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Abstract A geometric approach is used to study the Abel first order differential
equation of the first kind. The approach is based on the recently developed theory
of quasi-Lie systems which allows us to characterise some particular examples
of integrable Abel equations. Second order Abel equations will be discussed and
the inverse problem of the Lagrangian dynamics is analysed: the existence of two
alternative Lagrangian formulations is proved, both Lagrangians being of a non-
natural class. The study is carried out by means of the Darboux polynomials and
Jacobi multipliers.
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1 Introduction: Abel differential equations

Nonlinear differential equations play a relevant role in the study of evolution in
terms of an evolution parameter, what has motivated physicists’ interest during
the last forty years. The lack of a general procedure for determining their gen-
eral solutions justifies the analysis of particular instances where solutions can be
investigated via algebraic or geometric methods. An important example are Lie
systems, which admit a superposition rule giving the general solution in terms of
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Departamento de F́ısica Teórica and IUMA, Universidad de Zaragoza, 50009 Zaragoza, Spain
E-mail: mfran@unizar.es

http://arxiv.org/abs/1012.2257v1
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a finite set of particular solutions. These systems describe the integral curves of t-
dependent vector fields which are t-dependent linear combinations of vector fields
closing on a finite-dimensional real Lie algebra (see e.g. [1] and [2] for a modern
presentation of the theory of Lie systems [3,4]).

An interesting instance of Lie system is the Riccati equation, a generalisation of
the inhomogeneous linear equation. One of its main characteristics is the existence
of an action of the group of curves in SL(2,R) on the set of Riccati equations,
what can be used for reduction of a given Riccati equation into a simpler one. This
is for instance the case when a particular solution of a given equation is known
[5]. Moreover, this property can be shown to be common to all Lie systems [6].

A generalisation of Lie systems has recently been proposed [7,8] allowing us
to use some of the techniques applicable to Lie systems to this more general class
of systems. This paper deals with a specific example, the Abel equation, with
applications in many different branches of physics.

There are several differential equations called Abel equation. The first-order
Abel equation of the first kind

ẋ = A0(t) +A1(t)x+A2(t)x
2 +A3(t)x

3, (1)

is a generalisation of the Riccati equation (the particular case A3 = 0) introduced
by Abel within the theory of elliptic functions, while the first-order Abel equation
of the second kind is of the form [9,10]:

(y + f(t)) ẏ = B0(t) +B1(t)y +B2(t)y
2 +B3(t)y

3, (2)

which reduces into one of the first kind by means of the transformation

x = (y + f(t))−1, (3)

with coefficients
A0 = −B3, A1 = 3B3 f −B2,
A2 = −f ′ − 3B3 f

2 + 2f B2 −B1,
A3 = f3B3 − f2 B2 + f B1 −B0.

Therefore, we can restrict ourselves to study the Abel equations of the first kind.
We can also consider the generalised first-order Abel equation [11]

ẋ =

n∑

k=0

Ak(t)x
k, n > 3, n ∈ N, (4)

or the second-order Abel equation [12]:

d2x

dt2
+ 4x2

(dx
dt

)
+ x5 = 0 . (5)

The n-order Abel equation is a linear combination of the different members of a
hierarchy of j-order Abel equations with functions pj = pj(t) as coefficients [12]:

(p0D
n
A + p1D

n−1
A + · · ·+ pn−1DA + pn)x+ pn+1 = 0 . (6)

Here, DA denotes the differential operator DA = d/dt + x2, and the action of
DA leads to a family of differential equations whose first members are given by a
sequence D

j
Ax = 0, j = 0, 1, 2, . . ..
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Abel equations appear in the reduction of order of many second- and higher-
order equations, and hence are frequently found in the modeling of real problems
in many areas, for instance, Emden equation, y′′+(2/x)y′+yn = 0, Emden–Fowler
equation, y′′ = A xn ym (y′)l, the Van der Pol equation y′′− ǫ(1− y2)y′+α y = 0,
the Duffing equation, y′′ + ay + b y3 = 0, and many other equations. They also
play a relevant role in the study of quadratic systems in the plane [13] and the
center-focus problem [14].

The Liénard equation x′′ + f(x)x′ + g(x) = 0 was studied in [15]. Defining
ξ(x) = x′, it may be written ξ ξ′ + f(x) ξ + g(x) = 0, which is an Abel equation
of the second kind, related by u = 1/y (see (3)) to the Abel equation of the
first kind: u′ = f(u)u2 + g(u)u3. In particular, the one studied by Bougoffa [10],
ξ ξ′ − ξ = Φ(x) reduces to u′ + u2 + Φ(x)u3 = 0. For instance, the autonomous
dissipative Milne–Pinney equation can be transformed into a second kind Abel
equation:

y

(
dy

dt
+ 1

)
=

1

t3
,

which is related to the first kind Abel equation ẋ = x2 − 1
t3 x

3.
The Abel equation was used by Majorana in the study of Thomas–Fermi equa-

tion:

y′′ =
y3/2

x1/2
, (7)

which is a particular case of Emden–Fowler equation, and it is also used in the
study of cosmologicalmodels [16]. The general solution of the cosmological Einstein-
Friedmann equations for the universe filled with a scalar field for a given potential
can be expressed via the general solution of the Abel equation of the first kind
[17]. Another more recent application can be found in [18].

2 Lie systems and superposition rules

There are (systems of n) first-order differential equations (to be called Lie systems)
that admit a superposition rule, i.e. a function φ : Rn(m+1) → R

n such that the
general solution can be written as x = φ(x(1), . . . , x(m), k), the simplest example
being the inhomogeneous linear equation

ẋ = c0(t) + c1(t)x, (8)

for which there is a superposition rule involving two generic particular solutions:

x(t) = φ(x1(t), x2(t); k) = x1(t) + k (x2(t)− x1(t)). (9)

Moreover, it admits a solution in terms of two quadratures:

x(t) = exp

(∫ t

c1(t
′) dt′

)[
C −

∫ t

exp

(∫ t′

c1(t
′′) dt′′

)
c2(t

′) dt′
]

Another well known example is the Riccati equation, i.e. the following nonlinear
differential equation:

ẋ = c0(t) + c1(t)x+ c2(t)x
2 . (10)
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This type of equations does not admit integration by quadratures in the general
case. Their solutions are the integral curves of the t-dependent vector field

Xt = c0(t)X0 + c1(t)X1 + c2(t)X2,

which is a linear combination with t-dependent coefficients of the vector fields

X0 = ∂x , X1 = x∂x , X2 = x2 ∂x ,

that close on a three-dimensional real Lie algebra, with defining relations

[X0, X1] = X0 , [X0, X2] = 2X1 , [X1, X2] = X2 ,

isomorphic to the sl(2,R) Lie algebra. Therefore it is a Lie system admitting a
superposition rule which turns out to be [19]

φ(x1, x2, x3; k) =
k x1(x3 − x2) + x2(x1 − x3)

k (x3 − x2) + (x1 − x3)
. (11)

The vector fields X0, X1 and X2 are a basis of the fundamental vector fields
relative to the action of the group SL(2,R) on R = R ∪ {∞}:

Φ(A,x) =





αx+ β

γx+ δ
, if x /∈ {−δ/γ,∞},

α/γ , if x = ∞,
∞ , if x = −δ/γ,

with A =

(
α β
γ δ

)
∈ SL(2,R).

A Riccati equation can be seen as a curve in R
3 and each element A(t) of the group

G of smooth SL(2,R)-valued curves, Map(R, SL(2,R)), transforms every curve
x(t) in R̄ into a new one x̄(t) = Φ(A(t), x(t)) satisfying a new Riccati equation
with coefficients c̄2, c̄1, c̄0:

c̄2 = δ2 c2 − δγ c1 + γ2 c0 + γδ̇ − δγ̇ ,

c̄1 = −2βδ c2 + (αδ + βγ) c1 − 2αγ c0 + δα̇− αδ̇ + βγ̇ − γβ̇ ,

c̄0 = β2 c2 − αβ c1 + α2 c0 + αβ̇ − βα̇ .

These expressions define an affine action of the group G on the set of Riccati equa-
tions. An appropriate choice for the curve, A(t), transforms the original Riccati
equation into a simpler one, for instance an integrable by quadratures one. The
conditions for the existence of such a transformation provide us with integrability
conditions [20]. Moreover, similar properties hold for any other Lie system.

3 Geometric approach to the Abel equation of the first kind

Each t-dependent vector field whose integral curves are the solutions of an Abel
equation is a linear combination with t-dependent coefficients of the vector fields
in the linear space VAbel(R) defined by

VAbel(R) =
〈
∂x, x∂x, x

2∂x, x
3∂x
〉
.

Such a t-dependent vector field is not, in general, a Lie system. Indeed, consider a
t-dependent vector field X(t, x) = x2∂x + h(t)x3∂x, with a non-constant function
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h. If X(t, x) determines a Lie system, there must exist a finite-dimensional Lie
algebra V0(R) including the vector fields x

2∂x and x3∂x such thatX ∈ V0(C
∞(R)).

Nevertheless, this is impossible as such a Lie algebra should contain the successive
Lie brackets of x2∂x and x3∂x, which span an infinite family of linearly independent
vector fields (note that [x2∂x, x

n∂x] = (n− 2)xn+1∂x).
As pointed out in a recent paper [7], we can however look for a linear subspace

W (R) ⊂ VAbel(R) such thatW (R) is a Lie algebra satisfying that [W (R), VAbel(R)] ⊂
VAbel(R). In such a case the flows of time-dependent vector fields with values in
W (R) leave invariant the linear space VAbel(R) and starting with a given Abel
equation we obtain a new Abel equation from each flow. Maybe, by an appropri-
ate flow, the transformed Abel equation becomes a Lie system. In this case the
initial Abel equations is called a quasi-Lie system.

Our aim is, given Y = f(x)∂x ∈ X(R), to determine f such that [Y, VAbel(R)] ⊂
VAbel(R). In particular,

[Y, ∂x] = −f ′(x)∂x ∈ VAbel(R).

Hence, −f ′(x) = c3x
3+c2x

2+c1x+c0 and f(x) = − c3
4 x4− c2

3 x3− c1
2 x2+c0x+c−1.

Using now the condition [Y, x ∂x] = (f(x)− xf ′(x))∂x ∈ VAbel(R), we obtain that
c3 = 0, and

[
Y, x2∂x

]
= (2xf(x) − x2f ′(x))∂x ∈ VAbel(R) yields that c2 = 0.

Moreover, as Y must satisfy that
[
Y, x3 ∂x

]
= (3x2f(x)− x3f ′(x))∂x ∈ VAbel(R),

we also see that c1 = 0. Consequently, every symmetry group of VAbel(R) admits
a Lie algebra of fundamental vector fields W0 contained in the Lie algebra

WAbel = 〈∂x, x∂x〉 .

We find in this way the so-called structure invariance group [21], which turns out
to be the affine group in one dimension.

Correspondingly, the set of first-order Abel equations of the first kind is invari-
ant under all the following transformations [22]

x̄(t) = α(t)x(t) + β(t), α(t) 6= 0, (12)

Under such a transformation the given Abel equation (1) becomes a new Abel
equation ˙̄x = Ā0(t) + Ā1(t) x̄+ Ā2(t) x̄

2 + Ā3(t) x̄
3, with

Ā3(t) = A3(t)α
2(t),

Ā2(t) = α(t)(3A3(t)β(t) +A2(t)),

Ā1(t) = 3A3(t)β
2(t) + 2A2(t)β(t) +A1(t)− α̇(t)α−1(t),

Ā0(t) = α−1(t)
(
A3(t)β

3(t) +A2(t)β
2(t) +A1(t)β(t) +A0(t)− β̇(t)

)
.

(13)

This is a very useful property: the action of the group of curves in the affine
group produces orbits, i.e. equivalence classes of Abel equations, with the same
properties of integrability or existence of superposition rules. For instance, Abel
equations of an orbit containing an integrable by quadratures Riccati equation are
also integrable by quadratures. The orbits are characterized by different values of
invariant functions.

One must determine the Lie algebras contained in VAbel reachable by the set of
transformations (the coefficient of X3 cannot be transformed to be zero, see first
equation in (13)). It is possible to check that the only subalgebra of dimension
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three is the one of Riccati equation which is not reachable by the considered set
of transformations. On the other hand, there is a one-parameter family of two-
dimensional subalgebras of VAbel reachable from a proper Abel equation, those
generated by

(−2µ3 + 3µx2 + x3)∂x, (µ+ x)∂x. (14)

These are integrable by two quadratures. For instance the case µ = 0 corresponds
to Bernoulli equation. Finally, the algebras generated by vector fields

(c0 + c1x+ c2x
2 + x3)∂x, (15)

lead to separable differential equations, therefore integrable by one quadrature.

4 Canonical forms of Abel equations of the first kind

Starting from an Abel equation of the first kind with A3 6= 0, we can define a
transformation x̄ = x + 1

3A2(t)/A3(t), which reduces the original equation to a

new one ˙̄x = Ā0(t) + Ā1(t) x̄+ Ā3(t) x̄
3, where

Ā0 = A0−
A1A2

3A3
+

2

27

A3
2

A2
3

+
1

3

d

dt

(
A2

A3

)
, Ā1 = A1−

1

2

A2
2

A3
, Ā2 = 0, Ā3 = A3.

In fact, a translation x̄ = x+ β transforms the given equation into:

˙̄x = β̇ +A3(x̄− a)3 +A2(x̄− a)2 + A1(x̄− a) +A0,

and then

˙̄x = A3x̄
3+(A2−3βA3)x̄

2+(3β2A3−2βA2+A1)x̄+ β̇−β3A3+β2A2−βA1+A0.

Choosing β =
A2(t)

3A3(t)
we find that Ā3 = A3, Ā2 = 0 and Ā1 and Ā0 are given

by the above given expressions. When Ā0 = 0, we obtain a first possibility for the
canonical form

ẋ = A1(t)x+A3(t)x
3,

which is a Bernoulli equation for n = 3, and therefore solvable by the change of
variable u = 1/x2, which leads to the inhomogeneous linear equation

u̇+ 2A1u+A3 = 0 .

On the contrary, if Ā0 6= 0, under the transformation x̄ = ¯̄x Ā0, the equation
becomes ¯̄x′ = ¯̄A3(t)¯̄x

3 + ¯̄A1(x) y + 1, and we obtain as a canonical form

ẋ = 1 +A1(t)x+A3(t)x
3. (16)

An important instance is the case A0 = A1 = 0: the canonical forms are such that

Ā1 = −
1

3

A2
2

A3
, Ā0 =

2

27

A3
2

A2
3

+
1

3

d

dt

(
A2

A3

)
.

Liouville proved that if Φ3 and Φ5 are given by

Φ3 = A2 A
′

3 −A′

2 A3 + 3A0 A
2
3 − A1 A2 A3 +

2
9A

3
2

Φ5 = A3 Φ
′

3 − 3
(
A′

3 +
1
3A

2
2 −A1 A3

)



A geometric approach to integrability of Abel differential equations 7

then the quotient Φ5
3/Φ

3
5 is an invariant under the structure invariance group. The

first canonical form corresponds to Φ3 = 0. Any two equations with Φ3 = 0 are in
the same orbit, i.e. are related by the structure invariance group.

For equations with the second canonical form there is a new invariant, and
they are in the same orbit if and only if the value of the invariant is the same for
both equations.

There exist a two-parameter structure invariance group for this type of equa-
tions in the case of first canonical form and a one-parameter one in the cases of the
second form provided that an invariant has a constant value different from zero.

5 Second order Abel equation

Lie’s recipe for order reduction of second-order linear differential equations leads
to some Riccati equations. For instance ÿ = 0 under the change of variable y = ez

becomes Dx = 0 with D = d/dt+x , where x = ż. Similarly
...
y = 0 becomes under

the same change of variable D
2x = 0. On the other hand, when comparing Abel

equation with Riccati equation one sees that a possible generalization to second-
order equation of Abel equation is D

2
Ax = 0, where DA = d/dt + x2 [12]. The

second-order Abel equation (5) can be presented as a system of two first-order
equations 




dx

dt
= v,

dv

dt
= −4x2v − x5,

corresponding to the following vector field on the velocity phase space R
2

Γ = v ∂x + FA ∂v , FA = −4x2v − x5.

Such a nonlinear Abel equation of second-order can be derived from the Lagrangian

LA(x, v) =
1

(v + x3)2
. (17)

The corresponding conserved energy function is given by

ELA
= −

(3v + x3)

(v + x3)3
.

To be remarked that there exists an alternative Lagrangian given by:

L̃A(x, v) = (3v + x3)2/3. (18)

Such Lagrangians can be obtained by means of the Jacobi last multiplier theory
and Darboux polynomials for polynomial vector fields. More specifically, Darboux
polynomials for a polynomial vector field X are polynomials D such that XD =
fD. The function f is said to be the cofactor corresponding to such a Darboux
polynomial and the pair (f,D) is called a Darboux pair.

On the other side, given a vector field X in an oriented manifold (M,Ω), a
function R such that R i(X)Ω is closed is said to be a Jacobi multiplier (JM) for X
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[23]. Recall that the divergence of the vector field X (with respect to the volume
form Ω) is defined by the relation

LXΩ = (divX)Ω .

Then, R is a Jacobi multiplier if and only if RX is a divergenceless vector field
and therefore using

LRXΩ = (divRX)Ω = [X(R) +R divX]Ω = 0 ,

we see that R is a last multiplier for X if and only if

X(R) +R divX = 0 . (19)

because, for any function f ,

X(f R) + f R divX = (Xf)R+ f(X(R) +R divX).

The remarkable point is that if D1, . . . ,Dk are Darboux polynomials with cor-
responding cofactors fi, with i = 1, . . . , k, one can look for multiplier factors of
the form

R =

k∏

i=1

Dνi

i , (20)

and then

X(R)

R
=

k∑

i=1

νi
X(Di)

Di
=

k∑

i=1

νi fi.

Consequently, if the coefficients νi can be chosen such that

k∑

i=1

νi fi = −divX, (21)

we arrive to

X(R)

R
=

k∑

i=1

νi fi = −divX,

what implies that R is a Jacobi last multiplier for X.
Finally, one can prove (see e.g. [23]) that if R is a Jacobi multiplier for a

vector field which corresponds to a second-order differential equation, there is
an essentially unique Lagrangian L (up to addition of a gauge term) such that
R = ∂2L/∂v2.

Actually, Helmholtz analysed the set of conditions that a multiplier matrix
gij(x, ẋ) must satisfy in order for a given system of second-order equations

ẍj = F j(x, ẋ) , j = 1, 2, . . . , n,

or the corresponding system




dxi

dt
= vi,

dvi

dt
= F i(x, v),
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which provides us the integral curves for the vector field

X = vi∂xi + F i(x, v)∂vi , (22)

when written of the form

gij(ẍ
j − F j(x, ẋ)) = 0 , i, j = 1, 2, . . . , n,

to be the set of Euler–Lagrange equations for a certain Lagrangian L.
Each matrix solution gij can be identified with the Hessian matrix of L, gij =

∂L/∂vi∂vj , and then L can be obtained by direct integration of the gij functions.
The two first conditions just impose regularity and symmetry of the matrix

gij ; the two other equations introduce relations between the derivatives of gij and
the derivatives of the functions F i. The fourth set of conditions for gij is

X(gij) = gikA
k
j + gjkA

k
i , Ai

j = −
1

2
∂vjF i .

When the system is one-dimensional we have i = j = k = 1 and then the three first
set of conditions become trivial and the fourth one reduces to one single P.D.E.

X(g) + g
∂F

∂v
≡ v

∂g

∂x
+ F

∂g

∂v
+ g

∂F

∂v
= 0 ,

which is the equation defining the Jacobi multipliers, because divX = ∂vF .
Then, the inverse problem reduces to find the function g which is a Jacobi

multiplier and L is obtained by integrating the function g two times with respect
to velocities. The function L so obtained is unique up to addition of a gauge term.

Coming back to the second-order Abel equation case, one can easily check that
D1(x, v) = v + x3 is a Darboux polynomial for Γ with cofactor −x2 since

(
v

∂

∂x
+ FA

∂

∂v

)
(v + x3) = −x2(v + x3) .

The divergence of the vector field Γ is −4x2, and then we see that there is a
Jacobi multiplier of the form R = D−4

1 . Consequently, the Abel equation admits
a Lagrangian description by means of a function L such that

∂2L

∂v2
= (v + x3)−4 ,

from where we obtain the Lagrangian L = LA given by (17).
But D2(x, v) = 3v+x3 is also a Darboux polynomial for Γ with cofactor −3x2,

(
v

∂

∂x
+ FA

∂

∂v

)
(3v + x3) = 3x2v − 3(4x2v + x5) = −3x2(3v + x3) ,

and then we can find another Jacobi multiplier of the form Dν2

2 with ν2 = −4/3.
The Abel equation admits a Lagrangian description by means of a function L such
that

∂2L

∂v2
= (3v + x3)−4/3 ,

from where we obtain the Lagrangian L = L̃A given by (18).
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13. M.J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of
periodic orbits of Abel equations, J. Differential Equations 234, 161–176 (2007).

14. M. Briskin, J-P. Francoise and Y. Yomdin, The Bautin ideal of the Abel equation, Non-
linearity 11, 431–443 (1998).

15. R. Iacono, Commment on ‘On the general solution for the modified Emden-type equation
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