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Abstract.— Counting Euclidean triangulations with vertices in a finget¢ of the convex hull
Conv(¢) of ¢ is difficult in general, both algorithmically and theoredity. The aim of this paper
is to describe nearly convex polygons, a class of configomatifor which this problem can be
solved to some extent. Loosely speaking, a nearly convegquols an infinitesimal perturbation
of a weakly convex polygon (a convex polygon with edges dedi by additional points). Our
main result shows that the triangulation polynomial, entatieg all triangulations of a nearly
convex polygon, is defined in a straightforward way in termhpalynomials associated to the
“perturbed” edges.

1 Introduction

Given a finite subset of the Euclidean plan&?, calculating the number of triangu-
lations of the convex hull Coriv’ ) using only Euclidean triangles with verticesdn
seems to be difficult and has attracted some interest, boith &n algorithmic and a
theoretical point of view, see for instancé [1, [2]} [31].[#5l, [7], [9], [LO], [11].

Animportant and well understood special case is given by tregtices of a strictly
convex polygon. The associated number of triangulatiotfseiatalan numbed,_».

In a first part of the paper, we consider convex polygons lipprhaps collinear
vertices, called weakly convex polygons. We are not awatieeoéxistence of formulae
giving the number of triangulations for such polygons. Kimg of weakly convex
polygons as strictly convex polygons with edges subdivigeddditional vertices, we
call edgeghe edges of the underlying strictly convex polygon. Edgedlaus maximal
straight segments contained in the boundary of such pobigon

Denoting byc the set of all vertices, we define thneeightof an edgeE as the
number of connected componentstof (E N ¢). Weights of successive edges form a
finite sequencay, az... a of total sumn = #c.

We show (Theoreiii '3 2) that there exists a sequence of polafopm(t), m> 1,
calledmaximal edge polynomiglsuch that the number of maximal triangulations.(
involving all vertices ofc) equals

max = brCr_2, 1
Tmax(C) k;k 2 1)

where the coefficients, are defined by]l_; pa (t) = ¥ bitk.
We deduce that the triangulation polynomial of a configaratwhich takes into
account non-maximal triangulations) verifies formally siaene formula as the previous
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one, replacing maximal edge polynomialsdgmplete edge polynomialhis has the
perhaps surprising consequence that enumerative prepe@iftitriangulations do not
depend on the particular cyclic order of the edges.

In a second part, we defimearly convex polygores small perturbations of weakly
convex ones. Our main result, TheorEml 4.5, establishesxik&erce of near-edge
polynomials such that the previous formulae continue ta h&lactorization of near-
edges, a useful arithmetical property, allows classificatif small near-edges.

Near-edge polynomials are difficult to compute in generakgxin a few special
cases. We plan to describe algorithms in a future paperrdpalith computation as-
pects. Some details are given in secfibn 5.

This article is organized as follows. We introduce first défins and recall the
strictly convex case in sectid 2, prove formulae for wealdyvex polygons in sec-
tion[3, expose the nearly convex setting and prove our mairtre sectiof 4. Finally,
sectiorlb contains a few remarks and open problems.

2 Triangulations of planar configurations

A (planar) configuration of pointss a finite subset = {Pi,...,Py} of the oriented
planeR?. We denote by Cor{¢) the convex hull ofc and by Extt¢) the set of all
extremal elements ig (a pointP € ¢ is extremalif Conv(c \ {P}) # Conu¢)). The
configurationc is said to bestrictly convexf Extr(¢) = ¢. More generally, Ex{ic)
is the set of vertices of the strictly convex polygon formgdtie convex hull ot.

A triangulationof a configuratiorc is a triangulation of its convex hull with ver-
tices inc, i.e. afinite setr = {A,...,Aq} of Euclidean triangles with vertices in
such that Con{c) = Uiq:lAi and non-trivial intersection&; N A;j consist of a common
vertex or a common edge. A triangulationofs maximalif it involves all vertices of
¢ (i.e. each point ofc is a vertex of at least one triangle). The number of maximal
triangulations ofc is denoted bytmax(C). If ¢ is strictly convex, it is well known that
Tmax(C) is aCatalan number

Theorem 2.1 All triangulations of a strictly convex-agon are maximal and their
numberis G = (2"2)/(n—1).

Sketch of proof: A deformation argument shows that combinatorial propg ietri-
angulations of a strictly convex—gon depend only on. We denote by, the number
of triangulations of such a convex-gonP. The choice of a marked edgein P se-
lects in every triangulation a unique trian@ieontaininge. The two remaining edges
of A determine two triangulated convex polygons having respagtk andn+ 1 — k
edges for some integé&rsuch that < k < n— 1. This decompaosition amounts to the

recurrence relation
n-1
Th= ;TanJrl—k
k=

holding forn > 3, using the conventiom, = 1. Therefore, the generating function
Yn—2TnX" satisfies a quadratic equation. The classical resolutivasga formula,
whose development in power series yields the result. O
Triangulations of a general configurationare not necessarily maximal and enu-
merative properties are encoded by the triangulation potyal p:(¢) = ZTK(C)§‘,
wherety(¢) counts the number of triangulations using exaktjyoints. The polyno-
mial p;(c) has degree = #c, with leading coefficienty(c) = Tmax(¢) counting the



number of maximal triangulations. Its monomial of lowesgidEm = #Extr(¢) corre-
sponds to th€,_» triangulations of the convex hull Co(w) involving only extremal
vertices. Remark also that the average number of pointsridragulation is given by
the logarithmic derivativeé’(1)/f (1) of the triangulation polynomial(s) = p:(¢).

Two configurations arésotopicif they are related by a continuous deformation
which preserves collinearity and non-collinearity of keifs. Isotopic configurations
have the same triangulation polynomial.

3 Weakly convex polygons

3.1 Definition and notations

A configurationc is weakly conveif it is contained in the bounda@Conv(¢) of its
convex hull. We also calt aweakly convex polygote are not aware of a published
formula giving the number of triangulations of such polygon
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Figure 1: Two weakly convex polygons with edge-weights, 2,3, 4.

Weakly convex polygons can be seen as strictly convex polygdgth additional
vertices subdividing their edges. We thus elbeshe segments joining two consec-
utive extremal vertices of the underlying strictly conveatygon. An edge haweight
aif it involves a+ 1 points ofc. The weights of consecutive edges, in counterclock-
wise order, define, up to cyclic permutations, a finite seqeaq, a,... a of total sum
n=#c (see Figur€ll). This sequence characterizeg to isotopy. Thus all combina-
torial properties of triangulations depend only on the seqega;, az... a (up to cyclic
permutations). We denote liy(as,ap,...,8) the number of corresponding triangu-
lations using exactlk points of c. This number is non-zero only for< k < n. We
denote the triangulation polynomial ofby p:(az,az,...,&).

The following notations will be useful. The numbef(as,az,...,a) of maximal
triangulations is also denoted lmpax(a1,az,...,a). We denote byP(as,az,...,a)
an arbitrary weakly convex polygon withedges of successive weigtds, ay... a.
Moreover, we use an exponential notation for indicatingesahvconsecutive edges of
weight 1: we denote for instance By13,5,2) = P(1,1,1,5,2) a decagon with 5 edges:
three consecutive edges of weight 1, followed by an edge @ftw® and a final edge
of weight 2. We use the same notation for the number of tritiiguns: 16(12,5, 2) is
the number of triangulations &(13,5, 2) involving 6 vertices.

3.2 Inclusion-exclusion principle

Our first aim is the determination of the number of maximalrigulations for weakly
convex polygons. This can be achieved by reducing the pmotdethe case of strictly



convex polygons where formulae are known. Replacing theditge of weighgy by
edges of weight 1 leads to the following proposition.

Proposition 3.1 Given an integer > 3 and | strictly positive integersiaap... §, we
have

TmaX(a1;a27"'aa|): ; (71> ( k )Tmax(lal ;a27"'aa|>'
k=

Proof. We consider the set of maximal triangulations oP(1%,ay, .. .,as). A trian-

gle of a triangulation igxterior if it involves two (necessarily adjacent) edges among
thea; first edges (of weight 1) d?(1%,ay,...,a ). There is an obvious one-to-one cor-
respondence between the gebf maximal triangulations oP(1%, ay, ..., &) without
exterior triangles and the set of maximal triangulationP @, a2, ..., &), by contin-
uously straightening the set formed by the faigtl—edges (see Figufd 2). It is thus
sufficient to enumerat® . It is easier to enumerate the complementaryrsgi .

<\ =S

Figure 2: Straightening a maximal triangulation withoutsgior triangles.

Denoting byz the set of alla; — 1 possible exterior triangles and, fare £, 7
the set of triangulations containidy the setr \ % is the union of the setgy. We
enumerate this set by the inclusion-exclusion principle:

[a1/2]
HT\R)= ) (1)<t > #Ta,NTa, NN Ty
& (BB A

The upper boungla; /2] in the summation is due to the fact that a triangulation dosta
at most|a; /2| exterior triangles.

It remains to enumerate the intersections. ik a;/2. If some triangles among
A1, Dy... A have non-disjoint interiors, the intersection is emptyhéise, we asso-
ciate to each element afy, N 75, N--- N 7p, @ maximal triangulation of the polygon
P(lalfk,az, ...,&) by erasing triangleAs, Ay... Ac. We also keep track of erased tri-
angles by marking the remaining edge for each of these fgar{gee Figurgl3). This
defines a magpa, a,.... a, fromthe setra, N75, N---N7p, to the setry of all triangula-
tions of P(14K ay, ..., a ) with k marked edges among the figgt— k edges of weight
1. This map is obviously injective: we can reconstruct theahtriangulation by glu-
ing triangles onto the marked edges. Moreover, the uniomabges ofpa, a,,... a,, for
all “admissible”’k—tuples of exterior triangles is clearly a disjoint union,thg same
remark as for injectivity, and fillary for exactly the same reason: the reconstruction is
unigue and is always possible. Thus,

alfk

#(TAlmTA2m~~~mffAk)#Mk< K >rmax(1alk,a2,...,a).

AS #T = Tmax(1%, 8, ...,a ), the proof is achieved. O



Figure 3: Erasing some exterior triangles and keeping marks

3.3 Maximal triangulations

Since combinatorial properties of triangulations of wgakbnvex polygons are in-
variant under cyclic permutations of edges, we can “bredkallpedges by iterating
Propositiod 311. Hencemax(ai,az, . ..,a) can be successively written as

[a1/2] a; — k
Z (_1)k1( lkl l)TmaX(lalklvaza""a)
=)
[2a1/2] |az/2]
_ 12 ZZ (—1yarle (¥~ k) (32— ke Tmax(1@ )+ @k) a5 )
ki=0 k=0 ke . o

kl,kg..,k; ((_1)z=lki i||_| <ai kT k|>> Tmax(lzgzlaiiki)
A s
kl,k;.,k. <(_1)zilk| i|:| (a1 ki K)) C(Egzlai*ki)*Z

We thus obtaimmax(ai,az,...,&) as a linear combinatiofy -, b;Cj_, of Catalan
numbers. The coefficients are given by

j la1/2]  [a&/2] Z ‘
bt = i=1
L R A (B

N(*41)) e

P = if(l)k(mk e @

defining the sequendemn)m > 1 of maximal edge-polynomials
We consider the generating function

with

kK tk
Gel) = 3 &= 3 ( )k+1 3)

for the sequence of Catalan numbers (corresponding to tigtarexpressiod—45—% V2t1*4t).
Given a polynomiap(t) = zkzzaktk, we define

<p(t),tZGC(t)>t = k;akck,z. 4)



This “umbral” notation is suggested by the fact that polyiesand formal power
series are mutually dual.

We have obtained the following result concerning the nunolbenaximal triangu-
lations:

Theorem 3.2 Given natural numbers} 3and a, a... 4 > 1, we have
[
Tmax(ala a-27 e aa-|) = < H pa@ (t)7tZGC(t)>ta
=
using the notations of formul&é[d, 3 dad 4 above.

3.4 Examples and remarks

The first few maximal edge-polynomials are

p1=t p5:t574t4+3t3

po=t2—t pe =t —5t°+ 614 — 3

p3 =13 —2t2 p7 =t/ —6t°+ 105 — 4¢3
ps=t*— 33412 pg=t8—7t"+ 155 — 105 4-t*

Example. The two weakly convex polygor¥(1,5,2,3,4) of Figure[1 have

(P1 Ps P2 P3 Pa,t?Ge (b))t
= (t(t5— 4t + 33 (2 — ) (13 — 2?) (t* — 33 +12),t2Ge (1)
(15— 10144 39013 — 75124 7411 — 35104 6%, t2Ge (1) )t
C13—10C12+ 39Cy1 — 78Cy0+ 74Ce — 35Cg + 6C7
= 7429000- 10-208012+ 39-58786- 75- 16796
+74-4863— 35- 1430+ 6- 429
— 8046

maximal triangulations.

Remark. We havetpmay(n,m,12) = (™™) for all n,m> 1.

Indeed, triangles in a maximal triangulation®f1,n,1,m) are linearly ordered and
in one-to-one correspondence with the- m "segments" of the two opposite "long"
edges. Gluing a triangle onto one of the two edges of lengéhwe have the formula
Tmax(N+1,m+1,1)= ("),

Remark. The functionn+— f (k,n) = Tmax(127%, n) is polynomial of degrek.

First, a classification of the triangulations®f1?+ n) according to the third vertex of
the last triangle based on the edge of lengtives the formula

k
f(k,n):I;CHf(l,n—l).

The result follows then from an induction ént is obvious thatf (0,n) = 1 for all n.
Suppose that (I, n) is polynomial inn of degred for everyl < k. UsingCp = 1, the
difference

k
f(k+1,n)— f(k+1,n—1)= Z)Ck+1,|f(|,n—1)
|=

is then a polynomial of degréeand a sum ovem implies the result.



Remark. The sequence of numbers of maximal triangulations of thekiyezmnvex
polygonsP(2,2,2), P(2,2,2,2)... starts as :

4, 30, 250, 2236, 20979, 203748, 2031054, 20662980, 213672239507936...
(see sequence A86452 pf12]).
Remark. Maximal edge polynomials can also be defined recursivelgdsy 1, p1 =t
and pm = t(pm-1 — Pm—2) and are related to Fibonacci numbers (the closely related
polynomialsy (™ )X are also called “Fibonacci polynomials”).

3.5 Non-maximal triangulations

An arbitrary {.e. not necessarily maximal) triangulation of a weakly convekygon
P(as,...,a) is a maximal triangulation of a subset involving all extrémertices of
the weakly convex configuratid®(ay, ..., & ). It amounts thus to the choice, for every
1<i<I,ofanumber K b < a and ofb; — 1 points among the; — 1 interior points
of thei—th edge, followed by the choice of a triangulatiorRgbs, ..., by).

The triangulation polynomial d?(ay, ..., &) is thus given by

1%5@- <JI|_|1 <Z: - D) ( JIqulobj (t),t2Ge(t)), S}-1bi

[ .
B <le§1 (zj - D Po; (t)sbj ’IZGC(t)>t
I

= < I_l baj7tzGC(t)>t7

where thecomplete edge-polynomigli, € Z[s,t] are defined as
T /m-1
Pn=3 (oop )Pt ©

We have proved
Theorem 3.3 Given natural numbers > 3 and &, ap... a > 1, the triangulation
polynomial of Pay, ay,...,a) is

|
pe(as,a,...,q) = Zrk(al,ag,...,a)sk = <_|'|bai (t),t?Ge (1)),

using the notations of formul&é[3, 4 dad 5 above.
An immediate consequence is the following slightly suipgdact:

Corollary 3.4 Enumerative properties of triangulations for weakly conpelygons
do not depend on the particular cyclic order of edge weights.

The first few complete edge-polynomials are

bl: plS:tSa
Po=p2S+prs=(t2—t)P+ts,
Pa=p3S+2p S+ prs= (-2 S+2(t>—t)S+ts,
Pa=pas'+3psS+3p S+ prs

=" =33 +1?) 4312 - 22 S+ 3(t? —t) P+t s.



Example. The triangulation polynomigd (1,5, 2,3,4) of the two weakly convex poly-
gons of Figuréll equals

= 804650+ 3725014 + 77467513+ 95364512+ 77048511
+4277659+ 165845° + 44608 + 8055’ + 908 + 55° .

4 Nearly convex polygons

Nearly convex polygons are small perturbations of weaklyea polygons and form

the correct framework for generalizing Theorem 3.2 and Té®d3.3 We give first a

definition of near-edges, which are small deformations gesdand introduce nearly
convex polygons and, using the formalism of “roofs”, theoassted near-edge poly-
nomials. Then we state and prove the main theorem. A lasestiba describes fac-
torization properties of near-edges and gives a classditaf small near-edges.

4.1 Near-edges

In order to describe deformations of an edgean a weakly convex polygor® =
P(n,...), we choose coordinates such tRas contained in the upper half-plage> 0
andE is a subset of the boundayy= 0. This leads to the following definition.

A near-edgef weight n(or ann—near-edggis a sequenck of n+ 1 points

(Po,Py,....Py) = (( ;‘; )( )’2 )( ;: )) e (R (6)

such thakg < x3 < --- < X @andyp =y, = 0. We consider the complete ord&r< P, <
P, < --- < B, onE and callPy, respectively?,, theinitial, respectivelyfinal, vertex of
the near-edg&. We denote a near-edgeeither by the sequende= (Py,...,Py) of
its n—+ 1 points or by the real matrix

E _ XO Xl e anl Xn
O vi .. W1 O
of size 2x (n+1).
A continuous deformation of near-edges, which preservéimearity and non-
collinearity of all triplets of points, is called asotopy Two near-edges joined by an

isotopy ardsotopic
Given a near-edgE with pointsP, € R? as above, we denote f the near-edge

with points
(% ) (10
wo-( 5 )-(6 ¢ )n
forO<k<n.

In particularE = E* and all near-edgesE are isotopic foi > 0.

4.2 Nearly convex polygons

Let P be a strictly convex polygon with extremal vertice¥p, Vi, Vo...V| =V, ap-
pearing in counterclockwise order around the bound&rgf P.



Given a sequendgy, ..., E; whereE; = (P o,P.1,...,P n) is anni—near-edge, we
denote byG(E;,...,E/|P) the unique configuration obtained by gluing the-near-
edgekE;, rescaled suitably by an orientation-preserving simdiéualong the oriented
edge ofP which starts a¥;_; and ends a¥;.

More precisely, the gluing magy; is the unique orientation-preserving similitude
of R? such that

$i(Po) =Vi—1andi(P ) =Vi.

The configuratiorS(Ey, ..., E |P) is the set of pointsl!_; ¢i(Ej) C R?.
We have the following result which we state without proof.

Proposition 4.1 Consider a strictly convexdgon P and | near-edgesiE .. . Ej,

1. The configurations &3, ..., E['|P) are all isotopic for alle; > 0 small enough.
This defines an isotopy class associated to the near-edgkthampolygon.

2. Given a second strictly convexgon Q, the configurations &;?,...,Ef'|P)
and G(Eil,...,Ef' |Q) are isotopic for allg; > 0 small enough. Hence, the iso-
topy class above does not depend on P.

3. The isotopy class defined in this way depends only on thepigalasses of the
near-edges.

A nearly convex polygois a configuration in the isotopy class associated by Propo-
sition[4.] to a sequendgy,...,E of near-edges. For the sake of convenience, the
isotopy class itself is also calledrearly convex polyganAs far as combinatorial
properties of triangulations are concerned, all the conditijons of the class are equiv-
alent and we denote B(Ey, ..., E) any such configuration. This notation is a natural
extension of the notation already used for weakly conveygumis, with integers
representing weighted edges of weakly convex polygons.

Figure 4: Perturbating(5,4,5) into a nearly convex polygon.

One can think of a nearly convex polygon as a small pertushaif the config-
uration associated to a weakly convex polygon. Fiddre 4 shibve weakly convex
polygon P(5,4,5) and a nearly convex polygon obtained by moving slightly non-
extremal vertices perpendicularly to the three correspanddges (with a hopefully
evident notation indicating the perturbation). This ngadnvex polygon is isotopic to



P(Ea, Ep, Ec) where

e_(01 23 45)
a“\lo 1 -11-10
g (01 234)
01 -110
e_(0 12 345)
c“\lo21-110)

4.3 Edge-type triangles

When considering a triangulatian of a nearly convex polygoR, and a near-edge

of P, some triangles of have their three vertices I (we identify here the near-edge
and its realization if?). We call such a triangl& anedge-type trianglef E and we
write A C E. The following technical lemma is the key of our main resuilt.

Lemma 4.2 Given a triangulationr of a nearly convex polygon P and a near-edge
E of P, each point of E that is a vertex of belongs todConv(P) or to at least one
edge-type triangle of E.

Proof. Recall that nearly convex polygons are “small” perturbagiof weakly convex
polygons. For the fixed particular realization of the nedgeE in the current polygon,
denote byE® the realization obtained by setting all point€oloser to the edg, Pr)
by multiplying the distances to this edge by (0,1). We can then replacé by E*
(€ € (0,1)) whithout changing the structure of the triangulation (Rrsitior[4.1).

Let us prove the lemma by contradiction: suppose that thdstsea pointM of
E which is an interior vertex ofr and which belongs to no edge-type trianglekof
Hence, there are at least three edges of the triangulatgotingt atM and forming
adjacent angles less thanIf no such edge joins two vertices Bf a substitution oE
by EE, for appropriately smakt, movesM so close to the segmefi, Py] that one of
these angles becomes greater tiiafherefore, one at least of these edges has its other
endpointN € E. Suppose for convenience, but without loss of generaligt < N.
Then consider the next segment of the triangulation sgaftom M, according to the
clockwise order arount¥, and denote by its other endpoint. The asumptions on
M imply thatQ ¢ E. Replacing novwE by EZ, for € sufficently small, gives an angle
QMN > Ttfor the triangle(lQMN), which is a contradiction. O

4.4 Roofs

Let us define the set

R(T,E)=0 (COHV(P)\ U A) NConvE),

ACE

which will be proved to be a piecewise linear path separatiegedge-type triangles
contained irE from the remaining triangles af .

The idea for counting triangulations of a nearly convex golyis to classify trian-
gulations according to the paths thus obtained from all-eelges and to enumerate all
triangulations giving rise to such a set of paths. The foll@ndefinition is useful for
the description of all possibilities.

10



A partial roof with lengthLen(R) = k of E is a piecewise linear pafR starting at
the initial vertex and ending at the final vertexiofwhosek + 1 vertices are elements
of E in increasing orderPj, = Po,Pj,,...,Pj,_,,Pj. = Pn. This partial roof is denoted
by

R= [Pjo =Po,Pj;, - Py 1, Py = P
Lemma 4.3 Given a triangulationr of a nearly convex polygon P and a near-edge E
of P, the set R7 ,E) is a partial roof of E.

Proof. Let us introduce the s’ = ConP)\ Upce& = Upgel. Since ConyP) \
Conv(E) is a connected subset Bf which intersects all trianglead ¢ E, P is con-
nected. Hence, it is a (generally non convex) polygon wittiees in7 .

Considering the inclusions Cof®) \ ConE) c P’ ¢ ConvP), the boundary of
P’ coincides with the boundary of CofR) outside of Con(E). Hence,R(T ,E) is a
piecewise linear path with verticéy,,P;,,...,P;, ,,Pj in E, whose orientation can
be chosen such th&, = Py andPj, = P, (wherePy andP, are the initial and final
vertices ofE).

Let us now prove by contradiction that this sequence of @ik is increasing.
Otherwise, consider the first decreasing stp; < Pj;. There are two cases.

Suppose first that the poif;, , is above the lind. defined byP;_, andPj;, ac-
cording to the standard coordinates of the near-éfigBy definition of R(7 ,E), the
point P;; is linked by an edge of to a pointQ € P\ E which crosses the segment
[Pj._1,Pji.1)- Asin the proof of LemmB&4l2, a substitution®by E?, for € sufficiently
small, removes this crossing, which is in contradictiortvRtopositiof 4]1.

Suppose now that the poiRy;_ , is below the linel. The pointPj;,, is linked by
an edge ofr to a pointQ’ € P\ E. A substitution ofE by E, for € sufficiently small,
creates a crossing between this edge and the @Jgg P;;|, which is in contradiction
with Propositiod 4.11. O

The definition of a partial roof refers to the coordinate esgntation oE: the
“sky” (which corresponds to the interior of the nearly coxpg®lygon) is “aboveE.
We are interested in points and triangles “sheltered” byrtigdaoof.

In order to define properly the region sheltered by a parnial,iwe consider again
coordinates (formul@l6) of the near-edgewe define thdower boundarndE of E
as the piecewise-linear pathE = (0ConVE)) N {(x,y) | y < 0}, which is the “low-
est” possible partial roof. Remark that each partial iepoénd in particular the lower
boundary, is the graph of a piecewise-affine functfan [xo,xn) — R. The graph
0~ E is below each other partial roof: we hafie £ (x) < fr(X), for all xin [xg,Xn]. The
regionshelteredby the partial rooRis then the (generally non convex) subSgE, R)
enclosed by E andR:

S(E,R) = {(xy)[x € [x0,Xn], fg-e(X) <y < fr(X)}-

We use the same notatiodsSE andS(E, R) for denoting the corresponding subsets of
a realization oE in a nearly convex polygoR.

Lemma 4.4 Given a triangulationr of a nearly convex polygon P and a near-edge E
of P, 7 induces a triangulation on the sheltered region:

S[E,R(T,E)) = | A

ACE

11



Proof. It is a consequence of the proof of Lemmal 4.3. O

A partial roof R is aroof if E C S(E,R). If 7 is a maximal triangulation oP,
R=R(7T,E) is a roof by Lemm&4]2 ang induces a triangulation o8 E, R) whose
vertices are exactly the points Bfoy LemmdZ#. Enumerating induced triangulations
on S(E,R) leads to the definition of maximal near-edges polynomials.

4.5 Near-edge polynomials
We define thenaximal polynomiabf the near-edgg& by

PE = Z Tmax(E,R) PLenr) € Z[t], (7)
R roof of E

wheretmax(E, R) denotes the number of triangulations0E, R) involving exactly all
points ofE N S(E, R) and the polynomialgy, are the maximal edge polynomials given
by formuld2 of subsectidn 3.3.

Starting from a triangulatior which is not maximal, the patRinduced on a near-
edgekE is in general only a partial roof and induces not necessarily a maximal trian-
gulation of the sheltered regi&{E, R). This suggest to introduce “sub-near-edges” in
order to deal with these difficulties.

LetV~(E) = Extr(E) N0~ E denote the set of extremal points of the lower bound-
ary. A k—sub-near-edgef E is an increasing subsequereec E of k+1<n-+1
elements containing the Sét (E). In particular, any sub-near-edgéof E has initial
vertexPy, final vertexP, and verifie®~E’ = 0~ E. We noteE’ < E.

Figure 5: An 8-near-edge and a roof of length 4 of agub-near-edge.

Example. The left half of Figuré b displays the-éear-edge

0 1 23 4 5 6 7 8
E(Po,...,P8)<0 11 1 -2 -3 —2 _1 o)'

We haveV~(E) = (Po,P1,Ps,Ps) andE has 2 sub-near-edges obtained by remov-
ing any subset of vertices amoR&., Ps, P4, Ps, Py} from E. The right half of Fig-
ure[8 shows the rodR = [Py, P3, Ps, P, Pg] of the sub-near-edgé’ of E defined by

(Po,P1,Ps, P4, Ps,P7,Ps).
Thecomplete polynomigh(E) of ann—near-edg& = (Py,...,P,) is defined as

n
P = /Sm. 8
Pe ngl EZE Pe (8)

#E!=m

Example. We compute the complete polynomia, of the near-edge

01 23 45
Ea:(PO’“"PS):(o 1 -1 1 -1 0)
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Figure 6: All roofs of sub-near-edges involvedpp,

involved in the nearly convex polygd®(Eg, Ey, E.) of Figure[4.
Figure[® contains all roofs of the four possible sub-neayesfE, obtained by
removing any subset of points {fPy, P3}. Their contributions t@g, are given by

| sub-near-edge | | | | |

(Po,P1, P2, P3Py, Ps) || 14pss® | 2pss | 5pas’ | psS°
(Po, P2, P3, Py, Ps) 5pos’ | 2pss® | 2pss’ | pas’
(Po,P1, P>, Py, Ps) 5ps” | pss? | 2pss’ | pas’
(Po, P2, P4, Ps) 2p1S’ | poSS | pos® | pss°

They sum up to the complete near-edge polynomi# pf

Pe, = (14p3+ 7pa+ ps)S° + (10p2 + 73+ 2pa)s’ + (2p1 + 2p2 + Ps)s®.
4.6 Main result
We can now state and prove the central theorem.

Theorem 4.5 Given | > 3 near-edges E E;... |, the number of maximal triangula-
tions of the nearly convex polygori®, ..., E) is given by

Tmax(P(Ela oE))= rl pE, 2GC

and its triangulation polynomial is defined by
[
pT(P(ElvaE|)) = Z (P(Elv a |_l 2(3(:
using the notations of formul&é[3, 7 dad 8 above.

Corollary 4.6 The number of maximal triangulations and the triangulatfsiyno-
mial of a nearly convex polygon(Bg,...,E) does not depend on the cyclic order of
the near-edgesiE

13



Proof of Theorem[4.5.Fix a triangulationr of P = P(Ej,Ey, ..., E), and a near-edge
E = Ei. We have seenin Lemrha#.3 and Lenima 4.4 that we can assadiageartial
roof R=R(7,E) and a triangulation of the sheltered regi§(ft, R) by the edge-type
triangles ofE. We denote by’ the subset of all points d& occuring in7 . The sett’
is a sub-near-edge sinaetriangulates ConiP) and thus involves all extremal points.
A crucial remark is thaE’ ¢ S(E,R) by Lemmd4.R. Therefor&R is a roof forE’.
Moreover, by definition oE’, the triangulation oi8(E, R) = S(E’, R) is maximal with
respect tcE'.

Writing R = R(7 ,E;j), we obtain a triangulation of eac®E;,R). We get also
a triangulation of the complemeht= ConvP) \ U;S(Ei,R), whose boundary is the
union of the roofsR;. This triangulation is not arbitrary: each vertex is in afr&
and a triangle ifl is never of edge-type and has thus not all three verticesisdime
roof. The triangulation induced dnyields hence a triangulation of the weakly convex
polygonP(Len(Ry),...,Len(R)) as can be seen on Figlide 7.

Figure 7: Triangulation of the interior regidn

We associate thus to each triangulationPo& couple((E/,R;, 7i)i, 7o), with the
following specifications: for each 4 i <|, E/ is a sub-near-edge &, R is a roof
of E/ and 7 is a triangulation ofS(E/,R) = S(Ei,R;), maximal relatively toE'i; 7o
is @ maximal triangulation d?(Len(Ry),...,Len(R))). This correspondence is clearly
one-to-one: it is easy to reconstruct a triangulatioRofjiven such data, and there is
only one possible reconstruction.

We consider first the case of maximal triangulations. TheigfyeE/ = E; for all
i and this property characterizes maximal triangulatiortsedreni3.2 shows that the
number of corresponding triangulations equals

[
<|_ltmax(Ei , Ri)> Tmax(LeN(Ry),...,Len(R)))

= < rleax(Ei R) PLen(r) (t)atZGC(t)>t

=
for each choice of a family of roof®. Summation over all possible choicesRfand
inversion of sum and product give the result.

For the triangulation polynomial, according to the restlbwe, each choice of a
family of sub-near-edges gives the contribution

|
<_|] Pe/(t),t°Ge(t) ), - 25,

where thek; are the weights of the sub-near-edg&is Summation over all choices of
sub-near-edges and inversion of sum and product achieyealoé O
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Example. Consider the nearly convex polyg®E,, Ep, E¢) isotopic to the perturba-
tion depicted on Figurg 4. Its near-edges

E_(01 23 45
a0 1 -11 -10
E 0 1 2 3 4
{0 1 -1 1 0
E_(012 345
c“\o 21 -110
have complete polynomials
Pe, = (14ps+7pa+ ps)S -+ (10p2+ 7ps+ 2ps)s?

+(2p1+2p2+ p3)s,
Pe, = (5p3+ Pa)s*+2(2p2+ p3)S® + (p1+ p2)s?
Pe. = (10ps+7pa+2ps)S+ (3p2+ 13ps+4ps)s’
+3(2p2+ Pp3)S + (p1+ P2)S?,

and the triangulation polynomiak (P(Ea, Ep, E¢)) of P(Ea, Ep, Ec) is given by

(Pe, (t)_pEﬂ(t)bEc (t),t2Ge (1))t
= 19493%!*+ 33866%13+ 26361512+ 119944!1
+34773F10+ 65228° + 7488 + 4257 .
4.7 Arithmetics of near-edges
4.7.1 Factorization

A near-edgeE = (P, ...,P,) factorizesinto near-edge&s, E; if there exists a lower
extremal verteX € V~ (E) such that the two near-edges defined by

El = (PO7 Pl7 ctt H(*]-? H()) EZ = (H() H(+17 ce Pnfl; Pn)

have the property that all points &\ E; lie strictly above every line defined by two
distinct points off; for i = 1,2. We writeE = E; - E; if the near-edgd factorizes
with first factorE; and second factdg,. A near-edge iprimeif it has no non-trivial
factorization. It is easy to show that every near-edge hasigue factorization into
prime near-edges.

Proposition 4.7 Given a factorization E= E; - E; of a near-edge E we have
Pe = Pg, Pe, and Pg = Pg, Pg, -

Proof. Since the nearly convex polygoR$1%, E) (with the same notation as befole:
successive edges of weight 1) @PdX, E;, E,) are isotopic for alk = 2,3, ... we have

(t* Pe,t?Ge(t)), = (t* Pg, P, t2Ce(t)),.

This implies the result since d‘éci+j+k)o<i J.<n) > 0 for allk > 0 andn > 1 (this
follows for instance easily from Exercice 6.26.blin][14]). O
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4.7.2 Polynomials for small near-edges

This subsection describes al-12— and 3-near-edges up to isotopy and gives their
polynomials. We will use the following definition: a neareggdisgenericif its under-
lying set of points is a generic configurationRf, i.e. if three distinct points oE are
never collinear.

We will also use the following obvious fact. If two—near-edgeg = (P, ...,Pn)

andE’ arevertical mirrors i.e. if E' = (Py,Pn_1,...,P1,Po) whereP; = ( —yx. ) is
1
the Euclidean reflection df = ( é

_ ) with respect to the vertical ling = 0, then
|
Pe =TP& -

1-near-edges The unique tnear-edge can be representedly= ( 8 (1) ) It

is generic and prime and has complete polynompigl= p1s=st.

2—near-edges There are two generic-2near-edges, represented by

01 2 0 12
E271<o 1 o>’ E2’2<0 1 o>'

Eo 1 is prime whileE; » = E; - E;. They have complete polynomials

Pe,, = Pos+ PiS. Py, = (Pt PIS — T,

Moreover, there is also a unique non-generim2ar-edge represented for instance

by
01 2
EZ’?’(O 0 o>

with complete polynomial given by
_pE2'3 = pzsz + plS: _pEZ.l °

3—near-edges There are eight generic-ear-edges represented by

Eay— 01 2 3 Eap— 01 2 3)
' 01 30 ' 01 10

w-(8383)  me(3) 13)
(8 173) mae(3 3 20
wo-(8 3 13) me(3 152

The first five are prime. The last three have factorizations

Ese = E1E21 ,E37=E} Ezg=E21F; .
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The pairs{Ez 1,E33}, {Ez4,E35}, {Ese,Ezg} are vertical mirrors. The prime near-

edges have complete polynomials

r)Ea1 = T>E3‘3 =(p2+ p3)S3 + 2p252+ pis,
T)E3,2 = 2p383+ 2p2$2 + p1S,
Peys = Peys = (202+ P3)s’+ pis” .

There are moreover nine more-Bear-edges which are not generic. They are rep-

resented for instance by

co- (9 2

Ez11= 8 é
Es13= 8 1
Esi15= 8 ;
Ez17= 8 é

The following near-edges factorize:

Es10=E23 E1,

NN
o w
N~——

ONEFEFNONEDN
O WO WO wOow

0o 1 2 3
Bsio={ ¢ 1 2 0
01 2 3
Bai2={ g o 1 0
0 1 2 3
Bsie={ 09 _1 0 0
0o 1 2 3
Bais={ o 2 _1 0

Es1s6=E1E23

The remaining near-edges are prime and have complete pulgie

Pess
T)Eis,ll
r)E3‘12
bEs‘n

_pE3.15
_pE3.l3
ﬁEs,u
P3

PaS® + 2p2S° + s,
(P2+ p3)S°+ 2poS*+ pus,
(P2 + pa)s® + pos?,
P + 2P + piS.

5 Remarks and questions

5.1 Choice of the triangulation polynomial

One can also consider the triangulation polynomial defined b

Ty ky (C Ko
k(;l koke (C)S0°ST

counting the number of triangulations usikgvertices and; edges. The numbép
of triangles can then be recovered using the Euler charstitaty — ky + ko = 1 of

a compact, simply connected triangulated polygonal re@id®?. This more general
polynomial yields the same information as the complete patyial considered above
except if the boundar§(Conv(¢)) contains points of which are not extremal. Most
of the results and algorithms can easily be modified in ordetetal with this more
general polynomial. For clarity and concision we describetk the simpler version

defined above.
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5.2 General configurations and nearly convex polygons

Remark that every generic configuration is isotopic to algeanvex polygon. Indeed,
every extremal poin® of a generic configuration yields a realization of as a nearly
convex polygon with two trivial near-edges (each consistifiQ and of a neighbouring
extremal point) and a near-edge definedby{Q}, which is unique up to isotopy.

However, the framework of near-edges is not interestingfgeneral generic con-
figuration. It speeds up computations only in the case whereconfiguration has a
"non-trivial” factorization into near-edges.

5.3 Remarks on effectiveness

Near-edge polynomials are in general difficult to compute.Will present a few algo-
rithms dealing with them in a further paper. One of theserélgms is a slightly more
sophisticated version of an algorithm by Kaibel and Ziedlescribed in[[9] and yields
also a general purpose algorithm (unfortunately of exptiakeromplexity), for com-
puting arbitrary triangulation polynomials. This algbrit, based on a transfer matrix,
is fairly simple and it would be interesting to compare itsfpenance with existing
algorithms, like for instance the algorithm of Aichholzersdribed in[[L].

The next subsection describes a family of near-edges farhwthie computation of
near-edge polynomials is much easier and can be achieved algarithm of poly-
nomial time-complexity. A detailled description of the atghm will be given in our
planned future paper.

5.4 Convex near-edges

A near-edgee = {Py,...,Py} is convexif P,...,P, are extremal points of Co(&).
Otherwise stated, the points of a convex near-edge are ttieegeof a convex polygon
with (n+ 1) edges. There are thus exactly 2 non-isotopic conver—near-edges.

A convex near-edge can be represented by a sequence of points

PO:( 0 )P:( G )P=( 8)

wheregy, ..., en_1 € {#1}. There are 2! equivalence classes of convaxnear-
edges, encoded by-tuples(gy,...,gq_1) in {1}"~1, The convex near-edge with
g = —1, for alli, has the factorizatioR;. All others are prime.

A future paper will describe an algorithm having polynontiate and memory
requirements for computing maximal and complete edgefmotyals of convex near-
edges. It provides an efficient method for counting triangjahs of nearly convex
polygons involving only convex near-edges. Completindieamvexn — 1—near-edge
with two trivial near-edges, we get an exponentially largess of configurations for
which the problem of counting triangulations can be solvegdlynomial time.

5.5 Convex near-edges related to the Legendre symbol

We used the Legendre symbol to produce data for testing garitim. The surprising
results lead to formulate the conjecture below.

Given an odd prime, the Legendre symbol, denoted ég) e{£l}forl1<x<
p— 1 defines a non-trivial homomorphism between the multigileagroups(Z /pZ)*

18



and{+1}. It can be computed using quadratic reciprocity or the etual

(—:) =xP~U/2 (modp).

We consider two convefp+ 1)—near-edgek E, associated to the sequences

(6) () (5F) e -(5) () ()

of (negated) Legendre symbols. Foe= 3 (mod 4 the identity(%) =— (*—p") im-
plies thalEgr andE, have identical (complete) triangulation polynomials.
Computation of the maximal triangulation polynomiai,% and P, for all odd

primesp < 200 suggests:
Conjecture 5.1 Using the notations of formuldé 3 aht 4, we have

1

(P(t),t2Ge(t)) = (%1) (mod p) = { 1 E (mod 4

1
3 (mod 9

for P a polynomial of the form tg?g, t péa ort pe; Pe; -
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