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ENTROPY RATE FOR HIDDEN MARKOV CHAINS WITH

RARE TRANSITIONS

YUVAL PERES AND ANTHONY QUAS

Abstract. We consider Hidden Markov Chains obtained by passing a Markov
Chain with rare transitions through a noisy memoryless channel. We obtain
asymptotic estimates for the entropy of the resulting Hidden Markov Chain as
the transition rate is reduced to zero.

Let (Xn) be a Markov chain with finite state space S and transition matrix
P (p) and let (Yn) be the Hidden Markov chain observed by passing (Xn) through
a homogeneous noisy memoryless channel (i.e. Y takes values in a set T , and there
exists a matrix Q such that P(Yn = j|Xn = i,Xn−1

−∞ , X∞
n+1, Y

n−1
−∞ , Y ∞

n+1) = Qij).
We make the additional assumption on the channel that the rows of Q are distinct.
In this case we call the channel statistically distinguishing.

We assume that P (p) is of the form I + pA where A is a matrix with negative
entries on the diagonal, non-negative entries in the off-diagonal terms and zero
row sums. We further assume that for small positive p, the Markov chain with
transition matrix P (p) is irreducible. Notice that for Markov chains of this form,
the invariant distribution (πi)i∈S does not depend on p. In this case, we say that
for small positive values of p, the Markov chain is in a rare transition regime.

We will adopt the convention that H is used to denote the entropy of a fi-
nite partition, whereas h is used to denote the entropy of a process (the en-

tropy rate in information theory terminology). Given an irreducible Markov chain
with transition matrix P , we let h(P ) be the entropy of the Markov chain (i.e.
h(P ) = −

∑

i,j πiPij logPij where πi is the (unique) invariant distribution of the

Markov chain and as usual we adopt the convention that 0 log 0 = 0). We also
let Hchan(i) be the entropy of the output of the channel when the input symbol
is i (i.e. Hchan(i) = −

∑

j∈T Qij logQij). Let h(Y ) denote the entropy of Y (i.e.

h(Y ) = − limN→∞
1
N

∑

w∈TN P(Y N
1 = w) logP(Y N

1 = w)).

Theorem 1. Consider the Hidden Markov Chain (Yn) obtained by observing a

Markov chain with irreducible transition matrix P (p) = I+Ap through a statistically

distinguishing channel with transition matrix Q. Then there exists a constant C > 0
such that for all small p > 0,

(1) h(P (p)) +
∑

i

πiHchan(i)− Cp ≤ h(Y ) ≤ h(P (p)) +
∑

i

πiHchan(i),

where (πi)i∈S is the invariant distribution of P (p).
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If in addition the channel has the property that there exist i, i′ and j such that

Pii′ > 0, Qij > 0 and Qi′j > 0, then there exists a constant c > 0 such that

(2) h(Y ) ≤ h(P (p)) +
∑

i

πiHchan(i)− cp.

The entropy rate in the rare transition regime was considered previously in the
special case of a 0–1 valued Markov Chain with transition matrix P (p) =

( 1−p p
p 1−p

)

and where the channel was the binary symmetric channel with crossover probability
ǫ (i.e. Q =

(

1−ǫ ǫ
ǫ 1−ǫ

)

). It is convenient to introduce the notation g(p) = −p log p−
(1 − p) log(1 − p). In [4], Nair, Ordentlich and Weissman proved that g(ǫ) − (1 −
2ǫ)2p log p/(1 − ǫ) ≤ h(Y ) ≤ g(p) + g(ǫ). For comparison, with our result, this is
essentially of the form g(ǫ) + a(ǫ)g(p) ≤ h(Y ) ≤ g(p) + g(ǫ) where a(ǫ) < 1 but
a(ǫ) → 1 as ǫ → 0 (i.e. h(Y ) = g(p) + g(ǫ) − O(p log p)). A second paper due to
Chigansky [1] shows that g(ǫ) + b(ǫ)g(p) ≤ h(Y ) for a function b(ǫ) < 1 satisfying
b(ǫ) → 1 as ǫ → 1/2 (again giving an O(p log p) error). Our result states in this
case that there exist C > c > 0 such that g(p)+g(ǫ)−Cp ≤ h(Y ) ≤ g(p)+g(ǫ)−cp
(i.e. h(Y ) = g(p) + g(ǫ)−Θ(p)).

We note that as part of the proof we attempt a reconstruction of (Xn) from
the observed data (Yn). In our case, the reconstruction of the nth symbol of Xn

depended on past and future values of Ym. A related but harder problem of filtering
is to try to reconstructXn given only Y n

1 . This problem was addressed in essentially
the same scenario by Khasminskii and Zeitouni [3], where they gave a lower bound
for the asymptotic reconstruction error of the form Cp| log p| for an explicit constant
C (i.e. for an arbitrary reconstruction scheme, the probability of wrongly guessing
Xn is bounded below in the limit as n → ∞ by Cp| log p|). Our scheme shows
that if one is allowed to use future as well as past observations then the asymptotic
reconstruction error is O(p). This was previously observed by Shue, Anderson and
DeBruyne in [5] who used a similar scheme to ours.

Before giving the proof of the theorem, we discuss the strategy. We start from
the equality

(3) h(X) + h(Y |X) = h(X,Y ) = h(Y ) + h(X |Y ).

Since h(X) and h(Y |X) are known to be h(P (p)) and
∑

i πiHchan(i), the estimates
for the entropy of Y are obtained by estimating h(X |Y ). The inequality (1) is
equivalent to showing that 0 ≤ h(X |Y ) ≤ Cp for some C > 0. The lower bound here
is trivial, whereas the main part of the proof is the upper bound for h(X |Y ) (giving a
lower bound for h(Y )). The second part of the proof, showing (2) lowering the upper
bound for h(Y ) under additional conditions, is proved by showing h(X |Y ) ≥ cp for
some c > 0.

We explain briefly the underlying idea of the upper bound h(X |Y ) = O(p).
Since the transitions in the (Xn) sequence are rare, given a realization of (Yn),
the Yn values allow one to guess (using the statistical-distinguishing property) the
Xn values from which the Yn values are obtained. This provides for an accurate
reconstruction except that where there is a transition in the Xn’s there is some
uncertainty as to its location as estimated using the Yn’s. It turns out that by
using maximum likelihood estimation, the transition locations may be pinpointed
up to an error with exponentially small tail. Since the transitions occur with rate
p, there is an O(p) entropy error in reconstructing (Xn) from (Yn).
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We make use of a number of notational conventions, some standard and others
less so. Firstly we shall write denote events by set notation so that {X0 = X2} de-
notes the event that the random variables X0 and X2 agree. We make extensive use
of relative entropy. For two partitions P and Q, the relative entropy is defined by
H(Q|P) = H(P∨Q)−H(P). When conditioning, we shall not distinguish between
random variables and the partitions and σ-algebras that they induce (so that for

example H(XN−1
0 ) is −

∑

w∈SN P(XN−1
0 = w) log P(XN−1

0 = w) and H(X0|Y ) is
the conditional entropy of X0 relative to the σ-algebra generated by {Yn : n ∈ Z}).
On the other hand if A is an event, we use H(P|A) to mean the entropy of the par-
tition with respect to the conditional measure PA(B) = P(A∩B)/P(A). For jointly
stationary processes (Xn)n∈Z and (Yn)n∈Z, the relative entropy of the processes

is given by h(Y |X) = h((Xn, Yn)n∈Z) − h((Xn)n∈Z) = limN→∞(1/N)(H(XN−1
0 ∨

Y N−1
0 )−H(XN−1

0 )) = limN→∞(1/N)H(Y N−1
0 |X∞

−∞) = H(Y0|X
∞
−∞, Y −1

−∞).
Given a measurable partition Q of the space, an event A and a σ-algebra F we

will write H(Q|F|A) for the entropy of Q relative to F with respect to PA. In the
case where A is F -measurable (as will always be the case in what follows), we have

H(Q|F|A) =

∫

(

−
∑

B∈Q

P(B|F) logP(B|F)

)

dPA.

If A1, . . . , Ak form an F -measurable partition of the space, then we have the
following equality:

(4) H(Q|F) =

k
∑

j=1

P(Aj)H(Q|F|Aj).

Proof of Theorem 1. Note that ((Xn, Yn))n∈Z forms a Markov chain with transition
matrix P̄ given by P̄(i,j),(i′,j′) = Pii′Qi′j′ and invariant distribution π̄(i,j) = πiQij .
The standard formula for the entropy of a Markov chain then gives h(X,Y ) =
h(P (p)) +

∑

i πiHchan(i). Since h(X,Y ) = h(Y ) + h(X |Y ), one obtains

(5) h(Y ) = h(X,Y )− h(X |Y ) = h(P (p)) +
∑

i

πiHchan(i)− h(X |Y ).

This establishes the upper bound in the first part of the theorem.
We now establish the lower bound. We are aiming to show h(X |Y ) = O(p) (for

which it suffices to showH(XL−1
0 |Y ) = O(Lp) for some L). Setting L = | log p|4 and

letting P be a suitable partition, we estimate H(XL−1
0 |Y,P) and use the inequality

(6) H(XL−1
0 |Y ) ≤ H(XL−1

0 |Y,P) +H(P).

We define the partition P as follows: SetK = | log p|2 and let P = {Em, Eb, Eg1, Eg2}.

Here Em (for many) is the event that there are at least two transitions in XL−1
0 ,

Eb (for boundary) is the event that there is exactly one transition and that it takes
place within a distance K of the boundary of the block and finally Eg (for good) is
the event that there is at most one transition and if it takes place, then it occurs at
a distance at least K from the boundary of the block. This will later be subdivided
into Eg1 and Eg2.

If Em holds then we bound the entropy contribution by the entropy of the equidis-
tributed case whereas if Eb holds, there are 2K|S|(|S| − 1) = O(K) possible values
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of XL−1
0 . This yields the following estimates:

P(Em) = O(p2L2) = o(p)(7)

H(XL−1
0 |Em) ≤ L log |S|(8)

P(Eb) = O(pK)(9)

H(XL−1
0 |Eb) = O(logK).(10)

It follows that P(Eg) = 1−O(pK). Given that the event Eg holds, the sequence

XL−1
0 belongs to B = {aL : a ∈ S} ∪ {aibL−i : a, b ∈ S,K ≤ i ≤ L−K}.
Given a sequence u ∈ B, the log-likelihood of u being the input sequence yield-

ing the output Y L−1
0 is Lu(Y

L−1
0 ) =

∑L−1
i=0 logQuiYi

. We define ZL−1
0 to be the

sequence in B for which LZ(Y
L−1
0 ) is maximized (breaking ties lexicographically if

necessary). We will then show using large deviation methods that when Eg holds,

ZL−1
0 is a good reconstruction of XL−1

0 with small error.
We calculate for u, v ∈ B,

P
(

Lv(Y
L−1
0 ) ≥ Lu(Y

L−1
0 )|XL−1

0 = u
)

=P

(

L−1
∑

i=0

log(QviYi
/QuiYi

) ≥ 0|XL−1
0 = u

)

=P

(

∑

i∈∆

log(QviYi
/QuiYi

) ≥ 0|XL−1
0 = u

)

,

where ∆ = {i : ui 6= vi}. For each i ∈ ∆, given that XL−1
0 = u, we have that

log(QviYi
/QuiYi

) is an independent random variable taking the value log(Qvij/Quij)
with probability Quij .

It is well known (and easy to verify using elementary calculus) that for a given
probability distribution π on a set T , the probability distribution σ maximizing
∑

j∈T πj log(σj/πj) is σ = π (for which the maximum is 0). Accordingly we see that

given that XL−1
0 = u, Lv(Y

L−1
0 ) − Lu(Y

L−1
0 ) is the sum of |∆| random variables,

each having one of |S|(|S| − 1) distributions, each with negative expectation. It
follows from Hoeffding’s Inequality [2] that there exist C > 0 and η < 1 independent

of p such that P(Lv(Y
L−1
0 ) ≥ Lu(Y

L−1
0 )|XL−1

0 = u) ≤ Cη|∆| .
We deduce that for u, v ∈ B

(11) P(ZL−1
0 = v|XL−1

0 = u) ≤ Cηδ(u,v),

where δ(u, v) is the number of places in which u and v differ.
We split Eg into two subsets:

Eg1 = Eg ∩ {δ(XL−1
0 , ZL−1

0 ) < K}; and

Eg2 = Eg ∩ {δ(XL−1
0 , ZL−1

0 ) ≥ K}.

Since there are less than |S|2L elements in B, we see using (11) and recalling that
K = | log p|2 that

P(Eg2) ≤ |S|2LCηK = o(p)(12)

H(XL−1
0 |Eg2) ≤ log(|S|2L).(13)
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Combining (12) with (9) and (7) we see that P(Eg1) = 1 − O(pK). We then
obtain

(14) H(P) = O(pK log(pK)) = o(pL).

Conditioned on being in Eg1, if Z0 = ZL−1 then XL−1
0 = ZL−1

0 so we have

(15) H(XL−1
0 |ZL−1

0 ∨ P|Eg1 ∩ {Z0 = ZL−1}) = 0.

Given that Eg1 holds, if XL−1
0 = aibL−i then ZL−1

0 must be of the form ajbL−j

for some j satisfying −K < j − i < K. Denote this difference j − i by the random
variable N . We have

H(XL−1
0 |Y L−1

0 ∨ P|Eg1 ∩ {Z0 6= ZL−1})

≤H(XL−1
0 |ZL−1

0 ∨ P|Eg1 ∩ {Z0 6= ZL−1})

=H(N |ZL−1
0 ∨ P|Eg1 ∩ {Z0 6= ZL−1})

≤H(N |Eg1 ∩ {Z0 6= ZL−1}).

where the first inequality follows because ZL−1
0 is determined by Y L−1

0 so the

partition generated by Y L−1
0 is finer than that generated by ZL−1

0 ; and the equality

follows because given ZL−1
0 and conditioned on being in Eg1, knowingN is sufficient

to reconstruct XL−1
0 so the partition generated by N is the same as the partition

generated by XL−1
0 .

Since Eg1 ∩ {Z0 6= ZL−1} = Eg1 ∩ {X0 6= XL−1}, we have for |k| < K, P(N =
k|Eg1 ∩{Z0 6= ZL−1}) = P(N = k|Eg1 ∩{X0 6= XL−1}). From (11) this is bounded

above by Cη|k|. Since a distribution with these bounds has entropy bounded above
independently of p, it follows from this that H(N |Eg1 ∩ {Z0 6= ZL−1}) = O(1) and
hence that

(16) H(XL−1
0 |Y L−1

0 ∨ P|Eg1 ∩ {Z0 6= ZL−1}) = O(1).

Finally we have P(Eg1 ∩ {Z0 6= ZL−1}) = O(pL)

We now have H(XL−1
0 |Y L−1

0 ) ≤ H(XL−1
0 |Y L−1

0 ∨ P) +H(P). We estimate the
right side using (4), splitting the space up into the sets Eb, Em, Eg2, Eg1 ∩ {Z0 =

ZL−1} and Eg1 ∩ {Z0 6= ZL−1}. All of these sets are Y L−1
0 ∨P measurable. Calcu-

lating the contribution to the entropy from each of the sets, each part contributes at
mostO(pL) yielding the estimateH(XL−1

0 |Y L−1
0 ) = O(pL), so that h(X |Y ) = O(p)

as required. This completes the first part of the proof.
For the second part of the proof, suppose that the additional properties are satis-

fied (the existence of i, i′ and j such that Pii′ > 0, Qij > 0 and Qi′j > 0). We need

to show that h(X |Y ) ≥ cp for some c > 0 or equivalently that H(X0|Y,X
−1
−∞) ≥ cp.

In fact, we show the stronger statement: H(X0|Y, (Xn)n6=0) ≥ cp. Let A be the
event thatX−1 = i andX1 = i′ and Y0 = j. We now estimateH(X0|Y, (Xn)n6=0|A).

For x ∈ A, we have

P(X0 = i|Y, (Xn)n6=0)(x) =
PiiPii′Qij

PiiPii′Qij + Pii′Pi′i′Qi′j +
∑

k 6∈{i,i′} PikPki′Qkj

P(X0 = i′|Y, (Xn)n6=0)(x) =
Pii′Pi′i′Qi′j

PiiPii′Qij + Pii′Pi′i′Qi′j +
∑

k 6∈{i,i′} PikPki′Qkj

.

As p → 0, we have P(X0 = i|Y, (Xn)n6=0)(x) → Qij/(Qij + Qi′j) and P(X0 =
i′|Y, (Xn)n6=0)(x) → Qi′j/(Qij+Qi′j). From this we see that H(X0|Y, (Xn)n6=0)|A)
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converges to a non-zero constant as p → 0. Since A has probability Ω(p), applying
(4) we obtain the lower bound h(X |Y ) ≥ cp. From this we deduce the claimed
upper bound for h(Y ):

h(Y ) ≤ h(X) +
∑

i

πiHchan(i)− cp.

In this case we therefore have h(Y ) = h(X) +
∑

i πiHchan(i) + Θ(p). This
completes the proof of the theorem.
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