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Abstract

We consider the Gel’fand inverse problem and continue studies of [Mandache,2001].
We show that the Mandache-type instability remains valid even in the case of Dirichlet-
to-Neumann map given on the energy intervals. These instability results show, in
particular, that the logarithmic stability estimates of [Alessandrini,1988], [Novikov,
Santacesaria,2010] and especially of [Novikov,2010] are optimal (up to the value of the
exponent).

1. Introdution

We consider the Schrödinger equation

−∆ψ + v(x)ψ = Eψ, x ∈ D, (1.1)

where

D is an open bounded domain in R
d, d ≥ 2, ∂D ∈ C2, v ∈ L∞(D). (1.2)

Consider the map Φ(E) such that

Φ(E)(ψ|∂D) =
∂ψ

∂ν
|∂D. (1.3)

for all sufficiently regular solutions ψ of (1.1) in D̄ = D∪∂D, where ν is the outward normal
to ∂D. Here we assume also that

E is not a Dirichlet eigenvalue for operator −∆+ v in D. (1.4)

The map Φ(E) is called the Dirichlet-to-Neumann map and is considered as boundary
measurements.

We consider the following inverse boundary value problem for equation (1.1).

Problem 1.1. Given Φ(E) on the union of the energy intervals S =
K
⋃

j=1

Ij, find v.

Here we suppose that condition (1.4) is fulfilled for any E ∈ S.
This problem can be considered as the Gel’fand inverse boundary value problem for the

Schrödinger equation on the energy intervals (see [2], [6]).
Problem 1.1 includes, in particular, the following questions: (a) uniqueness, (b) reconstruction,

(c) stability.
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Global uniqueness for Problem 1.1 was obtained for the first time by Novikov (see
Theorem 5.3 in [4]). Some global reconstruction method for Problem 1.1 was proposed for
the first time in [4] also. Global uniqueness theorems and global reconstruction methods in
the case of fixed energy were given for the first time in [6] in dimension d ≥ 3 and in [9] in
dimension d = 2.

Global stability estimates for Problem 1.1 were given for the first time in [1] in dimension
d ≥ 3 and in [8] in dimension d = 2. The Alessandrini result of [1] was recently improved by
Novikov in [7]. In the case of fixed energy, Mandache showed in [3] that these logarithmic
stability results are optimal (up to the value of the exponent). Mandache-type instability
estimates for inverse inclusion and scattering problems are given in [12].

In the present work we extend studies of Mandache to the case of Dirichlet-to-Neumann
map given on the energy intervals. The stability estimates and our instability results for
Problem 1.1 are presented and discussed in Section 2. In Section 5 we prove the main
results, using a ball packing and covering by ball arguments. In Section 3 we prove some
basic properties of the Dirichlet-to-Neumann map, using some Lemmas about the Bessel
functions wich we proved in Section 6.

2. Stability estimates and main results

As in [7] we assume for simplicity that

D is an open bounded domain in Rd, ∂D ∈ C2,
v ∈ Wm,1(Rd) for some m > d, supp v ⊂ D, d ≥ 2,

(2.1)

where
Wm,1(Rd) = {v : ∂Jv ∈ L1(Rd), |J | ≤ m}, m ∈ N ∪ 0, (2.2)

where

J ∈ (N ∪ 0)d, |J | =
d
∑

i=1

Ji, ∂
Jv(x) =

∂|J |v(x)

∂xJ11 . . . ∂xJdd
. (2.3)

Let
||v||m,1 = max

|J |≤m
||∂Jv||L1(Rd). (2.4)

We recall that if v1, v2 are potentials satisfying (1.4),(1.3), where E and D are fixed, then

Φ1 − Φ2 is a compact operator in L∞(∂D), (2.5)

where Φ1, Φ2 are the DtN maps for v1, v2 respectively, see [6]. Note also that (2.1) ⇒ (1.2).

Theorem 2.1 (variation of the result of [1], see [7]). Let conditions (1.4), (2.1) hold for
potentials v1 and v2, where E and D are fixed, d ≥ 3. Let ||vj||m,1 ≤ N, j = 1, 2, for some
N > 0. Let Φ1, Φ2 denote DtN maps for v1, v2 respectively. Then

||v1 − v2||L∞(D) ≤ c1(ln(3 + ||Φ1 − Φ2||−1))−α1 , (2.6)

where c1 = c1(N,D,m), α1 = (m− d)/m, ||Φ1 − Φ2|| = ||Φ1 − Φ2||L∞(∂D)→L∞(∂D).

An analog of stability estimate of [1] for d = 2 is given in [8].
A disadvantage of estimate (2.6) is that

α1 < 1 for any m > d even if m is very great. (2.7)
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Theorem 2.2 (the result of [7]). Let the assumptions of Theorem 2.1 hold. Then

||v1 − v2||L∞(D) ≤ c2(ln(3 + ||Φ1 − Φ2||−1))−α2 , (2.8)

where c2 = c2(N,D,m), α2 = m− d, ||Φ1 − Φ2|| = ||Φ1 − Φ2||L∞(∂D)→L∞(∂D).

A principal advantage of estimate (2.8) in comparison with (2.6) is that

α2 → +∞ as m→ +∞, (2.9)

in contrast with (2.7). Note that strictly speaking Theorem 2.2 was proved in [7] for E = 0
with the condition that supp v ⊂ D, so we cant make use of substitution vE = v − E, since
condition supp vE ⊂ D does not hold.

We would like to mention that, under the assumptions of Theorems 2.1 and 2.2, according
to the Mandache results of [3], estimate (2.8) can not hold with α2 > m(2d− 1)/d for real-
valued potentials and with α2 > m for complex potentials.

As in [3] in what follows we fix D = B(0, 1), where B(x, r) is the open ball of radius r
centred at x. We fix an orthonormal basis in L2(Sd−1) = L2(∂D)

{fjp : j ≥ 0; 1 ≤ p ≤ pj},
fjp is a spherical harmonic of degree j,

(2.10)

where pj is the dimension of the space of spherical harmonics of order j,

pj =

(

j + d− 1

d− 1

)

−
(

j + d− 3

d− 1

)

, (2.11)

where
(

n

k

)

=
n(n− 1) · · · (n− k + 1)

k!
for n ≥ 0 (2.12)

and
(

n

k

)

= 0 for n < 0. (2.13)

The precise choice of fjp is irrelevant for our purposes. Besides orthonormality, we only need
fjp to be the restriction of a homogeneous harmonic polynomial of degree j to the sphere
and so |x|jfjp(x/|x|) is harmonic. In the Sobolev spaces Hs(Sd−1) we will use the norm

||
∑

j,p

cjpfjp||2Hs =
∑

j,p

(1 + j)2s|cjp|2. (2.14)

The notation (ajpiq) stands for a multiple sequence. We will drop the subscript

0 ≤ j, 1 ≤ p ≤ pj, 0 ≤ i, 1 ≤ q ≤ pi. (2.15)

We use notations: |A| is the cardinality of a set A, [a] is the integer part of real number a
and (r, ω) ∈ R+ × Sd−1 are polar coordinates for rω = x ∈ Rd.

The interval I = [a, b] will be referred as σ-regular interval if for any potential v ∈ L∞(D)
with ||v||L∞(D) ≤ σ and any E ∈ I condition (1.4) is fulfilled. Note that for any E ∈ I and
any Dirichlet eigenvalue λ for operator −∆ in D we have that

|E − λ| ≥ σ. (2.16)

It follows from the definition of σ-regular interval, taking v ≡ E − λ.
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Theorem 2.3. For σ > 0 and dimension d ≥ 2 consider the union S =
K
⋃

j=1

Ij of σ-regular

intervals. Then for any m > 0 and any s ≥ 0 there is a constant β > 0, such that for
any ǫ ∈ (0, σ/3) and v0 ∈ Cm(D) with ||v0||L∞(D) ≤ σ/3 and supp v0 ⊂ B(0, 1/3) there are
real-valued potentials v1, v2 ∈ Cm(D), also supported in B(0, 1/3), such that

sup
E∈S

(

||Φ1(E)− Φ2(E)||H−s→Hs

)

≤ exp
(

− ǫ−
1

2m

)

,

||v1 − v2||L∞(D) ≥ ǫ,
||vi − v0||Cm(D) ≤ β, i = 1, 2,
||vi − v0||L∞(D) ≤ ǫ, i = 1, 2,

(2.17)

where Φ1(E), Φ2(E) are the DtN maps for v1 and v2 respectively.

Remark 2.1. We can allow β to be arbitrarily small in Theorem 2.3, if we require ǫ ≤ ǫ0
and replace the right-hand side in the instability estimate by exp(−cǫ− 1

2m ), with ǫ0 > 0 and
c > 0, depending on β.

In addition to Theorem 2.3, we consider explicit instability example with a complex
potential given by Mandache in [3]. We show that it gives exponential instability even in case
of Dirichlet-to-Neumann map given on the energy intervals. Consider the cylindrical variables
(r1, θ, x

′) ∈ R+ ×R/2πZ×Rd−2, with x′ = (x3, . . . , xd), r1 cos θ = x1 and r1 sin θ = x2. Take
φ ∈ C∞(R2) with support in B(0, 1/3) ∩ {x1 > 1/4} and with ||φ||L∞ = 1.

Theorem 2.4. For σ > 0, m > 0, integer n > 0 and dimension d ≥ 2 consider the union

S =
K
⋃

j=1

Ij of σ-regular intervals and define the complex potential

vnm(x) =
σ

3
n−meinθφ(r1, |x′|). (2.18)

Then ||vmn||L∞(D) =
σ
3
n−m and for every s ≥ 0 and m > 0 there are constants c, c′ such that

||vmn||Cm(D) ≤ c and for every n

sup
E∈S

(

||Φmn(E)− Φ0(E)||H−s→Hs

)

≤ c′2−n/4, (2.19)

where Φmn(E), Φ0(E) are the DtN maps for vmn and v0 ≡ 0 respectively.

In some important sense, this is stronger than Theorem 2.3. Indeed, if we take ǫ = σ
3
n−m we

obtain (2.17) with exp(−Cǫ−1/m) in the right-hand side. An explicit real-valued counterexample
should be difficult to find. This is due to nonlinearity of the map v → Φ.
Remark 2.2. Note that for sufficient large s one can see that

||Φ1 − Φ2||L∞(∂D)→L∞(∂D) ≤ C||Φ1 − Φ2||H−s→Hs. (2.20)

So Theorem 2.3 and Theorem 2.4 imply, in particular, that the estimate

||v1 − v2||L∞(D) ≤ c3 sup
E∈S

(

ln(3 + ||Φ1(E)− Φ2(E)||−1)
)−α3 , (2.21)

where c3 = c3(N,D,m, S) and ||Φ1(E)−Φ2(E)|| = ||Φ1(E)−Φ2(E)||L∞(∂D)→L∞(∂D), can not
hold with α3 > 2m for real-valued potentials and with α3 > m for complex potentials. Thus
Theorem 2.3 and Theorem 2.4 show optimality of logarithmic stability results of Alessandrini
and Novikov in considerably stronger sense that results of Mandache.
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3. Some basic properties of Dirichlet-to-Neumann map

We continue to consider D = B(0, 1) and also to use polar coordinates (r, ω) ∈ R+ × Sd−1,
with x = rω. Solutions of equation −∆ψ = Eψ in D can be expressed by the Bessel functions
Jα and Yα with integer or half-integer order α, see definitions of Section 6. Here we state
some Lemmas about these functions (Lemma 3.1, Lemma 3.2 and Lemma 3.3).

Lemma 3.1. Suppose k 6= 0 and k2 is not a Dirichlet eigenvalue for operator −∆ in D.
Then

ψ0(r, ω) = r−
d−2

2

Jj+ d−2

2

(kr)

Jj+ d−2

2

(k)
fjp(ω) (3.1)

is the solution of equation (1.1) with v ≡ 0, E = k2 and boundary condition ψ|∂D = fjp.

Remark 3.1. Note that the assumptions of Lemma 3.1 imply Jj+ d−2

2

(k) 6= 0.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Then system of functions

{ψjp(r, ω) = Rj(k, r)fjp(ω) : j ≥ 0; 1 ≤ p ≤ pj} , (3.2)

where
Rj(k, r) = r−

d−2

2

(

Yj+ d−2

2

(kr)Jj+ d−2

2

(k)− Jj+ d−2

2

(kr)Yj+ d−2

2

(k)
)

, (3.3)

is complete orthogonal system (in the sense of L2) in the space of solutions of equation (1.1)
in D′ = B(0, 1) \B(0, 1/3) with v ≡ 0, E = k2 and boundary condition ψ|r=1 = 0.

Lemma 3.3. For any C > 0 and integer d ≥ 2 there is a constant N > 3 depending on C
such that for any integer n ≥ N and any |z| ≤ C

1

2

(|z|/2)α
Γ(α + 1)

≤ |Jα(z)| ≤
3

2

(|z|/2)α
Γ(α + 1)

, (3.4)

|J ′
α(z)| ≤ 3

(|z|/2)α−1

Γ(α)
, (3.5)

1

2π
(|z|/2)−αΓ(α) ≤ |Yα(z)| ≤

3

2π
(|z|/2)−αΓ(α) (3.6)

|Y ′
α(z)| ≤

3

π
(|z|/2)−α−1Γ(α + 1) (3.7)

where ′ denotes derivation with respect to z, α = n+ d−2
2

and Γ(x) is the Gamma function.

Proofs of Lemma 3.1, Lemma 3.2 and Lemma 3.3 are given in Section 6.

Lemma 3.4. Consider a compact W ⊂ C. Suppose, that v is bounded, supp v ⊂ B(0, 1/3)
and condition (1.4) is fulfilled for any E ∈ W and potentials v and v0, where v0 ≡ 0.
Denote Λv,E = Φ(E) − Φ0(E). Then there is a constant ρ = ρ(W, d), such that for any
0 ≤ j, 1 ≤ p ≤ pj, 0 ≤ i, 1 ≤ q ≤ pi, we have

|〈Λv,Efjp, fiq〉| ≤ ρ 2−max(j,i)||v||L∞(D)||(−∆+ v − E)−1||L2(D), (3.8)

where Φ(E), Φ0(E) are the DtN maps for v and v0 respectively and (−∆ + v − E)−1 is
considered with the Dirichlet boundary condition.
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Proof of Lemma 3.4. For simplicity we give first a proof under the additional assumtions
that 0 /∈ W and there is a holomorphic germ

√
E for E ∈ W . Since W is compact there is

C > 0 such that for any z ∈ W we have |z| ≤ C. We take N from Lemma 3.3 for this C.
We fix indeces j, p. Consider solutions ψ(E), ψ0(E) of equation (1.1) with E ∈ W , boundary
condition ψ|∂D = fjp and potentials v and v0 respectively. Then ψ(E) − ψ0(E) has zero
boundary values, so it is domain of −∆+ v − E, and since

(−∆+ v − E) (ψ(E)− ψ0(E)) = −vψ0(E) in D, (3.9)

we obtain that
ψ(E)− ψ0(E) = −(−∆ + v − E)−1vψ0(E). (3.10)

If j ≥ N from Lemma 3.1 and Lemma 3.3 we have that

||ψ0(E)||2L2(B(0,1/3)) = ||fjp||2L2(Sd−1)

∫ 1/3

0

∣

∣

∣

∣

∣

r−
d−2

2

Jj+ d−2

2

(
√
E r)

Jj+ d−2

2

(
√
E)

∣

∣

∣

∣

∣

2

rd−1dr ≤

≤
∫ 1/3

0

(

3

2

(|E|1/2r/2)j+ d−2

2

Γ(j + d−2
2

+ 1)

)2
/

(

1

2

(|E|1/2/2)j+ d−2

2

Γ(j + d−2
2

+ 1)

)2

r dr =

= 3

∫ 1/3

0

r2j+d−1dr =
3

2j + d

(

1

3

)2j+d

< 2−2j.

(3.11)

For j < N we use fact that ||ψ0(E)||L2(B(0,1)) is continuous function on compact W and,
since N depends only on W , we get that there is a constant ρ1 = ρ1(W, d) such that

||ψ0(E)||L2(B(0,1/3)) ≤ ρ12
−j. (3.12)

Since v has support in B(0, 1/3) from (3.10) we get that

||ψ(E)− ψ0(E)||L2(B(0,1)) ≤ ρ12
−j ||v||L∞(D)||(−∆+ v − E)−1||L2(D). (3.13)

Note that ψ(E) − ψ0(E) is the solution of equation (1.1) in D′ = B(0, 1) \ B(0, 1/3) with
potential v0 ≡ 0 and boundary condition ψ|r=1 = 0. From Lemma 3.2 we have that

ψ(E)− ψ0(E) =
∑

0≤i,1≤q≤pi

ciq(E)ψiq(E) in D′ (3.14)

for some ciq, where

ψiq(E)(r, ω) = Ri(
√
E, r)fiq(ω). (3.15)

Since Ri(
√
E, 1) = 0

∂Ri(
√
E, r)

∂r

∣

∣

∣

∣

∣

r=1

=
∂
(

r
d−2

2 Ri(
√
E, r)

)

∂r

∣

∣

∣

∣

∣

∣

r=1

. (3.16)

For i ≥ N from Lemma 3.3 we have that
∣

∣

∣

∣

∣

∣

∂Ri(
√
E,r)

∂r

∣

∣

∣

r=1

Yα(
√
E)Jα(

√
E)

∣

∣

∣

∣

∣

∣

= |E|1/2
∣

∣

∣

∣

∣

Y ′
α(
√
E)

Yα(
√
E)

− J ′
α(
√
E)

Jα(
√
E)

∣

∣

∣

∣

∣

≤

≤ 6|E|1/2
(

(|E|1/2/2)−α−1Γ(α + 1)

(|E|1/2/2)−αΓ(α)
+

(|E|1/2/2)α−1Γ(α + 1)

(|E|1/2/2)αΓ(α)

)

= 6α,

(3.17)
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(

||r− d−2

2 Yα(
√
Er)||L2({1/3<|x|<2/5})

|Yα(
√
E)|

)2

≥
∫ 2/5

1/3

(

1

3

(|E|1/2r/2)−αΓ(α)

(|E|1/2/2)−αΓ(α)

)2

r dr

≥
(

2

5
− 1

3

)

1

3

(

1

3
(5/2)α

)2

,

(3.18)

(

||r− d−2

2 Jα(
√
Er)||L2({1/3<|x|<2/5})

|Jα(
√
E)|

)2

≤
∫ 2/5

1/3

(

3
(|E|1/2r/2)αΓ(α)
(|E|1/2/2)αΓ(α)

)2

r dr

≤
(

2

5
− 1

3

)

1

3
(3(2/5)α)2 ,

(3.19)

where α = i+ d−2
2
. Since N > 3 we have that α > 3. Using (3.18) and (3.19) we get that

||ψiq(E)||L2({1/3<|x|<2/5})
∣

∣

∣
Yα(

√
E)Jα(

√
E)
∣

∣

∣

≥
(

(2

5
− 1

3

)1

3

)1/2(
1

3
(5/2)α − 3(2/5)α

)

≥ 1

1000
(5/2)α. (3.20)

For i ≥ N we get that

∣

∣

∣

∣

∣

∂Ri(
√
E, r)

∂r

∣

∣

∣

∣

∣

r=1

∣

∣

∣

∣

∣

≤ 1000α(5/2)−α||ψiq(E)||L2({1/3<|x|<1}). (3.21)

For i < N we use the fact that
∣

∣

∣

∂Ri(
√
E,r)

∂r

∣

∣

∣

r=1

∣

∣

∣
/||ψiq(E)||L2({1/3<|x|<1}) is continuous function

on compact W and get that for any i ≥ 0 there is a constant ρ2 = ρ2(W, d) such that

∣

∣

∣

∣

∣

∂Ri(
√
E, r)

∂r

∣

∣

∣

∣

∣

r=1

∣

∣

∣

∣

∣

≤ ρ2 2
−i||ψiq(E)||L2({1/3<|x|<1}). (3.22)

Proceeding from (3.14) and using the Cauchy–Schwarz inequality we get that

|ciq(E)| =

∣

∣

∣

∣

∣

∣

∣

〈

ψ(E)− ψ0(E), ψiq(E)
〉

L2({1/3<|x|<1})
||ψiq(E)||2L2({1/3<|x|<1})

∣

∣

∣

∣

∣

∣

∣

≤ ||ψ(E)− ψ0(E)||L2(B(0,1))

||ψiq(E)||L2({1/3<|x|<1})
. (3.23)

Taking into account

〈Λv,Efjp, fiq〉 =
〈

∂(ψ(E)− ψ0(E))

∂ν

∣

∣

∣

∣

∂D

, fiq

〉

= ciq(E)
∂Ri(

√
E, r)

∂r

∣

∣

∣

∣

∣

r=1

(3.24)

and combining (3.22) and (3.23) we obtain that

|〈Λv,Efjp, fiq〉| ≤ ρ22
−i||ψ(E)− ψ0(E)||L2(B(0,1)). (3.25)

From (3.13) and (3.25) we get (3.8).
For the general case we consider two compacts

W± =W ∩ {z | ± Imz ≥ 0} . (3.26)
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Note that
J
j+

d−2
2

(
√
Er)

J
j+

d−2
2

(
√
E)

and
Y
j+

d−2
2

(
√
Er)

Y
j+

d−2
2

(
√
E)

have removable singularity in E = 0 or, more precisely,

Jj+ d−2

2

(
√
Er)

Jj+ d−2

2

(
√
E)

−→ rj+
d−2

2 ,

Yj+ d−2

2

(
√
Er)

Yj+ d−2

2

(
√
E)

−→ r−j− d−2

2

as E −→ 0.

(3.27)

Considering the limit as E → 0 we get that (3.13), (3.25) and consequently (3.8) are valid
for W±. To complete proof we can take ρ = max{ρ+, ρ−}. �

Remark 3.2. From (3.1) and (3.10) we get that

〈Λv,Efjp, fiq〉 is holomorphic function in W. (3.28)

4. A fat metric space and a thin metric space

Definition 4.1. Let (X, dist) be a metric space and ǫ > 0. We say that a set Y ⊂ X is an
ǫ-net for X1 ⊂ X if for any x ∈ X1 there is y ∈ Y such that dist(x, y) ≤ ǫ. We call ǫ-entropy
of the set X1 the number Hǫ(X1) := log2min{|Y | : Y is an ǫ-net fot X1}.

A set Z ⊂ X is called ǫ-discrete if for any distinct z1, z2 ∈ Z, we have dist(z1, z2) ≥ ǫ. We
call ǫ-capacity of the set X1 the number Cǫ := log2max{|Z| : Z ⊂ X1 and Z is ǫ-discrete}.

The use of ǫ-entropy and ǫ-capacity to derive properties of mappings between metric
spaces goes back to Vitushkin and Kolmogorov (see [10] and references therein). One notable
application was Hilbert’s 13th problem (about representing a function of several variables
as a composition of functions of a smaller number of variables). In essence, Lemma 4.1 and
Lemma 4.2 are parts of the Theorem XIV and the Theorem XVII in [10].

Lemma 4.1. Let d ≥ 2 и m > 0. For ǫ, β > 0, consider the real metric space

Xmǫβ = {f ∈ Cm(D) | supp f ⊂ B(0, 1/3), ||f ||L∞(D) ≤ ǫ, ||f ||Cm(D) ≤ β},

with the metric induced by L∞. Then there is a µ > 0 such that for any β > 0 and ǫ ∈ (0, µβ),

there is an ǫ-discrete set Z ⊂ Xmǫβ with at least exp
(

2−d−1(µβ/ǫ)d/m
)

elements.

Lemma 4.1 was also formulated and proved in [3].

Lemma 4.2. For the interval I = [a, b] with a < b and γ > 0 consider ellipse WI,γ ∈ C

WI,γ = {a + b

2
+
a− b

2
cos z | |Im z| ≤ γ}. (4.1)

Then there is a constant ν = ν(C, γ) > 0, such that for every δ ∈ (0, e−1), there is a δ-net
for the space functions on I with L∞-norm, having holomorphic continuation to WI,γ with
module bounded above on WI,γ by the constant C, with at most exp(ν(ln δ−1)2) elements.
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Proof of Lemma 4.2. Theorem XVII in [10] provides asymptotic behaviour of the entropy
of this space with respect to δ → 0. Here we get upper estimate of it. Suppose g(z) is
holomorphic function in WI,γ with module bounded above by the constant C. Consider the
function f(z) = g(a+b

2
+ a−b

2
cos z). By the choise of WI,γ we get that f(z) is 2π-periodic

holomorphic function in the stripe |Im z| ≤ γ. Then for any integer n

|cn| =
∣

∣

∣

∣

∫ 2π

0

einxf(x)dx

∣

∣

∣

∣

≤
∫ 2π

0

e−|n|γCdx ≤ 2πCe−|n|γ. (4.2)

Let nδ be the smallest natural number such that 2πCe−nγ ≤ 6π−2(n+1)−2δ for any n ≥ nδ.
Taking natural logarithm and using ln δ−1 ≥ 1, we get that

nδ ≤ C ′ ln δ−1, (4.3)

where C ′ depends only on C and γ. We denote δ′ = 3π−2(nδ + 1)−2δ. Consider the set

Yδ = δ′Z
⋂

[−2πC, 2πC] + i · δ′Z
⋂

[−2πC, 2πC]. (4.4)

Using (4.3), we have that

|Yδ| = (1 + 2[2πC/δ′])
2 ≤ C ′′δ−2 ln4 δ−1, (4.5)

with C ′′ depending only on C and γ. We set

Y =

{ ∞
∑

n=0

dn cos

(

n arccos
x− a+b

2
a−b
2

)

| dn ∈ Yδ for n ≤ nδ, dn = 0 otherwise

}

. (4.6)

For given f(z) in case of n ≤ nδ we take dn to be one of the closest elements of Yδ to cn.
Since |cn| ≤ 2πC, this ensures |cn − dn| ≤ 2δ′. For n > nδ we take dn = 0. We have then

|cn − dn| ≤ 6π−2(n+ 1)−2δ. (4.7)

For n > nδ this is true by the construction of nδ, otherwise by the choise of δ′. Since f(x) is
2π-periodic even function, we get gY (x) ∈ Y such that

||g(x)− gY (x)||L∞(a,b) ≤
∞
∑

n=0

|cn − dn| ≤ 6π−2δ

∞
∑

n=1

1

n2
= δ. (4.8)

We have that |Y | = |Yδ|nδ . Taking into account (4.3),(4.5) and ln δ−1 ≥ 1, we get

|Y | ≤ (C ′′δ−2 ln4 δ−1)C
′ ln δ−1 ≤ exp

(

C ′′′ ln δ−1C ′ ln δ−1
)

≤ exp(ν(ln δ−1)2). (4.9)

�

Remark 4.1. The assertion is valid even in the case of a = b. As δ-net we can take

Y =
δ

2
Z

⋂

[−C,C] + i · δ
2
Z

⋂

[−C,C]. (4.10)

Consider an operator A : H−s(Sd−1) → Hs(Sd−1). We denote its matrix elements in the
basis {fjp} by ajpiq = 〈Afjp, fiq〉. From [3] we have that

||A||H−s→Hs ≤ 4 sup
j,p,i,q

(1 + max(j, i))2s+d|ajpiq|. (4.11)
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Consider system S =
K
⋃

j=1

Ij of σ-regular intervals. We introduce the Banach space

XS,s =

{

(

ajpiq(E)
)

|
∥

∥

∥

(

ajpiq(E)
)
∥

∥

∥

XS,s

:= sup
j,p,i,q

(

(1 + max(j, i))2s+d sup
E∈S

|ajpiq(E)|
)

<∞
}

.

Denote by B∞ the ball of centre 0 and radius 2σ/3 in L∞(B(0, 1/3)). We identify in the

sequel an operator A(E) : H−s(Sd−1) → Hs(Sd−1) with its matrix
(

ajpiq(E)
)

. Note that the

estimate (4.11) implies that

sup
E∈S

‖A(E)‖H−s→Hs ≤ 4
∥

∥

∥

(

ajpiq(E)
)
∥

∥

∥

XS,s

. (4.12)

We consider operator Λv,E from Lemma 3.4 as

Λ : B∞ →
{(

ajpiq(E)
)}

, (4.13)

where ajpiq(E) are matrix elements in the basis {fjp} of operator Λv,E .

Lemma 4.3. Λ maps B∞ into XS,s for any s. There is a constant 0 < η = η(S, s, d), such
that for every δ ∈ (0, e−1), there is a δ-net Y for Λ(B∞) in XS,s with at most exp(η(ln δ−1)2d)
elements.

Proof of Lemma 4.3. For simplicity we give first a proof in case of S consists of only one
σ-regular interval I. From (4.1) we take WI = WI,γ, where constant γ > 0 is such as for any
E ∈ WI there is EI in I such as |E − EI | < σ/6. From (2.16) we get that

|E − λ| ≥ |EI − λ| − |E −EI | ≥ 5σ/6, (4.14)

with λ being Dirichlet eigenvalue for operator −∆ in D which is closest to E. Then for
potential v ∈ B∞ and E ∈ WI we have that

||(−∆+ v −E)−1||L2(D) ≤ (|λ−E| − 2σ/3)−1 ≤ (5σ/6− 2σ/3)−1 = 6/σ (4.15)

and
||v||L∞(D)||(−∆+ v −E)−1||L2(D) ≤ (2σ/3)(6/σ) = 4, (4.16)

where (−∆+ v−E)−1 is considered with the Dirichlet boundary condition. We obtain from
Lemma 3.4 that

|ajpiq(E)| ≤ 4ρ 2−max(j,i), (4.17)

where ρ = ρ(WI , d). Hence ||(ajpiq(E))||XS,s
≤ supl(1+ l)2s+d4ρ 2−l <∞ for any s and d and

so the first assertion of the Lemma 4.3 is proved.
Let lδs be the smallest natural number such that (1 + l)2s+d4ρ 2−l ≤ δ for any l ≥ lδs.

Taking natural logarithm and using ln δ−1 ≥ 1, we get that

lδs ≤ C ′ ln δ−1, (4.18)

where the constant C ′ depends only on s, d and I. Denote Yjpiq is δjpiq-net from Lemma 4.2
with constant C = supl(1 + l)2s+d4ρ 2−l, where δjpiq = (1 + max(j, i))−2s−dδ. We set

Y = {(ajpiq(E)) | ajpiq(E) ∈ Yjpiq for max(j, i) ≤ lδs, ajpiq(E) = 0 otherwise} . (4.19)
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For any (ajpiq(E)) ∈ Λ(B∞) there is an element (bjpiq(E)) ∈ Y such that

(1 + max(j, i))2s+d|ajpiq(E)− bjpiq(E)| ≤ (1 + max(j, i))2s+dδjpiq = δ, (4.20)

in case of max(j, i) ≤ lδs and

(1 + max(j, i))2s+d|ajpiq(E)− bjpiq(E)| ≤ (1 + max(j, i))2s+d2ρ 2−max(j,i) ≤ δ, (4.21)

otherwise.
It remains to count the elements of Y . Using again the fact that ln δ−1 ≥ 1 and (4.18)

we get for max(j, i) ≤ lδs

|Yjpiq| ≤ exp(ν(ln δ−1
jpiq)

2) ≤ exp(ν ′(ln δ−1)2). (4.22)

From [3] we have that nδs ≤ 8(1 + lδs)
2d−2, where nδs is the number of four-tuples (j, p, i, q)

with max(j, i) ≤ lδs. Taking η to be big enough we get that

|Y | ≤
(

exp(ν ′(ln δ−1)2)
)nδs

≤ exp
(

ν ′(ln δ−1)28(1 + C ′ ln δ−1)2d−2
)

≤ exp
(

η(ln δ−1)2d
)

.

(4.23)

For S =
K
⋃

j=1

Ij assertion follows immediately, taking η to be in K times more and Y as

composition (Y1, . . . , YK) of δ-nets for each interval. �

5. Proofs of the main results

In this section we give proofs of Theorem 2.3 and Theorem 2.4.

Proof of Theorem 2.3. Take v0 ∈ L∞(B(0, 1/3)), ||v0||L∞(D) ≤ σ/3 and ǫ ∈ (0, σ/3). By
Lemma 4.1, the set v0 + Xmǫβ has an ǫ-discrete subset v0 + Z. Since for ǫ ∈ (0, σ/3) we
have v0 +Xmǫβ ⊂ B∞, where B∞ is the ball of centre 0 and radius 2σ/3 in L∞(B(0, 1/3)).
The set Y constructed in Lemma 4.3 is also δ-net for Λ(v0 + Xmǫβ). We take δ such that

8δ = exp
(

−ǫ− 1

2m

)

. Note that inequalities of (2.17) follow from

|v0 + Z| > |Y |. (5.1)

In fact, if |v0 + Z| > |Y |, then there are two potentials v1, v2 ∈ v0 + Z with images under Λ
in the same XS,s-ball radius δ centered at a point of Y , so we get from (4.12)

sup
E∈S

||Φ1(E)− Φ2(E)||H−s→Hs ≤ 4||Λv1,E − Λv2,E||XS,s
≤ 8δ = exp

(

−ǫ− 1

2m

)

. (5.2)

It remains to find β such as (5.1) is fullfiled. By Lemma 4.3

|Y | ≤ exp

(

η
(

ln 8 + ǫ−
1

2m

)2d
)

≤ max
(

exp
(

(2 ln 8)2dη
)

, exp
(

22dηǫ−d/m
)

)

. (5.3)
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Now we take
β > µ−1max

(

σ/3, ηm/d23m,
σ

3
ηm/d2m(2 ln 8)2m

)

(5.4)

This fulfils requirement ǫ < µβ in Lemma 4.1, which gives

|v0 + Z| = |Z| ≥ exp
(

2−d−1(µβ/ǫ)d/m
) (5.4)

>

> max
(

exp
(

2−d−1(ηm/d23m/ǫ)d/m
)

, exp
(

2−d−1(ηm/d2m(2 ln 8)2m)d/m
)

) (5.3)
≥ |Y |.

(5.5)

�

Proof of Theorem 2.4. In a similar way with the proof of Theorem 2 of [3] we obtain that

〈(Φmn(E)− Φ0(E)) fjp, fiq〉 = 0 (5.6)

for j, i ≤
[

n−1
2

]

. The only difference is that instead of the operator −∆ we consider the
operator −∆−E. From (4.11), (4.17) and (5.6) we get

||Φmn(E)− Φ0(E)||H−s→Hs ≤ 16ρ sup
l≥n/2

(1 + l)2s+d2−l ≤ c′2−n/4. (5.7)

The fact that ||vmn||Cm(D) is bounded as n→ ∞ is also a part of Theorem 2 of [3]. �

6. Bessel functions

In this section we prove Lemma 3.1, Lemma 3.2 and Lemma 3.3 about the Bessel functions.
Consider the problem of finding solutions of the form ψ(r, ω) = R(r)fjp(ω) of equation (1.1)
with v ≡ 0 . We have that

∆ =
∂2

(∂r)2
+ (d− 1)r−1 ∂

∂r
+ r−2∆Sd−1 , (6.1)

where ∆Sd−1 is Laplace-Beltrami operator on Sd−1. We have that

∆Sd−1fjp = −j(j + d− 2)fjp. (6.2)

Then we have the following equation for R(r):

−R′′ − d− 1

r
R′ +

j(j + d− 2)

r2
R = ER. (6.3)

Taking R(r) = r−
d−2

2 R̃(r), we get

r2R̃′′ + rR̃′ +

(

Er2 −
(

j +
d− 2

2

)2
)

R̃ = 0. (6.4)

This equation is known as Bessel’s equation. For E = k2 6= 0 it has two linearly independent
solutions Jj+ d−2

2

(kr) and Yj+ d−2

2

(kr), where

Jα(z) =

∞
∑

m=0

(−1)m(z/2)2m+α

Γ(m+ 1)Γ(m+ α + 1)
, (6.5)
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Yα(z) =
Jα(z) cosπα− J−α(z)

sin πα
for α /∈ Z, (6.6)

and

Yα(z) = lim
α′→α

Yα′(z) for α ∈ Z. (6.7)

The following Lemma is called the Nielsen inequality. A proof can be found in [5]

Lemma 6.1.

Jα(z) =
(z/2)α

Γ(α+ 1)
(1 + θ),

|θ| < exp

( |z|2/4
|α0 + 1|

)

− 1,
(6.8)

where |α0 + 1| is the least of numbers |α+ 1|, |α+ 2|, |α+ 3|, . . . .

Lemma 6.1 implies that r−
d−2

2 Jj+ d−2

2

(kr) has removable singularity at r = 0. Using the

boundary conditions R(1) = 1 and R(1) = 0, we obtain assertions of Lemma 3.1 and Lemma
3.2, respectively.
Proof of Lemma 3.3 Formula (3.4) follows immediately from Lemma 6.1. We have from [5]
that

J ′
α(z) = Jα−1(z)−

α

z
Jα(z). (6.9)

Further, taking α big enough we get

|J ′
α(z)| ≤ |Jα−1(z)|+ |α

z
Jα(z)| ≤

3

2

(|z|/2)α−1

Γ(α)
+

3α

2|z|
(|z|/2)α
Γ(α+ 1)

≤ 3
(|z|/2)α−1

Γ(α)
. (6.10)

For α = n+ 1/2 we have Yα = (−1)n+1J−α. Consider its series expansion, see (6.5).

J−α(z) =
∞
∑

m=0

(−1)m(z/2)2m−α

m! Γ(m− α + 1)
=

∞
∑

m=0

cm(z/2)
2m−α. (6.11)

Note that |cm/cm+1| = (m+ 1)|m− α + 1| ≥ n/2. As corollary we obtain that

|Yα(z)| =
(|z|/2)−α

|Γ(−α+ 1)|(1 + θ) =
1

π
(|z|/2)−αΓ(α)(1 + θ),

|θ| ≤
∞
∑

m=1

( |z|2
2n

)2m

≤ |z|2/2n
1− |z|2/2n.

(6.12)

For α = n we have from [5] that

Yn(z) =
2

π
Jn(z) ln

(z

2

)

− 1

π

n−1
∑

m=0

(z

2

)2m−n (n−m− 1)!

m!
−

−1

π

∞
∑

m=0

(−1)m(z/2)2m+n

m!(m+ n)!

(

Γ′(m+ 1)

Γ(m+ 1)
+

Γ′(m+ n+ 1)

Γ(m+ n+ 1)

)

=

=
2

π
Jn(z) ln

(z

2

)

− 1

π

n−1
∑

m=0

c̃m(z/2)
2m−n − 1

π

∞
∑

m=0

bm(z/2)
2m+n.

(6.13)
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Using well-known equality Γ′(x)/Γ(x) < ln x, x > 1, see [11], we get following estimation for
the coefficients bm are defined in (6.13).

|bm| <
ln(m+ 1) + ln(n+m+ 1)

m!(n +m)!
<

2(n+m)

m!(n +m)!
<

1

m!
. (6.14)

Note also that |c̃m/c̃m+1| = (m+1)(n−m− 1) ≥ n/2. Combining it with (6.13) and (6.14),
we obtain that

|Yn(z)| =
1

π
(|z|/2)−nΓ(n)(1 + θ),

|θ| ≤ 3
(|z|/2)2n| ln(z/2)|

Γ(n)
+

n−1
∑

m=1

( |z|2
2n

)2m

+
(|z|/2)2n
Γ(n)

∞
∑

m=0

(|z|/2)2m
m!

≤

≤ 3π
max (1, (|z|/2)2n+1)

Γ(n)
+

|z|2/2n
1− |z|2/2n +

(|z|/2)2ne|z|2/4
Γ(n)

.

(6.15)

Formula (3.6) follows from (6.12) and (6.15). We have from [5] that

Y ′
α(z) = Yα−1(z)−

α

z
Yα(z). (6.16)

Taking n big enough, we get that

|Y ′
α(z)| ≤ |Yα−1(z)|+ |α

z
Yα(z)| ≤

≤ 3

2π

(

(|z|/2)−α+1 Γ(α− 1) +
α

|z|(|z|/2)
αΓ(α)

)

≤ 3

π
(|z|/2)−α−1Γ(α + 1).

(6.17)

Combining reqirements for n, stated above, we get that for any n ≥ N +1 all inequalities of
Lemma 3.3 are fullfiled, where N such that























N > 3,

exp

(

C2/4

N + 1

)

− 1 ≤ 1/2,

3π
max

(

1, (C/2)2N+1
)

Γ(N)
+

C2

2N − C2
+

(C/2)2NeC
2/4

Γ(N)
≤ 1/2.

(6.18)

�
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