
ar
X

iv
:1

01
2.

21
81

v1
  [

m
at

h.
C

O
] 

 1
0 

D
ec

 2
01

0

PSEUDOCYCLIC AND NON-AMORPHIC FUSION

SCHEMES OF THE CYCLOTOMIC ASSOCIATION

SCHEMES

TAO FENG, FAN WU, QING XIANG∗

Dedicated to Richard M. Wilson on the occasion of his 65th birthday

Abstract. We construct twelve infinite families of pseudocyclic and
non-amorphic association schemes, in which each nontrivial relation is
a strongly regular graph. Three of the twelve families generalize the
counterexamples to A. V. Ivanov’s conjecture by Ikuta and Munemasa
[13].

1. Introduction

This note is a sequel to [11]. We assume that the reader is familiar
with the basic theory of association schemes as can be found in [2, 7].
All associations schemes considered in this paper are commutative and
symmetric. Let (X, {Ri}0≤i≤d) be an association scheme with d classes.
For i ∈ {0, 1, . . . , d}, let Ai be the adjacency matrix of the relation Ri,
and let E0 = 1

|X|J,E1, . . . , Ed be the primitive idempotents of the Bose-

Mesner algebra of the scheme (X, {Ri}0≤i≤d), where J is the all-one matrix
of size |X| × |X|. The basis transition matrix from {E0, E1, . . . , Ed} to
{A0, A1, . . . , Ad} is denoted by P = (pj(i))0≤i,j≤d, and usually called the

first eigenmatrix (or character table) of the scheme. Explicitly P is the
(d+1)× (d+1) matrix with rows and columns indexed by 0, 1, 2, . . . , d such
that

(A0, A1, . . . , Ad) = (E0, E1, . . . , Ed)P.

Let ki = pi(0) and mi = rank(Ei). The ki and mi are called valencies
and multiplicities of the scheme, respectively. We say that the scheme
(X, {Ri}0≤i≤d) is pseudocyclic if there exists an integer t such thatmi = t for
all i ∈ {1, . . . , d}. A classical example of pseudocyclic association schemes is
the cyclotomic association scheme over a finite field, which we define below.

Let q = pf , where p is a prime and f a positive integer. Let γ be a fixed
primitive element of Fq and N |(q−1) with N > 1. Let C0 = 〈γN 〉, and Ci =
γiC0 for 1 ≤ i ≤ N−1. Assume that−1 ∈ C0. DefineR0 = {(x, x) | x ∈ Fq},

Key words and phrases. Amorphic association scheme, cyclotomy, Gauss sum, index 2
Gauss sum, pseudocyclic association scheme, strongly regular graph.
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and for i ∈ {1, 2, . . . , N}, define Ri = {(x, y) | x, y ∈ Fq, x − y ∈ Ci−1}.
Then (Fq, {Ri}0≤i≤N ) is an association scheme. We will call this scheme the
cyclotomic association scheme of class N over Fq. The first eigenmatrix P
of the cyclotomic scheme of class N is the following (N + 1) by (N + 1)
matrix (with the rows of P arranged in a certain way)

P =















1 N−1
q

N−1
q

N−1
q · · · N−1

q

1 ηN−1 η0 η1 · · · ηN−2

1 ηN−2 ηN−1 η0 · · · ηN−3
...
1 η0 η1 η2 · · · ηN−1















(1.1)

where the ηi are the cyclotomic periods (or Gauss periods) of orderN defined
by

ηi =
∑

x∈Ci

ψ(x).

In the above defintion, ψ is the additive character of Fq defined by

ψ : Fq → C∗, ψ(x) = ξTr(x)p , (1.2)

where ξp = e2πi/p and Tr is the absolute trace from Fq to Fp.
The following theorem gives combinatorial characterizations for an asso-

ciation scheme to be pseudocyclic.

Theorem 1.1. Let (X, {Ri}0≤i≤d) be an association scheme, and for x ∈ X
and 1 ≤ i ≤ d, let Ri(x) = {y | (x, y) ∈ Ri}. Then the following are
equivalent.

(1) (X, {Ri}0≤i≤d) is pseudocyclic.

(2) For some constant k, we have kj = k and
∑d

i=1 p
j
ii = k − 1, for

1 ≤ j ≤ d.
(3) (X,B) is a 2 − (v, k, k − 1) design, where B = {Ri(x) | x ∈ X, 1 ≤

i ≤ d}.
For a proof of this theorem, we refer the reader to [7, p. 48] and [12, p. 84].

Part (2) of the above theorem will be useful for us.
Let (X, {Ri}0≤i≤d) be an association scheme. For a partition Λ0 :=

{0},Λ1, . . . ,Λd′ of {0, 1, . . . , d}, let RΛi
= ∪k∈Λi

Rk, for 0 ≤ i ≤ d′. If
(X, {RΛi

}0≤i≤d′) forms an association scheme, then we say that (X, {RΛi
}0≤i≤d′)

is a fusion scheme of the original scheme. If (X, {RΛi
}0≤i≤d′) is an associa-

tion scheme for every partition {Λi}0≤i≤d′ of {0, 1, 2, . . . , d} with Λ0 = {0},
then we call the original scheme (X, {Ri}0≤i≤d) amorphic. For a recent sur-
vey on amorphic association schemes, we refere the reader to [10]. Given
a partition {Λi}0≤i≤d′ of {0, 1, 2, . . . , d} with Λ0 = {0}, there is a simple
criterion in terms of the first eigenmatrix P of (X, {Ri}0≤i≤d) for deciding
whether (X, {RΛi

}0≤i≤d′) forms an association scheme or not. We state this
criterion below.
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The Bannai-Muzychuk Criterion. Let P be the first eigenmatrix of an
association scheme (X, {Ri}0≤i≤d). Let Λ0 := {0},Λ1, . . . ,Λd′ be a partition
of {0, 1, . . . , d}. Then (X, {RΛi

}0≤i≤d′) forms an association scheme if and
only if there exists a partition {∆i}0≤i≤d′ of {0, 1, 2, . . . , d} with ∆0 = {0}
such that each (∆i,Λj)-block of P has a constant row sum. Moreover,
the constant row sum of the (∆i,Λj)-block is the (i, j) entry of the first
eigenmatrix of the fusion scheme. (For a proof of this criterion we refer the
reader to [1, 19].)

A. V. Ivanov conjectured in [14] that if each nontrivial relation in an as-
sociation scheme is strongly regular, then the association scheme must be
amorphic. This conjecture turned out to be false. A counterexample was
given by Van Dam [8] in the case where the association scheme is imprimi-
tive. Later on, Van Dam [9] also gave a counterexample in the case where the
association scheme is primitive. More counterexamples were given by Ikuta
and Munemasa [13] in the primitive case. However it should be noted that
there are only a few counterexamples to Ivanov’s conjecture in the primitive
case (cf. [13]).

The purpose of this note is to generalize the counterexamples to Ivanov’s
conjecture by Ikuta and Munemasa [13] into infinite families. Along the
way, we obtain many more infinite families of counterexamples to Ivanov’s
conjecture in the primitive case. The counterexamples we came up with are
all pseudocyclic fusion schemes of the cyclotomic schemes. One of the main
tools that we use is the theory of Gauss sums, which we review in the next
section.

2. Gauss sums

Let p be a prime, f a positive integer, and q = pf . Let ξp = e2πi/p and
let ψ be the additive character of Fq defined in (1.2). Let

χ : F∗
q → C∗

be a character of F∗
q. We define the Gauss sum by

g(χ) =
∑

a∈F∗

q

χ(a)ψ(a).

Note that if χ0 is the trivial multiplicative character of Fq, then g(χ0) = −1.
We are usually concerned with nontrivial Gauss sums g(χ), i.e., those with
χ 6= χ0.

While it is easy to show that the absoulte value of a nontrivial Gauss sum
g(χ) is equal to

√
q, the explicit determination of Gauss sums is a difficult

problem. However, there are a few cases where the Gauss sums g(χ) can be
explicitly evaluated. The simplest case is the so-called semi-primitive case,
where there exists an integer j such that pj ≡ −1 (mod N) (N is the order

of χ in F̂∗
q, the character group of F∗

q). Some authors [5, 6] also refer to this
case as uniform cyclotomy, or pure Gauss sums. We refer the reader to [6,
p. 364] for the precise evaluation of Gauss sums in this case.



4 FENG, WU AND XIANG

The next interesting case is the index 2 case, where −1 is not in the sub-
group 〈p〉, the cyclic group generated by p, and 〈p〉 has index 2 in (Z/NZ)∗

(again here N is the order of χ in F̂∗
q). Many authors have studied this case,

including Baumert and Mykkeltveit [4], McEliece [17], Langevin [15], Mbodj
[16], Meijer and Van de Vlugt [18], and Yang and Xia [20]. In the index 2
case, it can be shown that N has at most two odd prime divisors. Assume
that N is odd, we have the following three possibilities in the index 2 case
(see [20]): Below both p1 and p2 are primes.

(1) N = pm1 , p1 ≡ 3 (mod 4);
(2) N = pm1 p

n
2 , {p1 (mod 4), p2 (mod 4)} = {1, 3}, ordpm1 (p) = φ(pm1 ),

ordpn
2
(p) = φ(pn2 );

(3) N = pm1 p
n
2 , p1 ≡ 1, 3 (mod 4), ordpm

1
(p) = φ(pm1 ) and p2 ≡ 3 (mod

4), ordpn
2
(p) = φ(pn2 )/2.

We state below the results on evaluation of Gauss sums in Case (1) and
(2) from the above list.

Theorem 2.1. (Langevin [15]) Let N = pm1 , where m is a positive integer,
p1 is a prime such that p1 > 3 and p1 ≡ 3 (mod 4). Let p be a prime such
that [(Z/NZ)∗ : 〈p〉] = 2 (that is, f := ordN (p) = φ(N)/2) and let q = pf .
Let χ be a multiplicative character of order N of Fq, and h be the class
number of Q(

√−p1). Then the Gauss sum g(χ) over Fq is determined up
to complex conjugation by

g(χ) =
b+ c

√−p1
2

ph0 ,

where

(1) h0 =
f−h
2 ,

(2) b, c 6≡ 0 (mod p),
(3) b2 + p1c

2 = 4ph,
(4) bph0 ≡ −2 (mod p1).

Theorem 2.2. (Mbodj [16]) Let N = pm1 p
n
2 , where m,n are positive in-

tegers, p1 and p2 are prime such that {p1 (mod 4), p2 (mod 4)} = {1, 3},
ordpm

1
(p) = φ(pm1 ), ordpn

2
(p) = φ(pn2 ). Let p be a prime such that [(Z/NZ)∗ :

〈p〉] = 2 (that is, f := ordN (p) = φ(N)/2) and let q = pf . Let χ be a
multiplicative character of order N of Fq, and h be the class number of
Q(

√−p1p2). Then the Gauss sum g(χ) over Fq is determined up to complex
conjugation by

g(χ) =
b+ c

√−p1p2
2

ph0 ,

where

(1) h0 =
f−h
2 ,

(2) b, c 6≡ 0 (mod p),
(3) b2 + p1p2c

2 = 4ph,
(4) bph0 ≡ 2 (mod p1p2).
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3. Pseudocyclic fusion schemes of the cyclotomic schemes

Let p be a prime, f be a positive integer and q = pf . Let γ be a fixed
primitive element of Fq, and N > 1 be an integer such that N |(q−1). As we
did in Section 1, let C0 = 〈γN 〉 and Ci = γiC0 for 1 ≤ i ≤ N − 1. Assume
that −1 ∈ C0. Define R0 = {(x, x) | x ∈ Fq}, and for i ∈ {1, 2, . . . , N},
define Ri = {(x, y) | x, y ∈ Fq, x − y ∈ Ci−1}. Then (Fq, {Ri}0≤i≤N ) is the
cyclotomic association scheme of class N on Fq. It was proven by Baumert,
Mills and Ward [5] that (Fq, {Ri}0≤i≤N ) is amorphic if and only if −1 is
congruent to a power of p modulo N (i.e., the so-called semi-primitive con-
dition holds). See also [3] for a proof of this fact. Below we will show that in
the index 2 case, we also have interesting fusion schemes of the cyclotomic
association schemes.

3.1. The index 2 case with N = pm1 p2. In this subsection, we assume that
N = pm1 p2 (m ≥ 1), p1, p2 are primes such that {p1 (mod 4), p2 (mod 4)} =
{1, 3}, p is a prime such that gcd(p,N) = 1, ordpm

1
(p) = φ(pm1 ) and ordp2(p) =

φ(p2). It follows that f := ordN (p) = φ(N)/2. Let q = pf , and as before let
C0, C1, . . . , CN−1 be the N -th cyclotomic classes of Fq. Note that here we
have −Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is even.
For convenience, we define d := p1p2. For 0 ≤ k ≤ d− 1, define

Dk = ∪pm−1

1
−1

i=0 Cip2+kpm−1

1

(3.1)

Note that Dk = γkp
m−1

1 D0 and {0},D0,D1, . . . ,Dd−1 form a partition of Fq.
Now define R′

0 = R0 and

R′
k = {(x, y) | x, y ∈ Fq, x− y ∈ Dk−1}. (3.2)

We will show that (Fq, {R′
k}0≤k≤d) is a fusion scheme of (Fq, {Ri}0≤i≤N ).

The proof depends on the following evaluation of Gauss sums in the index
2 case, and results from [11].

Let χ1 be the multiplicative character of order pm1 of Fq defined by χ1(γ) =

exp(2πipm
1

), and let χ2 be the multiplicative character of order p2 of Fq defined

by χ2(γ) = exp(2πip2
). By Theorem 2.2, we have

g(χ̄1χ̄2) =
b+ c

√−p1p2
2

ph0 , (3.3)

where h0 = f−h
2 (h is the class number of Q(

√−p1p2)), b, c 6≡ 0 (mod p),

b2 + p1p2c
2 = 4ph, and bph0 ≡ 2 (mod p1p2).

Theorem 3.1. With the definition of R′
k given in (3.2), (Fq, {R′

k}0≤k≤d) is
a pseudocyclic association scheme.

Proof: We will first prove that (Fq, {R′
k}0≤k≤d) is an association scheme by

using the Bannai-Muzychuk criterion discussed in Section 1.
For each a, 0 ≤ a ≤ N − 1, there exists a unique ia ∈ {0, 1, ..., pm−1

1 − 1}
such that pm−1

1 | (a + p2ia). It follows that there is a unique ja, 0 ≤ ja ≤
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p1p2 − 1, such that a ≡ −p2ia + pm−1
1 ja (mod N). It is now easy to check

that −ip2+ jpm−1
1 , 0 ≤ i ≤ pm−1

1 − 1 and 0 ≤ j ≤ p1p2− 1, form a complete
set of residues modulo N .

The group of additive characters of Fq consists of ψ0 and ψγa , 0 ≤ a ≤
q − 2, where ψ0 is the trivial character and ψγa is defined by

ψγa : Fq → C∗, ψγa(x) = ξTr(γ
ax)

p , (3.4)

where Tr is the absolute trace from Fq to Fp. We usually write ψ1 simply as
ψ. The character values of D0 were computed in the proof of Theorem 5.1
[11]. Since Dk is a (multiplicative) translate of D0, we know the character
values of Dk as well. Explicitly, for each a, 0 ≤ a ≤ N − 1, write

a ≡ −p2ia + pm−1
1 ja (mod N),

with 0 ≤ ia ≤ pm−1
1 −1 and 0 ≤ ja ≤ p1p2−1. For convenience we introduce

the Kronecker delta δa,p1 , which equals 1 if p1|a, 0 otherwise. Also we define
δa,p2 by setting it equal to 1 if p2|a, 0 otherwise. By the results in [11], we
have

ψγa(Dk) = ψ(γa+pm−1

1
kD0) =

1

N
Ta+pm−1

1
k,

where

Ta+pm−1

1
k = −pm−1

1 − (−1)
p1−1

2 pm−1
1 p2

√
qδa+pm−1

1
k,p2

− (−1)
p2−1

2 pm1
√
qδja+k,p1

+
b

2
ph0pm−1

1 (p1δja+k,p1 − 1)(p2δa+pm−1

1
k,p2

− 1)

−
(

a+ pm−1
1 k

p2

)(

ja + k

p1

)

c

2
ph0pm1 p2

In the above formula, b, c are given by (3.3), and ( .
p2
) and ( .

p1
) are Le-

gendre symbols. Observe that a + pm−1
1 k = −p2ia + pm−1

1 (ja + k). So

δa+pm−1

1
k,p2

= δja+k,p2, and

(

a+pm−1

1
k

p2

)

=

(

p1
p2

)m−1(

ja+k
p2

)

. Therefore,

ψγa(Dk) is independent of ia.

In order to apply the Bannai-Muzychuk criterion, we define the following
partition of {ψγa | a ∈ Z/NZ}. For each j, 0 ≤ j ≤ d− 1, define

∆j+1 = {ψ
γ−p2i+p

m−1
1

j
| 0 ≤ i ≤ pm−1

1 − 1},

and ∆0 = {ψ0}. Then clearly ∆0,∆1, . . . ,∆d form a partition of {ψγa |
a ∈ Z/NZ}. For each 0 ≤ k ≤ d − 1, since ψγa(Dk) is independent of ia
(here a ≡ −p2ia + pm−1

1 ja (mod N)), we see that ψγa(Dk) is a constant for
those a in the same subset of the above partition. By the Bannai-Muzychuk
criterion (with Λ0 = {0}, Λj+1 = {1 + ip2 + pm−1

1 j | 0 ≤ i ≤ pm−1
1 − 1},

0 ≤ j ≤ d− 1), we see that (Fq, {R′
0, R

′
1 . . . , R

′
d}) is an association scheme.
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Next we show that the association scheme (Fq, {R′
k}0≤k≤d) is pseudo-

cyclic. To this end, we show that the following group ring equation holds in
Z[(Fq,+)]:

Claim:
∑d−1

k=0D
2
k = (q−1)·0Fq

+ q−1
p1p2

(Fq−0Fq
), where 0Fq

is the zero element

in Fq.

For any a, 0 ≤ a ≤ N − 1, we write a ≡ −iap2 + jap
m−1
1 (mod N) with

ia ∈ {0, 1, · · · , pm−1
1 − 1} and ja ∈ {0, 1, 2, . . . , d − 1}. Since ψγa(Dk) is

independent of ia, we may assume that ia = 0. We now compute

d−1
∑

k=0

ψγa(Dk)
2 =

1

N2

d−1
∑

k=0

T 2
pm−1

1
(ja+k)

=
1

N2

d−1
∑

k=0

T 2
kpm−1

1

Since the last expression above is independent of a, we see that
∑d−1

k=0 ψγa(Dk)
2

are equal for all 0 ≤ a ≤ N−1. Since each Dk is a union of some N -th cyclo-

tomic classes, it follows that
∑d−1

k=0 ψγa(Dk)
2 are equal for all 0 ≤ a ≤ q− 2.

Therefore, by the inversion formula, we have

d−1
∑

k=0

D2
k = (n − λ) · 0Fq

+ λFq,

for some integers n, λ. Now applying the principal character to both sides,
and counting the coefficient of 0Fq

on both sides, we have

n = p1p2 ·
q − 1

p1p2
,

n+ (q − 1)λ = d ·
(

q − 1

p1p2

)2

.

It follows that n = q − 1, λ = q−1
p1p2

− 1. The claim is now established. A

direct consequence is that
∑d−1

i=0 p
j
i,i =

q−1
N − 1, for all j, where pji,i are the

intersection parameters given by D2
i =

∑d−1
j=0 p

j
i,iDj+p

0
i,i ·0Fq

. By Part (2) of

Theorem 1.1, the association scheme (Fq, {R′
k}0≤k≤d) is pseudocyclic. The

proof is complete. 2

In order to obtain counterexamples to Ivanov’s conjecture, we need to have
each R′

k (1 ≤ k ≤ d) in Theorem 3.1 to be strongly regular. Note that R′
k

is just the Cayley graph Cay(Fq,Dk−1), and Cay(Fq,Dk−1) ∼= Cay(Fq,D0)

for all 1 ≤ k ≤ d since Dk−1 = γ(k−1)pm−1

1 D0. To obtain counterexamples to
Ivanov’s conjecture, it suffices to have Cay(Fq,D0) to be strongly regular.
In [11], we obtained necessary and sufficient conditions for Cay(Fq,D0) to
be strongly regular, which we quote below.
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Theorem 3.2. (Corollary 5.2 in [11])With b, c, h given in (3.3), Cay(Fq,D0)
is a strongly regular graph if and only if b, c ∈ {1,−1}, h is even and

p1 = 2ph/2 + (−1)
p1−1

2 b, p2 = 2ph/2 − (−1)
p1−1

2 b.

In [11], we used a computer to search for p, p1, p2 satisfying the conditions
in Theorem 3.2. We found six infinite families of strongly regular graphs in
this way. By the discussion preceding Theorem 3.2, and since the parameters
of each of the six examples of srg are neither Latin square type nor negative
Latin square type, each of the six (infinite) families of srg gives rise to a
class of infinitely many counterexamples to Ivanov’s conjecture. Below we
list the parameters of these examples. For the detailed reasons why we have
strongly regular graphs, we refer the reader to [11].

Example 3.3. Let p = 2, q = 24·3
m−1

, p1 = 3, p2 = 5, N = 3m ·5, with m ≥
1. Then we have a 15-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤15) in
which each relation R′

k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 3.3 is the same as Example 1 in
[13].

Example 3.4. Let p = 2, q = 24·5
m−1

, p1 = 5, p2 = 3, N = 5m ·3, with m ≥
1. Then we have a 15-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤15) in
which each relation R′

k, 1 ≤ k ≤ 15, is strongly regular.

We remark that when m = 2, Example 3.4 is the same as Example 2 in
[13].

Example 3.5. Let p = 3, q = 312·5
m−1

, p1 = 5, p2 = 7, N = 5m ·7, with m ≥
1. Then we have a 35-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤35) in
which each relation R′

k, 1 ≤ k ≤ 35, is strongly regular.

Example 3.6. Let p = 3, q = 312·5
m−1

, p1 = 7, p2 = 5, N = 7m ·5, with m ≥
1. Then we have a 35-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤35) in
which each relation R′

k, 1 ≤ k ≤ 35, is strongly regular.

Example 3.7. Let p = 3, q = 3144·17
m−1

, p1 = 17, p2 = 19, N =
17m · 19, with m ≥ 1. Then we have a 323-class pseudocyclic fusion scheme
(Fq, {R′

k}0≤k≤323) in which each relation R′
k, 1 ≤ k ≤ 323, is strongly regu-

lar.

Example 3.8. Let p = 3, q = 3144·19
m−1

, p1 = 19, p2 = 17, N =
19m · 17, with m ≥ 1. Then we have a 323-class pseudocyclic fusion scheme
(Fq, {R′

k}0≤k≤323) in which each relation R′
k, 1 ≤ k ≤ 323, is strongly regu-

lar.

Further fusions of these pseudocyclic association schemes are possible by
using Corollary 3.2 in [13].
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3.2. The index 2 case with N = pm1 . In this subsection, we assume that
N = pm1 (here m ≥ 1, p1 > 3 is a prime such that p1 ≡ 3 (mod 4)), p is a
prime such that gcd(N, p) = 1, and f := ordN (p) = φ(N)/2. Let q = pf ,
and as before let C0, C1, . . . , CN−1 be the N -th cyclotomic classes of Fq.
Note that −Ci = Ci for all 0 ≤ i ≤ N − 1 since either 2N |(q − 1) or q is
even. For 0 ≤ k ≤ p1 − 1, define

Dk = ∪pm−1

1
−1

i=0 Ci+kpm−1

1

(3.5)

Note that Dk = γkp
m−1

1 D0 and {0},D0,D1, . . . ,Dp1−1 form a partition of
Fq. Now define R′

0 = R0 and

R′
k = {(x, y) | x, y ∈ Fq, x− y ∈ Dk−1}. (3.6)

We will show that (Fq, {R′
k}0≤k≤p1) is a fusion scheme of (Fq, {Ri}0≤i≤N ).

The proof depends on the following evaluation of Gauss sums in the index
2 case, and results from [11].

Let χ be the multiplicative character of Fq defined by χ(γ) = exp(2πiN ).
By Theorem 2.1, we have

g(χ̄) =
b+ c

√−p1
2

ph0 , b, c 6≡ 0 (mod p), (3.7)

where h0 = f−h
2 and h is the class number of Q(

√−p1), b2 + p1c
2 = 4ph,

and bph0 ≡ −2 (mod p1).

Theorem 3.9. With the definition of R′
k given in (3.6), (Fq, {R′

k}0≤k≤d) is
a pseudocyclic association scheme.

Proof: The proof is similar to that of Theorem 3.1. For each a, 0 ≤ a ≤
N − 1, there is a unique ia ∈ {0, 1, · · · , pm−1

1 − 1}, such that pm−1
1 |(a+ ia).

It follows that there is a unique ja, 0 ≤ ja ≤ p1 − 1, such that a ≡ −ia +
pm−1
1 ja (mod N). It is now easy to check that −i+ jpm−1

1 , 0 ≤ i ≤ pm−1
1 − 1

and 0 ≤ j ≤ p1 − 1, form a complete set of residues modulo N .
The group of additive characters of Fq consists of ψ0 and ψγa , 0 ≤ a ≤

q−2. The character values of D0 were computed in the proof of Theorem 4.1
[11]. Since Dk is a (multiplicative) translate of D0, we know the character
values of Dk as well. Explicitly, for each a, 0 ≤ a ≤ N − 1, write

a ≡ −ia + pm−1
1 ja (mod N),

with 0 ≤ ia ≤ pm−1
1 − 1 and 0 ≤ ja ≤ p1 − 1. For convenience, we also

introduce the Kronecker delta δja , which equals 1 if p1|ja, and 0 otherwise.
By the results in [11], we have

ψγa(Dk) = ψ(γa+kpm−1

1 D0) =
1

N
Ta+kpm−1

1

,

where

Ta+kpm−1

1

= −pm−1
1 +

ph0pm−1
1 b

2
(p1δja+k − 1)− ph0pm1 c

2

(

ja + k

p1

)

.
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In the above formula, b, c are given in (3.7), and ( .
p1
) is the Legendre symbol.

It is important to note that ψγa(Dk) is independent of ia.

We define the following partition of {ψγa | a ∈ Z/NZ}. For each j,
0 ≤ j ≤ p1 − 1, we define

∆j+1 = {ψ
γ−i+p

m−1
1

j
| 0 ≤ i ≤ pm−1

1 − 1},

and ∆0 = {ψ0}. Then clearly ∆0,∆1, . . . ,∆p1 form a partition of {ψγa | a ∈
Z/NZ}. For each 0 ≤ k ≤ p1 − 1, since ψγa(Dk) is independent of ia (here

a ≡ −ia+pm−1
1 ja (mod N)), we see that ψγa(Dk) is a constant for those a in

the same subset of the above partition. By the Bannai-Muzychuk criterion
(with Λ0 = {0}, Λj+1 = {1+ i+ pm−1

1 j | 0 ≤ i ≤ pm−1
1 − 1}, 0 ≤ j ≤ p1− 1),

we see that (Fq, {R′
0, R

′
1 . . . , R

′
p1}) is an association scheme.

We can similarly show that the following group ring equation holds in
Z[(Fq,+)]:

p1−1
∑

k=0

D2
k = (q − 1) · 0Fq

+
q − 1

p1
(Fq − 0Fq

),

from which the pseudocyclicity of the scheme (Fq, {R′
0, R

′
1 . . . , R

′
p1}) follows.

We omit the details of the proof of the above group ring equation. The proof
is now complete. 2

In order to obtain counterexamples to Ivanov’s conjecture, we need to have
each R′

k (1 ≤ k ≤ p1) in Theorem 3.9 to be strongly regular. Note that R′
k

is just the Cayley graph Cay(Fq,Dk−1), and Cay(Fq,Dk−1) ∼= Cay(Fq,D0)

for all 1 ≤ k ≤ p1 since Dk−1 = γ(k−1)pm−1

1 D0. To obtain counterexamples
to Ivanov’s conjecture, it suffices to have Cay(Fq,D0) to be strongly regular.
In [11], we obtained necessary and sufficient conditions for Cay(Fq,D0) to
be strongly regular, which we quote below.

Theorem 3.10. (Corollary 4.2 in [11]) With b, c given in (3.7), Cay(Fq,D)
is a strongly regular graph if and only if b, c ∈ {1,−1}.

In [11], we used a computer to search for p, p1 satisfying the conditions
in Theorem 3.2. We found six infinite families of strongly regular graphs in
this way. By the discussion preceding Theorem 3.2, each of the six examples
of srg gives rise to a class of infinitely many counterexamples to Ivanov’s
conjecture. Below we list the parameters of these examples. For the detailed
reasons why we have strongly regular graphs, we refere the reader to [11].

Example 3.11. Let p = 2, q = 23·7
m−1

, p1 = 7, N = pm1 , m ≥ 1 is an
integer. Then we have a 7-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤7)
in which each relation R′

k, 1 ≤ k ≤ 7, is strongly regular.

We remark that when m = 2, Example 3.11 is the same as Example 3 of
[13].
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Example 3.12. Let p = 3, q = 353·107
m−1

, p1 = 107, N = pm1 , m ≥
1 is an integer. Then we have a 107-class pseudocyclic fusion scheme
(Fq, {R′

k}0≤k≤107) in which each relation R′
k, 1 ≤ k ≤ 107, is strongly regu-

lar.

Example 3.13. Let p = 5, q = 59·19
m−1

, p1 = 19, N = pm1 , m ≥ 1 is an in-
teger. Then we have a 19-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤19)
in which each relation R′

k, 1 ≤ k ≤ 19, is strongly regular.

Example 3.14. Let p = 5, q = 5249·499
m−1

, p1 = 499, N = pm1 , m ≥
1 is an integer. Then we have a 499-class pseudocyclic fusion scheme
(Fq, {R′

k}0≤k≤499) in which each relation R′
k, 1 ≤ k ≤ 499, is strongly regu-

lar.

Example 3.15. Let p = 17, q = 1733·67
m−1

, p1 = 67, N = pm1 , m ≥ 1 is an
integer. Then we have a 67-class pseudocyclic fusion scheme (Fq, {R′

k}0≤k≤67)
in which each relation R′

k, 1 ≤ k ≤ 67, is strongly regular.

Example 3.16. Let p = 41, q = 4181·163
m−1

, p1 = 163, N = pm1 , m ≥
1 is an integer. Then we have a 163-class pseudocyclic fusion scheme
(Fq, {R′

k}0≤k≤163) in which each relation R′
k, 1 ≤ k ≤ 163, is strongly regu-

lar.

Again, more fusion schemes are possible by using Corollary 3.2 in [13].

References

[1] E. Bannai, Subschemes of some association schemes, J. Algebra 144 (1991), 167–188.
[2] E. Bannai, T. Ito, Algebraic Combinatorics I: Association Schemes, Ben-

jamin/Cummings, Menlo Park, 1984.
[3] E. Bannai, A. Munemasa, Davenport-Hasse theorem and cyclotomic association

schemes, in Proc. Algebraic Combinatorics, Hirosaki University, 1990.
[4] L. D. Baumert, J. Mykkeltveit, Weight distributions of some irreducible cyclic codes,

DSN Progr. Rep., 16 (1973), 128–131.
[5] L. D. Baumert, M. H. Mills, and R. L. Ward, Uniform Cyclotomy, J. Number Theory

14 (1982), 67-82.
[6] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi Sums, A Wiley-

Interscience Publication, 1998.
[7] A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs, Ergebnisse

der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)], 18. Springer-Verlag, Berlin, 1989.

[8] E. R. van Dam, A characterization of association schemes from affine spaces, Des.

Codes Cryptogr. 21 (2000), 83–86.
[9] E. R. van Dam, Strongly regular decompositions of the complete graph, J. Algebraic

Combin. 17 (2003), 181–201.
[10] E. van Dam, M. Muzychuk, Some implications on amorphic association schemes, J.

Combin. Theory (A) 117 (2010), 111–127.
[11] Tao Feng, Qing Xiang, Strongly regular graphs from union of cyclotomic classes,

ArXiv: 1010.4107v1.
[12] Henk D. L. Hollmann, Association schemes, Master Thesis, Eindhoven University of

Technology, 1982.



12 FENG, WU AND XIANG

[13] T. Ikuta, A. Munemasa, Pseudocyclic association schemes and strongly regular
graphs, Europ. J. Combin. 31 (2010), 1513–1519.

[14] A. A. Ivanov, C. E. Prager, Problem session at ALCOM-91, Europ. J. Combin. 15

(1994), 105–112.
[15] P. Langevin, Calculs de certaines sommes de Gauss, J. Number Theory, 63 (1997),

59–64.
[16] O. D. Mbodj, Quadratic Gauss sums, Finite Fields and Appl., 4 (1998), 347–361.
[17] R. J. McEliece, Irreducible cyclic codes and Gauss sums. Combinatorics (Proc. NATO

Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite geometry
and coding theory, pp. 179–196. Math. Centre Tracts, No. 55, Math. Centrum, Am-
sterdam.

[18] P. Meijer, M. van der Vlugt, The evaluation of Gauss sums for characters of 2-power
order, J Number Theory, 100 (2003), 381–395.

[19] M. E. Muzychuk, V -rings of permutation groups with invariant metric, Ph.D. thesis,
Kiev State University, 1987.

[20] J. Yang, L. Xia, Complete solving of explicit evaluation of Gauss sums in the index
2 case, in press in Sci. China Ser. A.

Department of Mathematical Sciences, University of Delaware, Newark,

DE 19716, USA

E-mail address: feng@math.udel.edu

Department of Mathematical Sciences, University of Delaware, Newark,

DE 19716, USA

E-mail address: wufan@math.udel.edu

Department of Mathematical Sciences, University of Delaware, Newark,

DE 19716, USA

E-mail address: xiang@math.udel.edu


	1. Introduction
	2. Gauss sums
	3. Pseudocyclic fusion schemes of the cyclotomic schemes
	3.1. The index 2 case with N=p1mp2
	3.2. The index 2 case with N=p1m

	References

