The varieties of tangent lines to hypersurfaces in projective spaces

Atsushi Ikeda

Abstract

For a hypersurface in a projective space, we consider the set of pairs of a point and a line in the projective space such that the line intersects the hypersurface at the point with a fixed multiplicity. We prove that this set of pairs forms a smooth variety for a general hypersurface.

1 Introduction

Let \mathbf{P}^{n} be the projective space of dimension n over a field K. We denote by X_{F} the hypersurface in \mathbf{P}^{n} defined by a homogeneous polynomial $F \in K\left[x_{0}, \ldots, x_{n}\right]$ of degree d. Let \mathbf{G} be the Grassmannian variety of all lines in \mathbf{P}^{n}. Then the set

$$
Z_{F}=\left\{L \in \mathbf{G} \mid L \subset X_{F}\right\}
$$

forms a closed subscheme of \mathbf{G}, and it is called Fano scheme of lines in X_{F}. The Fano schemes for cubic threefolds were first studied by Fano, and they were used by Tjurin [7] and Clemens-Griffiths [3] in the proof of the Torelli theorem and the irrationality for cubic threefolds over the complex numbers. Then the foundations of the Fano schemes of cubic hypersurfaces for any characteristic were given by Altman-Kleiman [1] and the results on the smoothness and connectedness of Z_{F} for any degree d were proved by Barth-Van de Ven [2] and bettered in the book [6, Chapter V. 4] by Kollár. In this paper, we introduce the following scheme $Y_{F, m}$ as an analogy of the Fano scheme Z_{F}. For $1 \leq m \leq \infty$, we set

$$
Y_{F, m}=\left\{(p, L) \in \mathbf{P}^{n} \times \mathbf{G} \mid L \text { intersects } X_{F} \text { at } p \text { with the multiplicity } \geq m\right\}
$$

which forms a closed subscheme of $\mathbf{P}^{n} \times \mathbf{G}$. Since $Y_{F, 1}$ is a \mathbf{P}^{n-1}-bundle over X_{F} by the first projection and $Y_{F, \infty}$ is a \mathbf{P}^{1}-bundle over Z_{F} by the second projection, the scheme $Y_{F, m}$ is considered to be an intermediate object between X_{F} and Z_{F}. We expect to characterize some geometric properties of X_{F} by using the Hodge

[^0]structure of $Y_{F, m}$. A computation for the Hodge structure of $Y_{F, m}$ is announced in the summary [5].

In Section 2, following the formulation for the Fano schemes in [1], we define the scheme $Y_{F, m}$ as the zeros of a section of a vector bundle on a flag variety. It enables us to compute the Chern numbers of $Y_{F, m}$ by Schubert calculus. In Section 3, we investigate the smoothness and connectedness of $Y_{F, m}$ for $m \leq d$. If $m \leq 2 n-1$ and m is prime to the characteristic of K, then $Y_{F, m}$ is smooth of dimension $2 n-m-1$ for a general hypersurface X_{F} (Theorem 3.2. (iii)). If $m \leq 2 n-2$, then $Y_{F, m}$ is connected for any hypersurface X_{F} (Theorem 3.2. (iv)). Particularly for a cubic hypersurface X_{F}, the variety $Y_{F, 3}$ is smooth of dimension $2 n-4$ if and only if X_{F} is a smooth hypersurface (Theorem 3.5). These results for $Y_{F, m}$ proved in Section 3 corresponds to the results for the Fano scheme Z_{F} proved in [2] and [6, Chapter V. 4].

2 Varieties of pairs of a point and a line

Let $\mathbf{P}^{n}=\mathbf{P}_{K}^{n}$ be the projective space of dimension n over a field K, and let V be the K-vector space $H^{0}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1)\right)$. We denote by $\mathbf{P}=\operatorname{Grass}(n, V)$ the Grassmannian variety of all n-dimensional subspaces in V, and denote by $\mathcal{Q}_{\mathbf{P}}$ the universal quotient bundle on \mathbf{P}. Then \mathbf{P} is naturally identified with \mathbf{P}^{n}, and $\mathcal{Q}_{\mathbf{P}}$ is identified with the tautological line bundle $\mathcal{O}_{\mathbf{P}^{n}}(1)$. We denote by $\mathbf{G}=$ Grass $(n-1, V)$ the Grassmannian variety of all $(n-1)$-dimensional subspaces in V, and denote by $\mathcal{Q}_{\mathbf{G}}$ the universal quotient bundle on \mathbf{G}. We remark that a point of \mathbf{G} corresponds to a line in \mathbf{P}^{n}. Let $\Gamma \subset \mathbf{P} \times \mathbf{G}$ be the flag variety of all pairs (p, L) of a point $p \in \mathbf{P}^{n}$ and a line $L \subset \mathbf{P}^{n}$ containing the point p. The variety Γ is the \mathbf{P}^{n-1}-bundle over \mathbf{P} by the first projection $\phi: \Gamma \rightarrow \mathbf{P}$, and Γ is the \mathbf{P}^{1}-bundle over \mathbf{G} by the second projection $\pi: \Gamma \rightarrow \mathbf{G}$. We define the line bundle \mathcal{Q}_{ϕ} on Γ as the kernel of the natural surjective homomorphism $\pi^{*} \mathcal{Q}_{\mathbf{G}} \rightarrow \phi^{*} \mathcal{Q}_{\mathbf{P}}$, and define a decreasing filtration

$$
\operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}=\operatorname{Fil}^{0} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} \supset \cdots \supset \operatorname{Fil}^{d} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} \supset \operatorname{Fil}^{\infty} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}=0
$$

on the d-th symmetric product of $\pi^{*} \mathcal{Q}_{\mathbf{G}}$, as $\operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}$ being the image of the natural homomorphism

$$
\operatorname{Sym}^{m} \mathcal{Q}_{\phi} \otimes \operatorname{Sym}^{d-m} \pi^{*} \mathcal{Q}_{\mathbf{G}} \longrightarrow \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}
$$

for $0 \leq m \leq d$, and $\mathrm{Fil}^{\infty} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}=0$. Let $F \in \operatorname{Sym}^{d} V$. We denote by X_{F} the hypersurface in \mathbf{P} defined as the zeros of the section $[F]_{\mathbf{P}} \in H^{0}\left(\mathbf{P}, \operatorname{Sym}^{d} \mathcal{Q}_{\mathbf{P}}\right)$ which is the image of F by the natural isomorphism

$$
\operatorname{Sym}^{d} V \simeq H^{0}\left(\mathbf{P}, \operatorname{Sym}^{d} \mathcal{Q}_{\mathbf{P}}\right)
$$

We denote by Z_{F} the subscheme in \mathbf{G} defined as the zeros of the section $[F]_{\mathbf{G}} \in$ $H^{0}\left(\mathbf{G}, \operatorname{Sym}^{d} \mathcal{Q}_{\mathbf{G}}\right)$ which is the image of F by the natural isomorphism

$$
\operatorname{Sym}^{d} V \simeq H^{0}\left(\mathbf{G}, \operatorname{Sym}^{d} \mathcal{Q}_{\mathbf{G}}\right)
$$

Then a point in Z_{F} corresponds to a line contained in X_{F}, and Z_{F} is called the Fano scheme of lines in X_{F}. We denote by $Y_{F, m}$ the subscheme in Γ defined as the zeros of the section $[F]_{\Gamma, m} \in H^{0}\left(\Gamma, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} / \operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)$ which is the image of F by the natural homomorphism

$$
\operatorname{Sym}^{d} V \simeq H^{0}\left(\Gamma, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right) \longrightarrow H^{0}\left(\Gamma, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} / \operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)
$$

Let L be a line in \mathbf{P}^{n}, and let p be a point on L. The fiber of the line bundle \mathcal{Q}_{ϕ} at $(p, L) \in \Gamma$ is identified with the kernel of the restriction

$$
H^{0}\left(L,\left.\mathcal{O}_{\mathbf{P}^{n}}(1)\right|_{L}\right) \longrightarrow H^{0}\left(p,\left.\mathcal{O}_{\mathbf{P}^{n}}(1)\right|_{p}\right)
$$

Hence, L intersects X_{F} at p with the multiplicity $\geq m$ if and only if the pair (p, L) represents a point in $Y_{F, m}$. We have a diagram

The morphism $\left.\phi\right|_{Y_{F, 1}}: Y_{F, 1} \rightarrow X_{F}$ is the \mathbf{P}^{n-1}-bundle, whose fiber at $p \in X_{F}$ is the set of all lines through the point p. If X_{F} is a smooth hypersurface, then $\left.\phi\right|_{Y_{F, 2}}: Y_{F, 2} \rightarrow X_{F}$ is the \mathbf{P}^{n-2}-bundle, whose fiber at $p \in X_{F}$ is the set of all lines through the point p and contained in the projective tangent space of X_{F} at p. The morphism $\left.\pi\right|_{Y_{F, \infty}}: Y_{F, \infty} \rightarrow Z_{F}$ is the \mathbf{P}^{1}-bundle, whose fiber at $L \in Z_{F}$ is the set of all points on the line L.

For $(p, L) \in \Gamma$, there is a basis $\left(x_{0}, \ldots, x_{n}\right)$ of V such that the point p is defined by $x_{1}=\cdots=x_{n}=0$ and the line L is defined by $x_{2}=\cdots=x_{n}=0$ in \mathbf{P}^{n}. Then the map

$$
\begin{aligned}
\mathbf{A}^{2 n-1}=\operatorname{Spec} K\left[\xi_{1}, \ldots, \xi_{n}, \zeta_{2}, \ldots, \zeta_{n}\right] & \xrightarrow{\longrightarrow} U \subset \Gamma ; \\
\left(\xi_{1}, \ldots, \xi_{n}, \zeta_{2}, \ldots, \zeta_{n}\right) & \longmapsto\left(p_{\xi}, L_{(\xi, \zeta)}\right)
\end{aligned}
$$

gives a local coordinate of Γ at (p, L), where p_{ξ} denotes the point defined by

$$
x_{1}-\xi_{1} x_{0}=\cdots=x_{n}-\xi_{n} x_{0}=0
$$

and $L_{(\xi, \zeta)}$ denotes the line defined by

$$
\left(x_{2}-\xi_{2} x_{0}\right)-\zeta_{2}\left(x_{1}-\xi_{1} x_{0}\right)=\cdots=\left(x_{n}-\xi_{n} x_{0}\right)-\zeta_{n}\left(x_{1}-\xi_{1} x_{0}\right)=0
$$

On this local coordinate $U,\left(\left[x_{0}\right]_{U},\left[x_{1}\right]_{U}\right)$ is a local basis of $\pi^{*} \mathcal{Q}_{\mathbf{G}}$, and $\left[x_{1}-\xi_{1} x_{0}\right]_{U}$ is a local basis of \mathcal{Q}_{ϕ}, where $[A]_{U}$ denotes the image of $A \in V$ by the restriction
$V \rightarrow H^{0}\left(U, \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)$. Note that $\left(\left[x_{0}\right]_{U},\left[x_{1}-\xi_{1} x_{0}\right]_{U}\right)$ is another local basis of $\pi^{*} \mathcal{Q}_{\mathbf{G}}$. We define the polynomial $f_{k}(\xi, \zeta)=f_{k}\left(\xi_{1}, \ldots, \xi_{n}, \zeta_{2}, \ldots, \zeta_{n}\right)$ by

$$
[F]_{U}=\sum_{k=0}^{d} f_{k}(\xi, \zeta)\left[x_{1}-\xi_{1} x_{0}\right]_{U}^{k}\left[x_{0}\right]_{U}^{d-k} \in H^{0}\left(U, \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)
$$

Then $[F]_{U}$ is contained in $H^{0}\left(U, \operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)$ if and only if

$$
f_{0}(\xi, \zeta)=\cdots=f_{m-1}(\xi, \zeta)=0
$$

and we have

$$
Y_{F, m} \cap U \simeq \operatorname{Spec} K\left[\xi_{1}, \ldots, \xi_{n}, \zeta_{2}, \ldots, \zeta_{n}\right] /\left(f_{0}(\xi, \zeta), \ldots, f_{m-1}(\xi, \zeta)\right)
$$

When we consider $F \in \operatorname{Sym}^{d} V$ as the homogeneous polynomial $F\left(x_{0}, \ldots, x_{n}\right) \in$ $K\left[x_{0}, \ldots, x_{n}\right]$ of degree d, we have

$$
\begin{aligned}
F\left(x_{0}, x_{1}, \zeta_{2}\left(x_{1}-\xi_{1} x_{0}\right)+\xi_{2} x_{0}, \ldots, \zeta_{n}\left(x_{1}-\xi_{1} x_{0}\right)\right. & \left.+\xi_{n} x_{0}\right) \\
& =\sum_{k=0}^{d} f_{k}(\xi, \zeta)\left(x_{1}-\xi_{1} x_{0}\right)^{k} x_{0}^{d-k}
\end{aligned}
$$

hence the local equation of $X_{F} \cap L_{(\xi, \zeta)}$ in $L_{(\xi, \zeta)}$ is

$$
\begin{equation*}
F\left(1, t+\xi_{1}, \zeta_{2} t+\xi_{2}, \ldots, \zeta_{n} t+\xi_{n}\right)=\sum_{k=0}^{d} f_{k}(\xi, \zeta) t^{k} \tag{2.1}
\end{equation*}
$$

where $t=\frac{x_{1}}{x_{0}}-\xi_{1}$ is a local parameter of the line $L_{(\xi, \zeta)}$ at the point p_{ξ}.

3 Smoothness and connectedness

Since $Y_{F, \infty}$ is a \mathbf{P}^{1}-bundle over Z_{F}, the following theorem is directly induced from the results in [2, Theorem 8] and [6, Chapter V. Theorem 4.3].

Theorem 3.1. Assume $d \geq 1$.
(i) If $d \geq 2 n-2$, then $Y_{F, \infty}$ is empty for general $F \in \operatorname{Sym}^{d} V$.
(ii) If $d \leq 2 n-3$, then $Y_{F, \infty}$ is non-empty for any $F \in \operatorname{Sym}^{d} V$.
(iii) If $d \leq 2 n-3$, then $Y_{F, \infty}$ is smooth of dimension $2 n-d-2$ for general $F \in \operatorname{Sym}^{d} V$.
(iv) If $d \leq 2 n-4$ and $(d, n) \neq(2,3)$, then $Y_{F, \infty}$ is connected for any $F \in \operatorname{Sym}^{d} V$.

In this section, we prove the following theorem;

Theorem 3.2. Assume $1 \leq m \leq d$.
(i) If $m \geq 2 n$, then $Y_{F, m}$ is empty for general $F \in \operatorname{Sym}^{d} V$.
(ii) If $m \leq 2 n-1$, then $Y_{F, m}$ is non-empty for any $F \in \operatorname{Sym}^{d} V$.
(iii) If $m \leq 2 n-1$ and m is prime to the characteristic of K, then $Y_{F, m}$ is smooth of dimension $2 n-m-1$ for general $F \in \operatorname{Sym}^{d} V$.
(iv) If $m \leq 2 n-2$, then $Y_{F, m}$ is connected for any $F \in \operatorname{Sym}^{d} V$.

We denote by $M_{d}=\operatorname{Grass}\left(1, \operatorname{Sym}^{d} V\right)$ the space of hypersurfaces of degree d in \mathbf{P}^{n}. We set the vector bundle $\mathcal{E}_{d, m}$ on Γ by

$$
\mathcal{E}_{d, m}=\operatorname{Ker}\left(\mathcal{O}_{\Gamma} \otimes \operatorname{Sym}^{d} V \longrightarrow \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}} / \operatorname{Fil}^{m} \operatorname{Sym}^{d} \pi^{*} \mathcal{Q}_{\mathbf{G}}\right)
$$

and we consider the projective space bundle $Y_{d, m}=\operatorname{Grass}\left(1, \mathcal{E}_{d, m}\right) \rightarrow \Gamma$. Then $Y_{d, m}$ is a smooth subvariety of codimension m in $M_{d} \times \Gamma=\operatorname{Grass}\left(1, \mathcal{O}_{\Gamma} \otimes \operatorname{Sym}^{d} V\right)$, and the fiber of the projection

$$
\psi_{d, m}: Y_{d, m} \longrightarrow M_{d} ;([F], p, L) \longmapsto[F]
$$

at $[F] \in M_{d}$ is equal to $Y_{F, m}$. We denote by $Y_{d, m}(p, L) \subset M_{d}$ the fiber of the projective space bundle $Y_{d, m} \rightarrow \Gamma$ at $(p, L) \in \Gamma$. For $(p, L) \in \Gamma$, we fix a basis $\left(x_{0}, \ldots, x_{n}\right)$ of V such that the point p is defined by $x_{1}=\cdots=x_{n}=0$ and the line L is defined by $x_{2}=\cdots=x_{n}=0$ in \mathbf{P}^{n}. Then $Y_{d, m}(p, L)$ is the linear subspace

$$
Y_{d, m}(p, L)=\left\{[F] \in M_{d} \mid a_{0}=\cdots=a_{m-1}=0\right\}
$$

where a_{i} denotes the coefficient of the monomial $x_{0}^{d-i} x_{1}^{i}$ in $F\left(x_{0}, \ldots, x_{n}\right)$. For $(p, L) \in Y_{m, F}$, we define the matrix $J_{m}([F], p, L)$ by

$$
J_{m}([F], p, L)=\left(\begin{array}{cccccc}
\frac{\partial f_{0}}{\partial \xi_{1}}(0) & \cdots & \frac{\partial f_{0}}{\partial \xi_{n}}(0) & \frac{\partial f_{0}}{\partial \zeta_{2}}(0) & \cdots & \frac{\partial f_{0}}{\partial \zeta_{n}}(0) \\
& \cdots & \ldots & & & \\
\frac{\partial f_{m-1}}{\partial \xi_{1}}(0) & \cdots & \frac{\partial f_{m-1}}{\partial \xi_{n}}(0) & \frac{\partial f_{m-1}}{\partial \zeta_{2}}(0) & \cdots & \frac{\partial f_{m-1}}{\partial \zeta_{n}}(0)
\end{array}\right)
$$

where $\left(\xi_{1}, \ldots, \xi_{n}, \zeta_{2}, \ldots, \zeta_{n}\right)$ is the local coordinate of Γ and $f_{0}(\xi, \zeta), \ldots, f_{m-1}(\xi, \zeta)$ are the local equations of $Y_{F, m}$ in Section 2. By the equation (2.1), we have

$$
J_{m}([F], p, L)=\left(\begin{array}{ccccccc}
0 & a_{0,2} & \cdots & a_{0, n} & 0 & \cdots & 0 \\
& & & & a_{0,2} & \cdots & a_{0, n} \\
\vdots & & \cdots & & & & \\
0 & a_{m-2,2} & \cdots & a_{m-2, n} & & & \\
m a_{m} & a_{m-1,2} & \cdots & a_{m-1, n} & a_{m-2,2} & \cdots & a_{m-2, n}
\end{array}\right)
$$

where $a_{k, j}$ denotes the coefficient of the monomial $x_{0}^{d-k-1} x_{1}^{k} x_{j}$ in $F\left(x_{0}, \ldots, x_{n}\right)$. We define the degeneracy locus $W_{d, m}$ in $Y_{d, m}$ by

$$
\begin{aligned}
W_{d, m} & =\left\{([F], p, L) \in Y_{d, m} \mid \operatorname{rank} J_{m}([F], p, L)<m\right\} \\
& =\left\{([F], p, L) \in Y_{d, m} \mid \operatorname{rank} \mathrm{d} \psi_{d, m}([F], p, L)<\operatorname{dim} M_{d}\right\}
\end{aligned}
$$

where $\mathrm{d} \psi_{d, m}$ denotes the homomorphism on tangent spaces induced by $\psi_{d, m}$: $Y_{d, m} \rightarrow M_{d}$. We remark that $W_{d, 2} \subset W_{d, m}$ for $m \geq 2$, and we set $W_{d, m}^{0}=$ $W_{d, m} \backslash W_{d, 2}$.

Proposition 3.3. Assume $1 \leq m \leq d$.
(i) $\operatorname{codim}_{Y_{d, 1}} W_{d, 1}=n$ for $d \geq 1$.
(ii) $\operatorname{codim}_{Y_{d, 2}} W_{d, 2}=n-1$ for $d \geq 2$.
(iii) If $m=2 n-1$ is prime to the characteristic of K, then $\operatorname{codim}_{Y_{d, 2 n-1}} W_{d, 2 n-1}=$ 1.
(iv) If $3 \leq m \leq 2 n-2$ and m is prime to the characteristic of K, then

$$
\left\{\begin{aligned}
\operatorname{codim}_{Y_{d, m}} W_{d, m} & =\min \{n-1,2 n-m\} \\
\operatorname{codim}_{Y_{d, m}} W_{d, m}^{0} & =2 n-m
\end{aligned}\right.
$$

(v) If $3 \leq m \leq 2 n-2$ and m is divisible by the characteristic of K, then

$$
\left\{\begin{array}{l}
\operatorname{codim}_{Y_{d, m}} W_{d, m}=\min \{n-1,2 n-m-1\} \\
\operatorname{codim}_{Y_{d, m}} W_{d, m}^{0}=2 n-m-1
\end{array}\right.
$$

We denote by $\operatorname{Mat}(l, r)$ the K-vector space of $l \times r$ matrices. We define a subscheme $\Delta(l, r)$ in $\operatorname{Grass}(1, \operatorname{Mat}(l, r))$ by

$$
\Delta(l, r)=\{[B] \in \operatorname{Grass}(1, \operatorname{Mat}(l, r)) \mid \operatorname{rank} \tilde{B}<l\}
$$

where we set

$$
\tilde{B}=\left(\begin{array}{cccccc}
b_{1,1} & \cdots & b_{1, r} & 0 & \cdots & 0 \\
& \cdots & & b_{1,1} & \cdots & b_{1, r} \\
& & & & \cdots & \\
b_{l-1,1} & \cdots & b_{l-1, r} & & & \\
b_{l, 1} & \cdots & b_{l, r} & b_{l-1,1} & \cdots & b_{l-1, r}
\end{array}\right) \in \operatorname{Mat}(l, 2 r)
$$

for a matrix

$$
B=\left(\begin{array}{lll}
b_{1,1} & \cdots & b_{1, r} \\
& \cdots & \\
b_{l, 1} & \cdots & b_{l, r}
\end{array}\right) \in \operatorname{Mat}(l, r) .
$$

We set an open subset $\Delta^{0}(l, r)$ of $\Delta(l, r)$ by

$$
\Delta^{0}(l, r)=\left\{[B] \in \Delta(l, r) \mid\left(b_{1,1}, \ldots, b_{1, r}\right) \neq(0, \ldots, 0)\right\}
$$

Lemma 3.4. For $3 \leq l \leq 2 r$,

$$
\left\{\begin{array}{l}
\operatorname{codim}_{\operatorname{Grass}(1, \mathrm{Mat}(l, r))} \Delta(l, r)=\min \{r, 2 r-l+1\} \\
\operatorname{codim}_{\operatorname{Grass}(1, \mathrm{Mat}(l, r))} \Delta^{0}(l, r)=2 r-l+1
\end{array}\right.
$$

Proof. For $2 \leq i \leq l$, we set

$$
\Delta_{i}(l, r)=\left\{[B] \in \Delta(l, r) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}
b_{1,1} & \cdots & b_{1, r} & 0 & \cdots & 0 \\
& \cdots & & b_{1,1} & \cdots & b_{1, r} \\
& & & & \cdots & \\
b_{i-1,1} & \cdots & b_{i-1, r} & & & \\
b_{i, 1} & \cdots & b_{i, r} & b_{i-1,1} & \cdots & b_{i-1, r}
\end{array}\right)<i\right.\right\} .
$$

Then

$$
\Delta_{2}(l, r) \subset \cdots \subset \Delta_{l}(l, r)=\Delta(l, r),
$$

hence we have $\Delta(l, r)=\Delta_{2}(l, r) \amalg \Delta^{0}(l, r)$ and

$$
\Delta^{0}(l, r)=\coprod_{i=3}^{l}\left(\Delta_{i}(l, r) \backslash \Delta_{i-1}(l, r)\right)
$$

Since

$$
\Delta_{2}(l, r)=\left\{[B] \in \Delta(l, r) \mid\left(b_{1,1}, \ldots, b_{1, r}\right)=(0, \ldots, 0)\right\}
$$

we have $\operatorname{codim}_{\text {Grass }(1, \operatorname{Mat}(l, r))} \Delta_{2}(l, r)=r$. For $3 \leq i \leq l$, there is an open immersion

$$
\begin{gathered}
\Delta_{i}(l, r) \backslash \Delta_{i-1}(l, r) \longrightarrow \operatorname{Grass}(1, \text { Mat }(l-2, r)) \times \mathbf{A}^{i-1} ; \\
{\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, r} \\
& \cdots & b_{l, r} \\
b_{l, 1} & \cdots & b_{l, r}
\end{array}\right] \longmapsto\left(\left[\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, r} \\
& \cdots & \\
b_{i-2,1} & \cdots & b_{i-2, r} \\
b_{i+1,1} & \cdots & b_{i+1, r} \\
& \cdots & \\
b_{l, 1} & \cdots & b_{l, r}
\end{array}\right],\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right),}
\end{gathered}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ is determined by

$$
\begin{aligned}
&\left(b_{i, 1}, \ldots, b_{i, r}, b_{i-1,1}, \ldots, b_{i-1, r}\right) \\
&=\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\left(\begin{array}{cccccc}
b_{1,1} & \cdots & b_{1, r} & 0 & \cdots & 0 \\
& & & b_{1,1} & \cdots & b_{1, r} \\
& \cdots & & & \cdots & \\
b_{i-2,1} & \cdots & b_{i-2, r} & & & \\
b_{i-1,1} & \cdots & b_{i-1, r} & b_{i-2,1} & \cdots & b_{i-2, r}
\end{array}\right) .
\end{aligned}
$$

Hence we have codim $\operatorname{Grass}(1, \operatorname{Mat}(l, r))\left(\Delta_{i}(l, r) \backslash \Delta_{i-1}(l, r)\right)=2 r-i+1$.

Proof of Proposition 3.3. We set $W_{d, m}(p, L)=Y_{d, m}(p, L) \cap W_{d, m}$ and $W_{d, m}^{0}(p, L)=$ $Y_{d, m}(p, L) \cap W_{d, m}^{0}$, and we compute their codimension in $Y_{d, m}(p, L)$. It is clear that $\operatorname{codim}_{Y_{d, 1}(p, L)} W_{d, 1}(p, L)=n$ and $\operatorname{codim}_{Y_{d, 2}(p, L)} W_{d, 2}(p, L)=n-1$. Since $W_{d, 2 n-1}(p, L)$ is defined by $\operatorname{det} J_{2 n-1}([F], p, L)=0$ in $Y_{d, 2 n-1}(p, L)$, if $m=2 n-1$ is prime to the characteristic of K, then we have $\operatorname{codim}_{Y_{d, 2 n-1}(p, L)} W_{d, 2 n-1}(p, L)=1$. We assume $3 \leq m \leq 2 n-2$. We define the hyperplane $T_{d, m}(p, L)$ in $Y_{d, m}(p, L)$ by

$$
T_{d, m}(p, L)=\left\{[F] \in Y_{d, m}(p, L) \mid a_{m}=0\right\}
$$

If m is prime to the characteristic of K, then by Lemma 3.4, we have

$$
\begin{aligned}
& \operatorname{codim}_{Y_{d, m}(p, L)}\left(W_{d, m}(p, L) \backslash T_{d, m}(p, L)\right) \\
& =\operatorname{codim}_{\operatorname{Grass}(1, \operatorname{Mat}(m-1, n-1))} \Delta(m-1, n-1)=\min \{n-1,2 n-m\} \\
& \operatorname{codim}_{Y_{d, m}(p, L)}\left(W_{d, m}(p, L) \cap T_{d, m}(p, L)\right) \\
& =1+\operatorname{codim}_{Y_{d, m}(p, L) \cap T_{d, m}(p, L)}\left(W_{d, m}(p, L) \cap T_{d, m}(p, L)\right) \\
& =1+\operatorname{codim}_{\operatorname{Grass}(1, \operatorname{Mat}(m, n-1))} \Delta(m, n-1)=\min \{n, 2 n-m\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{codim}_{Y_{d, m}(p, L)}\left(W_{d, m}^{0}(p, L) \backslash T_{d, m}(p, L)\right) \\
& =\operatorname{codim}_{\operatorname{Grass}(1, \operatorname{Mat}(m-1, n-1))} \Delta^{0}(m-1, n-1)=2 n-m, \\
& \operatorname{codim}_{Y_{d, m}(p, L)}\left(W_{d, m}^{0}(p, L) \cap T_{d, m}(p, L)\right) \\
& =1+\operatorname{codim}_{Y_{d, m}(p, L) \cap T_{d, m}(p, L)}\left(W_{d, m}^{0}(p, L) \cap T_{d, m}(p, L)\right) \\
& =1+\operatorname{codim}_{\operatorname{Grass}(1, \operatorname{Mat}(m, n-1))} \Delta^{0}(m, n-1)=2 n-m .
\end{aligned}
$$

If m is divisible by the characteristic of K, then by Lemma 3.4. we have

$$
\begin{aligned}
& \operatorname{codim}_{Y_{d, m}(p, L)} W_{d, m}(p, L) \\
& =\operatorname{codim}_{\text {Grass }(1, \operatorname{Mat}(m, n-1))} \Delta(m, n-1)=\min \{n-1,2 n-m-1\} \\
& \operatorname{codim}_{Y_{d, m}(p, L)} W_{d, m}^{0}(p, L) \\
& =\operatorname{codim}_{\text {Grass }(1, \operatorname{Mat}(m, n-1))} \Delta^{0}(m, n-1)=2 n-m-1
\end{aligned}
$$

Proof of Theorem 3.2. (i) If $m \geq 2 n$, then $\operatorname{dim} Y_{d, m}<\operatorname{dim} M_{d}$, hence $Y_{F, m}$ is empty for general $F \in \operatorname{Sym}^{d} V$.
(ii) Let $\Psi_{d, m}: \mathcal{Y}_{d, m} \rightarrow \mathcal{M}_{d}$ be the morphism of the schemes over $\operatorname{Spec} \mathbf{Z}$ whose fiber at $\operatorname{Spec} K \rightarrow \operatorname{Spec} \mathbf{Z}$ is the morphism $\psi_{d, m}: Y_{d, m} \rightarrow M_{d}$ for any field K. If $m \leq 2 n-1$ and m is prime to the characteristic of K, then $\operatorname{codim}_{Y_{d, m}} W_{d, m} \geq 1$ by Proposition 3.3, hence $\psi_{d, m}: Y_{d, m} \rightarrow M_{d}$ is dominant. Therefore $\Psi_{d, m}: \mathcal{Y}_{d, m} \rightarrow \mathcal{M}_{d}$ is a dominant morphism for $m \leq 2 n-1$. Since $\Psi_{d, m}$ is a proper morphism, $\Psi_{d, m}$ is surjective, hence $Y_{F, m}$ is non-empty for any field K and for any $F \in \operatorname{Sym}^{d} V$.
(iii) By [4, Proposition 10.4], $Y_{F, m}$ is smooth of dimension $2 n-m-1$ for $[F] \in$
$M_{d} \backslash \psi_{d, m}\left(W_{d, m}\right)$. Hence we will show that $\psi_{d, m}\left(W_{d, m}\right) \varsubsetneqq M_{d}$ is a proper Zariski closed subset. It is well-known that the hypersurface X_{F} is smooth for a general $F \in \operatorname{Sym}^{d} V$. Then $Y_{F, 1}$ and $Y_{F, 2}$ are smooth, hence $\psi_{d, 2}\left(W_{d, 2}\right) \varsubsetneqq M_{d}$ is a proper Zariski closed subset. If $3 \leq m \leq 2 n-1$ and m is prime to the characteristic of K, then $\operatorname{dim} W_{d, m}^{0}<\operatorname{dim} M_{d}$ by Proposition 3.3, hence $\psi_{d, m}\left(W_{d, m}\right)=$ $\psi_{d, 2}\left(W_{d, 2}\right) \cup \psi_{d, m}\left(W_{d, m}^{0}\right) \varsubsetneqq M_{d}$ is a proper Zariski closed subset.
(iv) We assume $(n, m) \neq(2,2)$. If $m \leq 2 n-2$ and m is prime to the characteristic of K, then $\operatorname{codim}_{Y_{d, m}} W_{d, m} \geq 2$ by Proposition 3.3. Using the same argument as the proof of [6, Chapter V. (4.3.3)], the general fiber of $\Psi_{d, m}: \mathcal{Y}_{d, m} \rightarrow \mathcal{M}_{d}$ is connected for $m \leq 2 n-2$. By Zariski's Main Theorem, $Y_{F, m}$ is connected for any field K and for any $F \in \operatorname{Sym}^{d} V$. We assume $(n, m)=(2,2)$. We denote by $X_{d} \rightarrow M_{d}$ the universal family of curves of degree d in \mathbf{P}^{2}. Then the natural projection $\phi: Y_{d, 2} \rightarrow X_{d}$ is a birational projective morphism. By Zariski's Main Theorem, any fiber of ϕ is connected. Since X_{F} is connected, $Y_{F, 2}$ is connected.

Theorem 3.5. Assume that $n \geq 2$ and the characteristic of K is not 3. For a cubic form $F \in \operatorname{Sym}^{3} V$, the variety $Y_{F, 3}$ is smooth of dimension $2 n-4$ if and only if X_{F} is a smooth hypersurface in \mathbf{P}^{n}.

Proof. We assume that X_{F} is not a smooth hypersurface. For $p \in \operatorname{Sing} X_{F}(\bar{K})$, there is a line L in $\mathbf{P}_{\bar{K}}^{n}$ such that $(p, L) \in Y_{F, 3}(\bar{K})$. Then $([F], p, L) \in W_{3,3}(\bar{K})$, hence $Y_{F, 3}$ is not smooth of dimension $2 n-4$. Conversely, we assume that $Y_{F, 3}$ is not smooth of dimension $2 n-4$. There is a pair $(p, L) \in Y_{F, 3}(\bar{K})$ such that $([F], p, L) \in$ $W_{3,3}(\bar{K})$. If $a_{3} \neq 0$, then $p \in \operatorname{Sing} X_{F}(\bar{K})$. If $a_{3}=0$ and $p \notin \operatorname{Sing} X_{F}(\bar{K})$ then

$$
\operatorname{rank}\left(\begin{array}{cccccc}
a_{0,2} & \cdots & a_{0, n} & 0 & \cdots & 0 \\
a_{1,2} & \cdots & a_{1, n} & a_{0,2} & \cdots & a_{0, n} \\
a_{2,2} & \cdots & a_{2, n} & a_{1,2} & \cdots & a_{1, n}
\end{array}\right)<3
$$

There exist $\alpha, \beta \in \bar{K}$ such that $a_{2, j}=\alpha a_{0, j}+\beta a_{1, j}$ and $a_{1, j}=\beta a_{0, j}$ for $2 \leq j \leq n$. Let $s \in \bar{K}$ be satisfying

$$
s^{2}+\beta s+\left(\alpha+\beta^{2}\right)=0
$$

Then $F(s, 1,0, \ldots, 0)=0$ and $\frac{\partial F}{\partial x_{j}}(s, 1,0, \ldots, 0)=0$ for $0 \leq j \leq n$, hence X_{F} is not a smooth hypersurface.

References

[1] A. Altman and S. Kleiman, Foundations of the theory of Fano schemes, Compos. Math. 34 (1977), 3-47.
[2] W. Barth and A. Van de Ven, Fano-Varieties of lines on hypersurfaces, Arch. Math. (Basel) 31 (1978), 96-104.
[3] H. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281-356.
[4] R. Hartshorne, Algebraic geometry, Springer-Verlag, GTM 52 (1977).
[5] A. Ikeda, The varieties of intersections of lines and hypersurfaces in projective spaces, "Higher dimensional algebraic varieties and vector bundles," RIMS Kôkyûroku Bessatsu B9 (2008), 115-125.
[6] J. Kollár, Rational curves on algebraic varieties, Springer-Verlag, Ergebnisse der Math. (3) 32 (1996).
[7] A. Tjurin, The geometry of the Fano surface of a nonsingular cubic $F \subset P^{4}$ and Torelli theorems for Fano surface and cubics, Math. USSR Izv. 5 (1971), 517-546.

Graduate School of Science
Osaka University
Toyonaka, Osaka, 560-0043
Japan
E-mail address: atsushi@math.sci.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14C05; Secondary 14M15.

