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The varieties of tangent lines to hypersurfaces

in projective spaces

Atsushi Ikeda

Abstract

For a hypersurface in a projective space, we consider the set of pairs of

a point and a line in the projective space such that the line intersects the

hypersurface at the point with a fixed multiplicity. We prove that this set

of pairs forms a smooth variety for a general hypersurface.

1 Introduction

Let Pn be the projective space of dimension n over a field K. We denote by XF

the hypersurface in Pn defined by a homogeneous polynomial F ∈ K[x0, . . . , xn]
of degree d. Let G be the Grassmannian variety of all lines in Pn. Then the set

ZF = {L ∈ G | L ⊂ XF}

forms a closed subscheme of G, and it is called Fano scheme of lines in XF . The
Fano schemes for cubic threefolds were first studied by Fano, and they were used
by Tjurin [7] and Clemens-Griffiths [3] in the proof of the Torelli theorem and the
irrationality for cubic threefolds over the complex numbers. Then the foundations
of the Fano schemes of cubic hypersurfaces for any characteristic were given by
Altman-Kleiman [1], and the results on the smoothness and connectedness of ZF

for any degree d were proved by Barth-Van de Ven [2] and bettered in the book [6,
Chapter V. 4] by Kollár. In this paper, we introduce the following scheme YF,m as
an analogy of the Fano scheme ZF . For 1 ≤ m ≤ ∞, we set

YF,m = {(p, L) ∈ Pn ×G | L intersects XF at p with the multiplicity ≥ m},

which forms a closed subscheme of Pn ×G. Since YF,1 is a Pn−1-bundle over XF

by the first projection and YF,∞ is a P1-bundle over ZF by the second projection,
the scheme YF,m is considered to be an intermediate object between XF and ZF .
We expect to characterize some geometric properties of XF by using the Hodge
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structure of YF,m. A computation for the Hodge structure of YF,m is announced in
the summary [5].

In Section 2, following the formulation for the Fano schemes in [1], we define
the scheme YF,m as the zeros of a section of a vector bundle on a flag variety.
It enables us to compute the Chern numbers of YF,m by Schubert calculus. In
Section 3, we investigate the smoothness and connectedness of YF,m for m ≤ d.
If m ≤ 2n − 1 and m is prime to the characteristic of K, then YF,m is smooth
of dimension 2n − m − 1 for a general hypersurface XF (Theorem 3.2. (iii)). If
m ≤ 2n− 2, then YF,m is connected for any hypersurface XF (Theorem 3.2. (iv)).
Particularly for a cubic hypersurface XF , the variety YF,3 is smooth of dimension
2n−4 if and only if XF is a smooth hypersurface (Theorem 3.5). These results for
YF,m proved in Section 3 corresponds to the results for the Fano scheme ZF proved
in [2] and [6, Chapter V. 4].

2 Varieties of pairs of a point and a line

Let Pn = Pn
K be the projective space of dimension n over a field K, and let

V be the K-vector space H0(Pn,OPn(1)). We denote by P = Grass (n, V ) the
Grassmannian variety of all n-dimensional subspaces in V , and denote by QP

the universal quotient bundle on P. Then P is naturally identified with Pn, and
QP is identified with the tautological line bundle OPn(1). We denote by G =
Grass (n− 1, V ) the Grassmannian variety of all (n− 1)-dimensional subspaces in
V , and denote by QG the universal quotient bundle on G. We remark that a point
of G corresponds to a line in Pn. Let Γ ⊂ P ×G be the flag variety of all pairs
(p, L) of a point p ∈ Pn and a line L ⊂ Pn containing the point p. The variety Γ is
the Pn−1-bundle over P by the first projection φ : Γ → P, and Γ is the P1-bundle
over G by the second projection π : Γ → G. We define the line bundle Qφ on Γ
as the kernel of the natural surjective homomorphism π∗QG → φ∗QP, and define
a decreasing filtration

Symd π∗QG = Fil0 Symd π∗QG ⊃ · · · ⊃ Fild Symd π∗QG ⊃ Fil∞ Symd π∗QG = 0

on the d-th symmetric product of π∗QG, as Film Symd π∗QG being the image of
the natural homomorphism

Symm Qφ ⊗ Symd−m π∗QG −→ Symd π∗QG

for 0 ≤ m ≤ d, and Fil∞ Symd π∗QG = 0. Let F ∈ Symd V . We denote by XF

the hypersurface in P defined as the zeros of the section [F ]P ∈ H0(P, SymdQP)
which is the image of F by the natural isomorphism

Symd V ≃ H0(P, SymdQP).

We denote by ZF the subscheme in G defined as the zeros of the section [F ]G ∈
H0(G, SymdQG) which is the image of F by the natural isomorphism

Symd V ≃ H0(G, SymdQG).
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Then a point in ZF corresponds to a line contained in XF , and ZF is called the
Fano scheme of lines in XF . We denote by YF,m the subscheme in Γ defined as
the zeros of the section [F ]Γ,m ∈ H0(Γ, Symd π∗QG/Fil

m Symd π∗QG) which is the
image of F by the natural homomorphism

Symd V ≃ H0(Γ, Symd π∗QG) −→ H0(Γ, Symd π∗QG/Fil
m Symd π∗QG).

Let L be a line in Pn, and let p be a point on L. The fiber of the line bundle Qφ

at (p, L) ∈ Γ is identified with the kernel of the restriction

H0(L,OPn(1)|L) −→ H0(p,OPn(1)|p).

Hence, L intersects XF at p with the multiplicity ≥ m if and only if the pair (p, L)
represents a point in YF,m. We have a diagram

p ∈ P ⊃ XF
x





x





φ

x





φ|YF,1

(p, L) ∈ Γ ⊃ YF,1 ⊃ YF,2 ⊃ · · · ⊃ YF,d ⊃ YF,∞




y





y

π





y

π|YF,∞

L ∈ G ⊃ ZF .

The morphism φ|YF,1
: YF,1 → XF is the Pn−1-bundle, whose fiber at p ∈ XF

is the set of all lines through the point p. If XF is a smooth hypersurface, then
φ|YF,2

: YF,2 → XF is the Pn−2-bundle, whose fiber at p ∈ XF is the set of all lines
through the point p and contained in the projective tangent space of XF at p. The
morphism π|YF,∞

: YF,∞ → ZF is the P1-bundle, whose fiber at L ∈ ZF is the set
of all points on the line L.

For (p, L) ∈ Γ, there is a basis (x0, . . . , xn) of V such that the point p is defined
by x1 = · · · = xn = 0 and the line L is defined by x2 = · · · = xn = 0 in Pn. Then
the map

A2n−1 = SpecK[ξ1, . . . , ξn, ζ2, . . . , ζn]
∼

−→ U ⊂ Γ;
(ξ1, . . . , ξn, ζ2, . . . , ζn) 7−→ (pξ, L(ξ,ζ))

gives a local coordinate of Γ at (p, L), where pξ denotes the point defined by

x1 − ξ1x0 = · · · = xn − ξnx0 = 0

and L(ξ,ζ) denotes the line defined by

(x2 − ξ2x0)− ζ2(x1 − ξ1x0) = · · · = (xn − ξnx0)− ζn(x1 − ξ1x0) = 0.

On this local coordinate U , ([x0]U , [x1]U) is a local basis of π∗QG, and [x1 − ξ1x0]U
is a local basis of Qφ, where [A]U denotes the image of A ∈ V by the restriction

3



V → H0(U, π∗QG). Note that ([x0]U , [x1 − ξ1x0]U) is another local basis of π
∗QG.

We define the polynomial fk(ξ, ζ) = fk(ξ1, . . . , ξn, ζ2, . . . , ζn) by

[F ]U =

d
∑

k=0

fk(ξ, ζ)[x1 − ξ1x0]
k
U [x0]

d−k
U ∈ H0(U, Symd π∗QG).

Then [F ]U is contained in H0(U,Film Symd π∗QG) if and only if

f0(ξ, ζ) = · · · = fm−1(ξ, ζ) = 0,

and we have

YF,m ∩ U ≃ SpecK[ξ1, . . . , ξn, ζ2, . . . , ζn]
/(

f0(ξ, ζ), . . . , fm−1(ξ, ζ)
)

.

When we consider F ∈ Symd V as the homogeneous polynomial F (x0, . . . , xn) ∈
K[x0, . . . , xn] of degree d, we have

F (x0, x1, ζ2(x1 − ξ1x0) + ξ2x0, . . . , ζn(x1 − ξ1x0) + ξnx0)

=

d
∑

k=0

fk(ξ, ζ)(x1 − ξ1x0)
kxd−k

0 ,

hence the local equation of XF ∩ L(ξ,ζ) in L(ξ,ζ) is

F (1, t+ ξ1, ζ2t+ ξ2, . . . , ζnt+ ξn) =

d
∑

k=0

fk(ξ, ζ)t
k, (2.1)

where t = x1

x0

− ξ1 is a local parameter of the line L(ξ,ζ) at the point pξ.

3 Smoothness and connectedness

Since YF,∞ is a P1-bundle over ZF , the following theorem is directly induced from
the results in [2, Theorem 8] and [6, Chapter V. Theorem 4.3].

Theorem 3.1. Assume d ≥ 1.

(i) If d ≥ 2n− 2, then YF,∞ is empty for general F ∈ Symd V .

(ii) If d ≤ 2n− 3, then YF,∞ is non-empty for any F ∈ Symd V .

(iii) If d ≤ 2n − 3, then YF,∞ is smooth of dimension 2n − d − 2 for general

F ∈ Symd V .

(iv) If d ≤ 2n− 4 and (d, n) 6= (2, 3), then YF,∞ is connected for any F ∈ Symd V .

In this section, we prove the following theorem;
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Theorem 3.2. Assume 1 ≤ m ≤ d.

(i) If m ≥ 2n, then YF,m is empty for general F ∈ Symd V .

(ii) If m ≤ 2n− 1, then YF,m is non-empty for any F ∈ Symd V .

(iii) If m ≤ 2n−1 and m is prime to the characteristic of K, then YF,m is smooth

of dimension 2n−m− 1 for general F ∈ Symd V .

(iv) If m ≤ 2n− 2, then YF,m is connected for any F ∈ Symd V .

We denote by Md = Grass (1, Symd V ) the space of hypersurfaces of degree d
in Pn. We set the vector bundle Ed,m on Γ by

Ed,m = Ker (OΓ ⊗ Symd V −→ Symd π∗QG/Fil
m Symd π∗QG),

and we consider the projective space bundle Yd,m = Grass (1, Ed,m) → Γ. Then Yd,m
is a smooth subvariety of codimension m inMd×Γ = Grass (1,OΓ ⊗ Symd V ), and
the fiber of the projection

ψd,m : Yd,m −→Md; ([F ], p, L) 7−→ [F ]

at [F ] ∈ Md is equal to YF,m. We denote by Yd,m(p, L) ⊂ Md the fiber of the
projective space bundle Yd,m → Γ at (p, L) ∈ Γ. For (p, L) ∈ Γ, we fix a basis
(x0, . . . , xn) of V such that the point p is defined by x1 = · · · = xn = 0 and the line
L is defined by x2 = · · · = xn = 0 in Pn. Then Yd,m(p, L) is the linear subspace

Yd,m(p, L) = {[F ] ∈Md | a0 = · · · = am−1 = 0},

where ai denotes the coefficient of the monomial xd−i
0 xi1 in F (x0, . . . , xn). For

(p, L) ∈ Ym,F , we define the matrix Jm([F ], p, L) by

Jm([F ], p, L) =





∂f0
∂ξ1

(0) · · · ∂f0
∂ξn

(0) ∂f0
∂ζ2

(0) · · · ∂f0
∂ζn

(0)

· · · · · ·
∂fm−1

∂ξ1
(0) · · · ∂fm−1

∂ξn
(0) ∂fm−1

∂ζ2
(0) · · · ∂fm−1

∂ζn
(0)



 ,

where (ξ1, . . . , ξn, ζ2, . . . , ζn) is the local coordinate of Γ and f0(ξ, ζ), . . . , fm−1(ξ, ζ)
are the local equations of YF,m in Section 2. By the equation (2.1), we have

Jm([F ], p, L) =



















0 a0,2 · · · a0,n 0 · · · 0
a0,2 · · · a0,n

... · · ·
· · ·

0 am−2,2 · · · am−2,n

mam am−1,2 · · · am−1,n am−2,2 · · · am−2,n



















,
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where ak,j denotes the coefficient of the monomial xd−k−1
0 xk1xj in F (x0, . . . , xn). We

define the degeneracy locus Wd,m in Yd,m by

Wd,m = {([F ], p, L) ∈ Yd,m | rank Jm([F ], p, L) < m}

= {([F ], p, L) ∈ Yd,m | rank dψd,m([F ], p, L) < dimMd},

where dψd,m denotes the homomorphism on tangent spaces induced by ψd,m :
Yd,m → Md. We remark that Wd,2 ⊂ Wd,m for m ≥ 2, and we set W 0

d,m =
Wd,m \Wd,2.

Proposition 3.3. Assume 1 ≤ m ≤ d.

(i) codimYd,1
Wd,1 = n for d ≥ 1.

(ii) codimYd,2
Wd,2 = n− 1 for d ≥ 2.

(iii) If m = 2n−1 is prime to the characteristic of K, then codimYd,2n−1
Wd,2n−1 =

1.

(iv) If 3 ≤ m ≤ 2n− 2 and m is prime to the characteristic of K, then
{

codimYd,m
Wd,m = min {n− 1, 2n−m},

codimYd,m
W 0

d,m = 2n−m.

(v) If 3 ≤ m ≤ 2n− 2 and m is divisible by the characteristic of K, then
{

codimYd,m
Wd,m = min {n− 1, 2n−m− 1},

codimYd,m
W 0

d,m = 2n−m− 1.

We denote by Mat (l, r) the K-vector space of l × r matrices. We define a
subscheme ∆(l, r) in Grass (1,Mat (l, r)) by

∆(l, r) = {[B] ∈ Grass (1,Mat (l, r)) | rank B̃ < l},

where we set

B̃ =

















b1,1 · · · b1,r 0 · · · 0
b1,1 · · · b1,r

· · ·
· · ·

bl−1,1 · · · bl−1,r

bl,1 · · · bl,r bl−1,1 · · · bl−1,r

















∈ Mat (l, 2r)

for a matrix

B =





b1,1 · · · b1,r
· · ·

bl,1 · · · bl,r



 ∈ Mat (l, r).

We set an open subset ∆0(l, r) of ∆(l, r) by

∆0(l, r) = {[B] ∈ ∆(l, r) | (b1,1, . . . , b1,r) 6= (0, . . . , 0)}.
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Lemma 3.4. For 3 ≤ l ≤ 2r,
{

codimGrass (1,Mat (l,r))∆(l, r) = min {r, 2r − l + 1},

codimGrass (1,Mat (l,r))∆
0(l, r) = 2r − l + 1.

Proof. For 2 ≤ i ≤ l, we set

∆i(l, r) =
{

[B] ∈ ∆(l, r) | rank

















b1,1 · · · b1,r 0 · · · 0
b1,1 · · · b1,r

· · ·
· · ·

bi−1,1 · · · bi−1,r

bi,1 · · · bi,r bi−1,1 · · · bi−1,r

















< i
}

.

Then
∆2(l, r) ⊂ · · · ⊂ ∆l(l, r) = ∆(l, r),

hence we have ∆(l, r) = ∆2(l, r)∐∆0(l, r) and

∆0(l, r) =

l
∐

i=3

(

∆i(l, r) \∆i−1(l, r)
)

.

Since
∆2(l, r) = {[B] ∈ ∆(l, r) | (b1,1, . . . , b1,r) = (0, . . . , 0)},

we have codimGrass (1,Mat (l,r))∆2(l, r) = r. For 3 ≤ i ≤ l, there is an open immersion

∆i(l, r) \∆i−1(l, r)−→Grass (1,Mat (l − 2, r))×Ai−1;





b1,1 · · · b1,r
· · ·

bl,1 · · · bl,r



 7−→
(

















b1,1 · · · b1,r
· · ·

bi−2,1 · · · bi−2,r

bi+1,1 · · · bi+1,r

· · ·
bl,1 · · · bl,r

















, (α1, . . . , αi−1)
)

,

where (α1, . . . , αi−1) is determined by

(bi,1, . . . , bi,r, bi−1,1, . . . , bi−1,r)

= (α1, . . . , αi−1)

















b1,1 · · · b1,r 0 · · · 0
b1,1 · · · b1,r

· · ·
· · ·

bi−2,1 · · · bi−2,r

bi−1,1 · · · bi−1,r bi−2,1 · · · bi−2,r

















.

Hence we have codimGrass (1,Mat (l,r))

(

∆i(l, r) \∆i−1(l, r)
)

= 2r − i+ 1.
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Proof of Proposition 3.3. We set Wd,m(p, L) = Yd,m(p, L)∩Wd,m and W 0
d,m(p, L) =

Yd,m(p, L) ∩ W 0
d,m, and we compute their codimension in Yd,m(p, L). It is clear

that codimYd,1(p,L)Wd,1(p, L) = n and codimYd,2(p,L)Wd,2(p, L) = n − 1. Since
Wd,2n−1(p, L) is defined by det J2n−1([F ], p, L) = 0 in Yd,2n−1(p, L), if m = 2n−1 is
prime to the characteristic of K, then we have codimYd,2n−1(p,L)Wd,2n−1(p, L) = 1.
We assume 3 ≤ m ≤ 2n− 2. We define the hyperplane Td,m(p, L) in Yd,m(p, L) by

Td,m(p, L) = {[F ] ∈ Yd,m(p, L) | am = 0}.

If m is prime to the characteristic of K, then by Lemma 3.4, we have

codimYd,m(p,L) (Wd,m(p, L) \ Td,m(p, L))

= codimGrass (1,Mat (m−1,n−1))∆(m− 1, n− 1) = min {n− 1, 2n−m},

codimYd,m(p,L) (Wd,m(p, L) ∩ Td,m(p, L))

= 1 + codimYd,m(p,L)∩Td,m(p,L) (Wd,m(p, L) ∩ Td,m(p, L))

= 1 + codimGrass (1,Mat (m,n−1)) ∆(m,n− 1) = min {n, 2n−m}

and

codimYd,m(p,L) (W
0
d,m(p, L) \ Td,m(p, L))

= codimGrass (1,Mat (m−1,n−1))∆
0(m− 1, n− 1) = 2n−m,

codimYd,m(p,L) (W
0
d,m(p, L) ∩ Td,m(p, L))

= 1 + codimYd,m(p,L)∩Td,m(p,L) (W
0
d,m(p, L) ∩ Td,m(p, L))

= 1 + codimGrass (1,Mat (m,n−1)) ∆
0(m,n− 1) = 2n−m.

If m is divisible by the characteristic of K, then by Lemma 3.4, we have

codimYd,m(p,L)Wd,m(p, L)

= codimGrass (1,Mat (m,n−1))∆(m,n− 1) = min {n− 1, 2n−m− 1},

codimYd,m(p,L)W
0
d,m(p, L)

= codimGrass (1,Mat (m,n−1))∆
0(m,n− 1) = 2n−m− 1.

Proof of Theorem 3.2. (i) If m ≥ 2n, then dimYd,m < dimMd, hence YF,m is
empty for general F ∈ Symd V .
(ii) Let Ψd,m : Yd,m → Md be the morphism of the schemes over SpecZ whose
fiber at SpecK → SpecZ is the morphism ψd,m : Yd,m → Md for any field K. If
m ≤ 2n− 1 and m is prime to the characteristic of K, then codimYd,m

Wd,m ≥ 1 by
Proposition 3.3, hence ψd,m : Yd,m → Md is dominant. Therefore Ψd,m : Yd,m → Md

is a dominant morphism for m ≤ 2n− 1. Since Ψd,m is a proper morphism, Ψd,m is
surjective, hence YF,m is non-empty for any field K and for any F ∈ Symd V .
(iii) By [4, Proposition 10.4], YF,m is smooth of dimension 2n −m − 1 for [F ] ∈
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Md \ ψd,m(Wd,m). Hence we will show that ψd,m(Wd,m) $ Md is a proper Zariski
closed subset. It is well-known that the hypersurface XF is smooth for a gen-
eral F ∈ Symd V . Then YF,1 and YF,2 are smooth, hence ψd,2(Wd,2) $ Md is a
proper Zariski closed subset. If 3 ≤ m ≤ 2n − 1 and m is prime to the charac-
teristic of K, then dimW 0

d,m < dimMd by Proposition 3.3, hence ψd,m(Wd,m) =
ψd,2(Wd,2) ∪ ψd,m(W

0
d,m) $Md is a proper Zariski closed subset.

(iv) We assume (n,m) 6= (2, 2). If m ≤ 2n− 2 and m is prime to the character-
istic of K, then codimYd,m

Wd,m ≥ 2 by Proposition 3.3. Using the same argument
as the proof of [6, Chapter V. (4.3.3)], the general fiber of Ψd,m : Yd,m → Md

is connected for m ≤ 2n− 2. By Zariski’s Main Theorem, YF,m is connected for
any field K and for any F ∈ Symd V . We assume (n,m) = (2, 2). We denote
by Xd → Md the universal family of curves of degree d in P2. Then the natural
projection φ : Yd,2 → Xd is a birational projective morphism. By Zariski’s Main
Theorem, any fiber of φ is connected. Since XF is connected, YF,2 is connected.

Theorem 3.5. Assume that n ≥ 2 and the characteristic of K is not 3. For a

cubic form F ∈ Sym3 V , the variety YF,3 is smooth of dimension 2n−4 if and only

if XF is a smooth hypersurface in Pn.

Proof. We assume that XF is not a smooth hypersurface. For p ∈ SingXF (K̄),
there is a line L in Pn

K̄
such that (p, L) ∈ YF,3(K̄). Then ([F ], p, L) ∈ W3,3(K̄),

hence YF,3 is not smooth of dimension 2n−4. Conversely, we assume that YF,3 is not
smooth of dimension 2n−4. There is a pair (p, L) ∈ YF,3(K̄) such that ([F ], p, L) ∈
W3,3(K̄). If a3 6= 0, then p ∈ SingXF (K̄). If a3 = 0 and p /∈ SingXF (K̄) then

rank





a0,2 · · · a0,n 0 · · · 0
a1,2 · · · a1,n a0,2 · · · a0,n
a2,2 · · · a2,n a1,2 · · · a1,n



 < 3.

There exist α, β ∈ K̄ such that a2,j = αa0,j + βa1,j and a1,j = βa0,j for 2 ≤ j ≤ n.
Let s ∈ K̄ be satisfying

s2 + βs+ (α+ β2) = 0.

Then F (s, 1, 0, . . . , 0) = 0 and ∂F
∂xj

(s, 1, 0, . . . , 0) = 0 for 0 ≤ j ≤ n, hence XF is

not a smooth hypersurface.
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