3e7,
[e4, e4] = α3e2 + β4e5, [e5, e4] = α4e3 + β5e6,
[ei, e4] = βiei+1, 6 ≤ i ≤ n− 1, [en, e4] = 0.

The equalities [ei, e5] = [[ei, e4], e1]− [[ei, e1], e4], 1 ≤ i ≤ n derive

[e1, e5] = (α1 − α2)e3 + (β1 − β2)e6, [e2, e5] = (β2 − β3)e7, [e3, e5] = β3e8,
[e4, e5] = (α3 − α4)e3 + (β4 − β5)e6, [e5, e5] = (β5 − β6)e7,
[ei, e5] = (βi − βi+1)ei+2, 6 ≤ i ≤ n− 2 [en−1, e5] = [en, e5] = 0.

Using induction on j for any value i it can be proved that

[ei, ej ] =

(

j−4
∑

k=0

(−1)k
(

j − 4
k

)

βi+k

)

ei+j−3, 5 ≤ i ≤ n− 3, 6 ≤ j ≤ n+ 3− i.

In the case of e4 ∈ R(L) we obtain the algebra L0,1
(0,0,0,0,0).
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Let now e4 /∈ R(L). Then we consider the following cases:

e5 ∈ R(L)

Then ei ∈ R(L) for 2 ≤ i ≤ n, i 6= 4.
From the equalities [[ei, e1], e4] = [[ei, e4], e1], 1 ≤ i ≤ n, we have

α2 = α1, α4 = α3, β3 = β2 = β1, βi = β4, 5 ≤ i ≤ n− 1.

For n ≥ 8 we have also β1 = 0.
The change of basis taken as

e′i = ei, 1 ≤ i ≤ n, i 6= 4, 5, 6, e′j = ej − β4ej−3, 4 ≤ j ≤ 6

deduces β4 = 0.
If we take the change of basis in the following way:

e′1 = Ae1 +Be4, e′n−2 = e1, e′j = [e′j−1, e
′
1], 2 ≤ j ≤ n, j 6= n− 2

with condition AB(A + α1B) 6= 0, then we obtain the algebra of the first type.
Therefore, this case is impossible for the algebra of the second type.

e5 /∈ R(L)

The embedding [e4, e4] ∈ R(L) implies β4 = 0 and from [ei, [e4, e1]] = −[ei, [e1, e4]],
with 1 ≤ i ≤ n we obtainβ1 = −1.

If e6 ∈ R(L), then for n ≥ 9 it follows β1 = 0, which is a contradiction with the
condition β1 = −1. Therefore, e6 /∈ R(L).

It is easy to check that [ei, ej ] + [ej , ei] ∈ R(L) for any values of i, j. Applying
this for i = 1 and j = 5 we obtain β2 = 0.

The following equalities:

[e1, ei] = −ei+1, [e2, ei] = [e3, ei] = 0, 6 ≤ i ≤ n− 1

are proved by induction on i.
From [e1, [e4, e2j+1]] = −[e5, e2j+1] + [e2j+2, e4], j ≥ 2, we have that

2β2j+2 = β5 + β2j+1 +

2j−4
∑

k=1

(−1)k
(

2j − 3
k

)

(β5+k − β4+k), j ≥ 2.

Similar as in [5] we derive
{

βj = β5, 6 ≤ j ≤ n− 1, for n odd,
βj = β5, 6 ≤ j ≤ n− 2, for n even

and
[e4, en−1] = −β5en for n odd,
[e4, en−1] = (βn−1 − 2β5)en for n even,
[ei, en+3−i] = (−1)i(βn−1 − β5)en, 5 ≤ i ≤ n− 2, for n even.

If βn−1 = β5, then by the change of basis defined as e′i = ei, 1 ≤ i ≤ n, i 6= 4, 5, 6,
and e′i = ei − β5ei−3, 4 ≤ i ≤ 6 we can assume β5 = 0.

If βn−1 6= β5 (the case of n even), then by using the change of basis:






















e′i = (βn−1 − β5)
iei, 1 ≤ i ≤ 3,

e′4 = e4 − β5e1,
e′5 = (βn−1 − β5)(e5 − β5e2),
e′6 = (βn−1 − β5)

2(e6 − β5e3),
e′i = (βn−1 − β5)

i−4ei, 7 ≤ i ≤ n
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we obtain [ei, en+3−i] = (−1)ien for 4 ≤ i ≤ n− 1. Thus, multiplication in L is as
follows:























































[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= 3,
[e1, e4] = α1e2 − e5,
[e2, e4] = α2e3,
[e4, e4] = α3e2,
[e5, e4] = α4e3,
[e1, e5] = (α1 − α2)e3 − e6,
[e4, e5] = (α3 − α4)e3,
[e1, ei] = −ei+1, 6 ≤ i ≤ n− 1,
[ei, en+3−i] = ǫ(−1)ien, 4 ≤ i ≤ n− 1, ǫ ∈ {0, 1}.

Case 1. ǫ = 0 (n odd or even)
Applying the general change of generators of the basis:

e′1 =

n
∑

i=1

Aiei, e′n−2 =

n
∑

i=1

Biei,

we determine the other elements of the new basis and the products in this basis.
Then the new parameters are the following:

α′

1 =
(α1A1 + 2α3A4)B4

A2
1 + α1A1A4 + α3A2

4

, α′

2 =
α2B4

A1 + α2A4
,

α′

3 =
α3B

2
4

A2
1 + α1A1A4 + α3A2

4

, α′

4 =
(α4A1 + α2α3A4)B

2
4

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
,

satisfying the restriction A1(A1 + α2A4)(A
2
1 + α1A1A4 + α3A

2
4)B4 6= 0.

Note that for new parameters we have

α′2
1 − 4α′

3 =
(α2

1 − 4α3)A
2
1B

2
4

(A2
1 + α1A1A4 + α3A2

4)
2
,

α′
1α

′
2 − 2α′

3 =
(α1α2 − 2α3)A1B

2
4

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
,

α′
1α

′
2 − 2α′

4 =
(α1α2 − 2α4)A1B

2
4

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
.

Consequently, the nullity of α2
1 − 4α3 is invariant in the following sense:

if α2
1 − 4α3 = 0, then α′2

1 − 4α′
3 = 0 and if α2

1 − 4α3 6= 0, then α′2
1 − 4α′

3 6= 0.
Analogously, the expressions α1α2 − 2α3 and α1α2 − 2α4 are nullity invariants.

Consider the following subcases:

α2 = 0, α3 = 0

Then, α′
1 =

α1B4

A1 + α1A4
, α′

2 = 0, α′
3 = 0 and α′

4 =
α4B

2
4

A1(A1 + α1A4)
.

• α1 = 0.
If α4 = 0, then the algebra L0,2

(0,0,0,λ,−1) with λ = 0 is obtained.

If α4 6= 0, then we obtain the algebra L0,2
(0,0,0,λ,−1) with λ = 1.

• α1 6= 0.
If α4 = 0, then we easily obtain α′

1 = 1. Thus, we have the algebra

L0,3
(1,0,0,λ,−1) with λ = 0.
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If α4 6= 0, then choosing appropriate values of A4 and B4 we derive
α′
1 = α′

4 = 1. Hence, the algebra L0,3
(1,0,0,λ,−1) with λ = 1 is obtained.

α2 = 0, α3 6= 0

Then, α′
1 =

(α1A1 + 2α3A4)B4

A2
1 + α1A1A4 + α3A2

4

, α′
2 = 0,

α′
3 =

α3B
2
4

A2
1 + α1A1A4 + α3A2

4

, α′
4 =

α4B
2
4

A2
1 + α1A1A4 + α3A2

4

.

• If α2
1 − 4α3 = 0, then taking adequate value of B4 we obtain α′

1 = 1, α′
3 =

1/4 and α′
4 =

α4

α2
1

= λ. So, we obtain the family of algebras L0,4
(1,0,1/4,λ,−1)

with λ ∈ C.
• If α2

1−4α3 6= 0, then taking suitable values of A4 and B4 we deduce α′
1 = 0,

α′
3 = 1 and α′

4 =
α4

α3
= λ. The family L0,5

(0,0,1,λ,−1), λ ∈ C is obtained.

α2 6= 0, α3 = 0

Then,

α′
1 =

α1B4

A1 + α1A4
, α′

2 =
α2B4

A1 + α2A4
, α′

3 = 0, α′
4 =

α4B
2
4

(A1 + α1A4)(A1 + α2A4)
.

• α1 = 0.
If α4 = 0, then the choosing appropriate B4 leads α′

2 = 1. Thus, we

obtain L0,6
(0,1,0,λ,−1), λ = 0.

If α4 6= 0, then taking adequate A4 and B4 we derive α′
2 = α′

4 = 1. The

algebra L0,6
(0,1,0,λ,−1), λ = 1 is obtained.

• α1 6= 0.
X α4 = 0.

If α1 − α2 = 0, then for suitable B4 we have α′
1 = α′

2 = 1, i.e. we

obtain the algebra L0,6
(µ,1,0,λ,−1) with µ = 1, λ = 0.

If α1 − α2 6= 0, then for adequate A4 and B4 it follows that α′
1 = 2,

α′
2 = 1. The algebra L0,6

(µ,1,0,λ,−1), with µ = 2, λ = 0 is obtained.

X α4 6= 0.
If α1 − α2 = 0, then for appropriate value of B4 we have α′

1 = α′
2 =

1 and α′
4 =

α4

α2
1

= λ. Therefore, we obtain the family of algebras

L0,6
(µ,1,0,λ,−1), where µ = 1, λ ∈ C \ {0}.

If α1 − α2 6= 0, then taking suitable values of A4 and B4 we obtain

α′
1 = 2, α′

2 = 1, α′
4 =

2α4

α1α2
= λ, i.e., the family L0,6

(µ,1,0,λ,−1),

µ = 2, λ ∈ C \ {0} is obtained.

α2 6= 0, α3 6= 0

• α2
1 − 4α3 6= 0, α1α2 − 2α3 6= 0. Taking appropriate A4 and B4 we derive

α′
1 = 0, α′

2 = 1, α′
3 = −

(α1α2 − 2α3)
2

α2
2(α

2
1 − 4α3)

= µ,
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α′
4 = −

(α1α2 − 2α3)(α1α2 − 2α4)

α2
2(α

2
1 − 4α3)

= λ.

Hence, we obtain the family of algebras L0,7
(0,1,µ,λ,−1), where µ ∈ C\{0}, λ ∈

C.

• α2
1 − 4α3 6= 0, α1α2 − 2α3 = 0.
It yields

α′

3 − α′

4 =
(α3 − α4)α2A1B

2
4

(A1 + α2A4)(α2A2
1 + 2α3A1A4 + α2α3A2

4)
,

2α′

3α
′

4 − α′2
2 α′

3 − α′2
4 =

(2α3α4 − α2
2α3 − α2

4)α
2
2A

2
1B

4
4

(A1 + α2A4)2(α2A2
1 + 2α3A1A4 + α2α3A2

4)
2
.

X α3 − α4 = 0.

Therefore, 2α3α4−α2
2α3−α2

4 6= 0 and taking the suitable values of A4

and B4 we obtain α′
1 = 4, α′

2 = 1, α′
3 = 2, α′

4 = 2. Thus, the algebra

L0,8
(−2λ,1,−λ,2,−1) with λ = −2 is obtained.

X α3 − α4 6= 0.

If 2α3α4 − α2
2α3 − α2

4 = 0, then α4 6= 0, α3 =
α2
4

2α4 − α2
2

, α4 6=
α2
2

2
. Choos-

ing adequate values of A4 and B4 we obtain α′
1 = 8/3, α′

2 = 1,

α′
3 = 4/3, α′

4 = 2, i.e., we derive the algebra L0,8
(−2λ,1,−λ,2,−1) with

λ = −4/3.

If 2α3α4−α2
2α3−α2

4 6= 0, then as before we deduce α′
1 = 2α′

3, α
′
2 = 1,

α′
3 = −

(α3 − α4)
2

2α3α4 − α2
2α3 − α2

4

= λ, α′
4 = 0 and the family L0,9

(2λ,1,λ,0,−1)

with λ ∈ C \ {0, 1} is obtained.

• α2
1 − 4α3 = 0, α1α2 − 2α3 6= 0.

Then, α1 6= 2α2, α′2
1 − 4α′

4 =
(α2

1 − 4α4)4A1B
2
4

(2A1 + α1A4)2(A1 + α2A4)
.

X α2
1 − 4α4 = 0.

Then, α1α2 − 2α4 6= 0 and from the above we deduce α′
1 = 1, α′

2 =

1, α′
3 = 1/4, α′

4 = 1/4. So, we obtain the algebra L0,10
(λ,1,λ2/4,µ,−1) with

λ = 1, µ = 1/4.
X α2

1− 4α4 6= 0, α1α2− 2α4 = 0 ⇒ α′
1 = 1, α′

2 = 1, α′
3 = 1/4, α′

4 = 1/2,

i.e., we obtain L0,10
(λ,1,λ2/4,µ,−1) with λ = 1, µ = 1/2.

X α2
1−4α4 6= 0, α1α2−2α4 6= 0 ⇒ α′

1 = 1, α′
2 =

α1α2 − 2α4

α2
1 − 4α4

, α′
3 = 1/4,

α′
4 = 0. The family L0,11

(1,λ,1/4,0,−1), where λ ∈ C \ {0, 1/2} is obtained.

• α2
1 − 4α3 = 0, α1α2 − 2α3 = 0.
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Then, α1 = 2α2, α3 = α2
2, α′2

2 − α′
4 =

(α2
2 − α4)A1B

2
4

(A1 + α2A4)3
.

X α2
2 − α4 = 0.

Taking an appropriate value of B4 it follows that α′
1 = 2, α′

2 = 1,

α′
3 = 1, α′

4 = 1. Hence, we obtain L0,10
(λ,1,λ2/4,µ,−1) with λ = 2, µ = 1.

X α2
2 − α4 6= 0.

Choosing adequate A4 and B4 =
(α2

2 − α4)A1

α3
2

yields α′
1 = 2, α′

2 = 1,

α′
3 = 1 and α′

4 = 0. Thus, the algebra L0,10
(λ,1,λ2/4,µ,−1) with λ = 2, µ = 0

is obtained.

Now, we consider the other case.

Case 2. ǫ = 1 (n even)

Similar to the case 1, we apply the general change of generators of basis. Then,
we obtain all products and the following expressions for α′

i, 1 ≤ i ≤ 4:

α′

1 =
(A1 − A4)(α1A1 + 2α3A4)

A2
1 + α1A1A4 + α3A2

4

, α′

2 =
α2(A1 − A4)

A1 + α2A4
,

α′

3 =
α3(A1 − A4)

2

A2
1 + α1A1A4 + α3A2

4

, α′

4 =
(A1 − A4)

2(α4A1 + α2α3A4)

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
,

verifying the restriction A1(A1 −A4)(A1 + α2A4)(A
2
1 + α1A1A4 + α3A

2
4) 6= 0.

Note that for these parameters we have

α′2
1 − 4α′

3 =
(α2

1 − 4α3)A
2
1(A1 −A4)

2

(A2
1 + α1A1A4 + α3A2

4)
2
,

α′
1α

′
2 − 2α′

3 = −
(α1α2 − 2α3)A1(A1 −A4)

2

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
,

α′
1α

′
2 − 2α′

4 =
(α1α2 − 2α4)A1(A1 −A4)

2

(A1 + α2A4)(A2
1 + α1A1A4 + α3A2

4)
,

α′
1 + 2α′

3 =
(α1 + 2α3)(A1 −A4)A1

A2
1 + α1A1A4 + α3A2

4

.

Consequently, the nullity of the expressions α2
1−4α3, α1α2−2α3, α1α2−2α4, α1+

2α3 are invariants.
Applying arguments as in the case 1 for the following subcases:

α2 = 0 α3 = 0 , α2 = 0, α3 6= 0 , α2 6= 0 α3 = 0 , α2 6= 0, α3 6= 0

we obtain the rest algebras and families of the theorem. �

The next theorem completes the classification of naturally graded Leibniz alge-
bras with characteristic sequence (n− 3, 3).
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Theorem 2.2. Let L be an n-dimensional naturally graded Leibniz algebra of the
first type (n ≥ 9). Then it is isomorphic to one of the following pairwise non-
isomorphic algebras:

L34
(0,λ,0) : L35

(µ,λ,1) :







[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = λen−1,
[e2, en−2] = λen, λ ∈ C.























[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = µe2 + λen−1,
[e2, en−2] = µe3 + λen, λ, µ ∈ {0, 1}
[ei, en−2] = µei+1, 3 ≤ i ≤ n− 4,
[ei, en−2] = ei+1, n− 2 ≤ i ≤ n− 1, .

L36
(1,λ,0) : L37

(1,λ,2) :















[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = e2 + λen−1,
[e2, en−2] = e3 + λen, λ ∈ {−1, 0}
[ei, en−2] = ei+1, 3 ≤ i ≤ n− 4.























[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = e2 + λen−1,
[e2, en−2] = e3 + λen, λ ∈ C

[ei, en−2] = ei+1, 3 ≤ i ≤ n− 4,
[ei, en−2] = 2ei+1, n− 2 ≤ i ≤ n− 1.

L38
(0,0,λ) : L39

(0,1,λ) :















[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = −en−1,
[e2, en−2] = −(1 + λ)en,
[e1, en−1] = λen, λ ∈ C.































[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = −en−1,
[e2, en−2] = −(1 + λ)en,
[en−1, en−2] = −en,
[e1, en−1] = λen,
[en−2, en−1] = en, λ ∈ {−1, 0}.

L40
(1,λ,µ) : L41

(1,−1,λ) :






































[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = e2 − en−1,
[e2, en−2] = e3 − (1 + µ)en,
[ei, en−2] = ei+1, 3 ≤ i ≤ n− 4,
[en−1, en−2] = −λen,
[e1, en−1] = µen,
[en−2, en−1] = λen, λ ∈ {0, 1}, µ ∈ C.







































[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = e2 − en−1,
[e2, en−2] = e3 − (1 + λ)en,
[ei, en−2] = ei+1, 3 ≤ i ≤ n− 4,
[en−1, en−2] = en,
[e1, en−1] = λen,
[en−2, en−1] = −en, λ ∈ {−1, 0}.

Proof. Let L be a Leibniz algebra of the first type. Then we have the following
multiplication:

[ei, e1] = ei+1, 1 ≤ i ≤ n− 4, [en−3, e1] = 0,
[en−2, e1] = en−1, [en−1, e1] = en, [en, e1] = 0.

It is not difficult to verify that

L1 =< e1, en−2 >, L2 =< e2, en−1 >, L3 =< e3, en >, Li =< ei >, 4 ≤ i ≤ n− 3

and {e2, e3, . . . , en−3} ⊆ R(L). Therefore, to define the multiplication in L it suffice
to study the multiplication of the element en−2 from the right side.

Introduce denotations [e1, en−2] = α1e2+α2en−1, [en−2, en−2] = β1e2+β2en−1,
[e2, en−2] = γ1e3 + γ2en, [en−1, en−2] = δ1e3 + δ2en.

Then to verify the Leibniz identity [ei, [ej, ek]] = [[ei, ej], ek] − [[ei, ek], ej ] it
suffice to consider

j = 1 and k = n− 2, n− 1, n; j = n− 2 and k = 1, n− 1, n;
j = n− 1 and k = 1, n− 2, n; j = n and k = 1, n− 2, n− 1.

We consider several cases.
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en−2 ∈ R(L).

Then {e2, e3, . . . , en} ⊆ R(L) and, consequently, we have αk = βk = γk =
δk = 0, 1 ≤ k ≤ 2. Thus, we obtain the algebra L34

(0,0,0).

en−2 /∈ R(L), en−1 ∈ R(L).

Then, en ∈ R(L) and γk = αk, δk = βk, 1 ≤ k ≤ 2, β1 = 0. Thus, the
multiplication table of L can be expressed in the form:

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = α1e2 + α2en−1,
[e2, en−2] = α1e3 + α2en,
[ei, en−2] = α1ei+1, 3 ≤ i ≤ n− 4,
[ei, en−2] = β2ei+1, n− 2 ≤ i ≤ n− 1.

Taking the general change of generators of basis:

e′1 =

n
∑

i=1

Aiei, e′n−2 =

n
∑

i=1

Biei

we obtain the new basis {e′1, e
′
2, . . . , e

′
n−1, e

′
n}.

We compute all products and the new parameters are the following:

α′

1 =
α1Bn−2

A1 + α1An−2
, α′

2 =
A1(α2A1 + β2An−2 − α1An−2)

(A1 + α1An−2)(A1 + β2An−2)
, β′

2 =
β2Bn−2

A1 + β2An−2
,

satisfying the restrictions

A1Bn−2(A1 + α1An−2)(A1 + β2An−2) 6= 0,
Bi = 0, 1 ≤ i ≤ n− 6,
(α1 − β2)Bi = 0, n− 5 ≤ i ≤ n− 4,
α2Bi = 0, n− 5 ≤ i ≤ n− 4,

and Bn−2(β2An−1 + α2A2 − α1An−1) = Bn−1(β2An−2 + α2A1 − α1An−2).
Note that only coefficients A1, An−2, Bn−2 participate in the expressions for the

parameters α′
1, α

′
2, β

′
2. Hence, we can suppose that Ai = 0, i 6= {1, n − 2} and

Bj = 0, with j 6= n− 2.
It can be proved that the nullity of α1 − β2 is invariant.
If α1 = 0, then the nullity of 1 − α2 is invariant and if β2 = 0, then the nullity

of 1 + α2 is invariant, as well.
Similar as in the proof of Theorem 2.1 we consider the possible cases and in each

of them we have the following pairwise non-isomorphic algebras of the theorem:

L34
(0,λ,0), λ ∈ C−{0}; L35

(µ,λ,1), λ, µ ∈ {0, 1}; L36
(1,λ,0), λ ∈ {−1, 0}; L37

(1,λ,2), λ ∈ C.

en−1 /∈ R(L), en ∈ R(L).

Then, en−2 /∈ R(L). Therefore, for defining the multiplication of L1 and L2 it is
enough to study the multiplication of en−2 and en−1 on the right side.

Introduce the notations

[e1, en−2] = α1e2 + α2en−1, [en−2, en−2] = β1e2 + β2en−1,
[e2, en−2] = γ1e3 + γ2en, [en−1, en−2] = δ1e3 + δ2en,
[e1, en−1] = a1e3 + a2en, [en−2, en−1] = b1e3 + b2en
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From equality [ei+1, en−1] = [[ei, en−1], e1], 1 ≤ i ≤ n− 1 we obtain

[ei, en−1] = a1ei+2, 2 ≤ i ≤ n− 5,
[ei, en−1] = 0, n− 4 ≤ i ≤ n− 3,
[en−1, en−1] = b1e4,
[en, en−1] = b1e5.

The equality [ei+1, en−2] = [[ei, en−2], e1]− [ei, en−1], 1 ≤ i ≤ n− 1 yields

α2 = −1, γ1 = α1 − a1, γ2 = −(1 + a2), δ1 = β1 − b1, δ2 = β2 − b2,

[ei, en−2] = (α1 − (i− 1)a1)ei+1, 3 ≤ i ≤ n− 4,

[en−3, en−2] = 0, [en, en−2] = (β1 − 2b1)e4.

Since [e1, en−1] ∈ R(L), then [[ei, en−1], e1] = [ei+1, en−1], which implies b1 = 0
for n ≥ 9. From [en, [e1, en−2]] = −[[en, en−2], e1], we obtain β1 = 0. Consequently,
[en−2, en−2] ∈ R(L) and en−1 /∈ R(L) we have β2 = 0.

Moreover, [en−2, en−1] ∈ R(L). Then [[ei, en−2], en−1] = [[ei, en−1], en−2], with
1 ≤ i ≤ n and hence, a1 = 0 for n ≥ 9.

Thus, the multiplication in L is as follows

[ei, e1] = ei+1, 1 ≤ i ≤ n− 1, i 6= n− 3,
[e1, en−2] = α1e2 − en−1,
[e2, en−2] = α1e3 − (1 + a2)en,
[ei, en−2] = α1ei+1, 3 ≤ i ≤ n− 4,
[en−1, en−2] = −b2en,
[e1, en−1] = a2en,
[en−2, en−1] = b2en.

Similar as above we take the general change of generators of basis and then
we generate the new basis. After that we determine all products and the new
parameters are the following:

α′

1 =
α1Bn−2

A1 + α1An−2
, b′2 =

b2Bn−2

A1 − b2An−2
, a′

2 =
(a2A1 + b2An−2)

A1 − b2An−2
,

with the restrictions

A1Bn−2(A1 + α1An−2)(A1 − b2An−2) 6= 0,
Bi = 0, 1 ≤ i ≤ n− 3,
(1 + a2)(−(A2 + α1An−1)Bn−2 + (A1 + α1An−2)Bn−1) = 0.

Note that only coefficients A1, An−2, Bn−2 participate in the expressions for the
parameters α′

1, b
′
2, a

′
2. Therefore, we can assume that Ai = 0, i 6= 1, n − 2 and

Bj = 0, j 6= n− 2.
It is proved that the nullity of 1 + a2, α1 + b2 are invariants. Similarly as in the

proof of Theorem 2.1 we consider the possible cases and for each of them we have
the following pairwise non-isomorphic Leibniz algebras:

L38
(0,0,λ), λ ∈ C; L39

(0,1,λ), λ ∈ {−1, 0};

L40
(1,λ,µ), λ ∈ {0, 1}, µ ∈ C; L41

(1,−1,λ), λ ∈ {−1, 0}.

en /∈ R(L).

Then, en−2, en−1 /∈ R(L), as well. We set [e1, en] = λ1e4, [en−2, en] = λ2e4.



ON THE DESCRIPTION OF THE LEIBNIZ ALGEBRAS WITH NILINDEX n − 3 13

From [[ei, e1], en] = [[ei, en], e1], 1 ≤ i ≤ n it follows that

[ei, en] = λ1ei+3, 2 ≤ i ≤ n− 6,
[ei, en] = 0, n− 5 ≤ i ≤ n− 3,
[en−1, en] = λ2e5,
[en, en] = λ2e6.

However, [[en, en], e1] = 0 implies λ2 = 0 for n ≥ 9 and hence, λ1 6= 0.

If we denote [e1, en−1] = a1e3 + a2en and [en−2, en−1] = b1e3 + b2en. Then due
to [e1, en−1] + [en−1, e1] ∈ R(L) we have a2 = −1.

From [[ei, e1], en−1] = [[ei, en−1], e1] − [ei, en], 1 ≤ i ≤ n it follows that b1 = 0
for n ≥ 9 and

[ei, en−1] = (a1 − (i − 1)λ1)ei+2, 2 ≤ i ≤ n− 5,
[ei, en−1] = 0, n− 4 ≤ i ≤ n− 3,
[en−2, en−1] = b2en,
[en−1, en−1] = 0,
[en, en−1] = 0.

The equality [[ei, en], en−1 = [[ei, en−1], en], 1 ≤ i ≤ n implies λ1 = 0, which is
a contradiction with condition λ1 6= 0. Consequently, in this case there does not
appear any naturally graded Leibniz algebra. �

Summarizing the results of the Theorems 2.1. and 2.2 we complete the classifica-
tion of naturally graded Leibniz algebras with the characteristic sequence (n−3, 3).
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